VISVESVARAYA TECHNOLOGICAL UNIVERSITY, BELAGAVI

B.E. in Mechanical Engineering
Scheme of Teaching and Examinations2022
Outcome Based Education (OBE) and Choice Based Credit System (CBCS)

		Credits		m	4	4	m	1	n	1		7	-)		20	
		otal Marks	T	100	100	100	100	100	100	100		00	100			100)) 		900	
		SEE Marks	6	50	50	20	20	20	20	-		C	20						350	
	Examination	CIE Marks		50	50	20	20	20	20	100		C	20			100)		550	
		ouration in hours]	03	03	03	03	03	03	01	7	TO	C	70					Total	
	Ī	Ads	S																	
	Trans.	Practical/	Ь	0	2	2	0	2	0	2	a Theory	0	a laboratory	2		2	ı			
(Effective from the academic year 2023-24)	Teaching Hours /Week	lsirotuT	T	2	0	0	2	0	0	0	If the course is	0	course is a la	course is a la	0		C)		
	F	Teac	Theory Lecture	7	2	3	3	2	0	3	0	lf th	1	Ifac	0		C)		
		Teaching spartment (TD) and Question Paper Setting Board (PSB)	?	TD- ME PSB-ME	TD: ME PSB: ME	TD: ME PSB: ME	TD: ME PSB: ME	TD: ME PSB: ME	TD: Respective Dept. PSB: Respective Dept.	Any Department					NSS coordinator	Physical Education	Director	Yoga Teacher		
(Effectiv		Course Title		Mechanics of Materials	Manufacturing Process	Material Science and Engineering	Basic Thermodynamics	Introduction to Modelling and Design for Manufacturing	ESC/ETC/PLC	Social Connect and Responsibility		Ability Enhancement Course/Skill	Enhancement Course - III		National Service Scheme (NSS)	Physical Education (PE) (Sports and	Athletics)	Yoga		
		Course		BME301	BME302	BME303	BME304	BMEL305	BME306x	BSCK307		7.0	BIVIE358X		BNSK359	BPFK359		BYOK359		
0.15	ESTER	Course		PCC	IPCC	IPCC	PCC	PCCL	ESC	NHN		AEC/	SEC			M)			
10	III SEMESTER	SI.		Н	2	С	4	N	9	7		c	×			6	1			

Semester End Evaluation. K: This letter in the course code indicates common to all the stream of engineering. ESC: Engineering Science Course, ETC: Emerging Technology Enhancement Course, SEC: Skill Enhancement Course, L: Lecture, T: Tutorial, P: Practical S= SDA: Skill Development Activity, CIE: Continuous Internal Evaluation, SEE: PCC: Professional Core Course, PCCL: Professional Core Course laboratory, UHV: Universal Human Value Course, MC: Mandatory Course (Non-credit), AEC: Ability Course, PLC: Programming Language Course

	Engineering Science Course (ESC/ETC/PLC)[L-T-P::3-0-0]	SC/ETC/PLC)[L-T	P::3-0-0]
BME306A	Electric and Hybrid Vehicle Technology	BME306C	Internet of Things (IoT)
BME306B	Smart Materials & Systems	BME306D	Waste handling and Management
	Ability Enhancement Course – III	ent Course – III	
BME358A	Advanced Python Programming [0-0-2]	BME358C	Spreadsheet for Engineers [0-0-2]
BME358B	Fundamentals of Virtual Reality [0-2-0]	BME358D	Tools in Scientific Computing [0-0-2]

Learning hours (L:T:P) can be considered as (3:0:2) or (2:2:2). The theory part of the IPCC shall be evaluated both by CIE and SEE. The practical part shall be evaluated by only CIE (no SEE). However, questions from the practical part of IPCC shall be included in the SEE question paper. For more details, the regulation Professional Core Course (IPCC): Refers to Professional Core Course Theory Integrated with practical's of the same course. Credit for IPCC can be 04 and its Teaching governing the Degree of Bachelor of Engineering /Technology (B.E./B.Tech.) 2022-23 may please be referred. National Service Scheme /Physical Education/Yoga: All students have to register for any one of the courses namely National Service Scheme (NSS), Physical Education (PE)(Sports and Athletics), and Yoga(YOG) with the concerned coordinator of the course during the first week of III semesters. Activities shall be carried out between III semester to the VI semester (for 4 semesters). Successful completion of the registered course and requisite CIE score is mandatory for the award of the degree. The events shall be appropriately scheduled by the colleges and the same shall be reflected in the calendar prepared for the NSS, PE, and Yoga activities. These courses shall not be considered for vertical progression as well as for the calculation of SGPA and CGPA, but completion of the course is mandatory for the award of degree.

MECHANICS	S OF MATERIALS	Semester	03
Course Code	BME301	CIE Marks	50
Teaching Hours/Week (L: T:P: S)	2:2:0:0	SEE Marks	50
Total Hours of Pedagogy	40	Total Marks	100
Credits	03	Exam Hours	3 hrs
Examination type (SEE)	Theory		

Course objectives:

- To provide the basic concepts and principles of strength of materials.
- To give an ability to calculate stresses and deformations of objects under external loadings.
- To give an ability to apply the knowledge of strength of materials on engineering applications and design problems.

Teaching-Learning Process (General Instructions)

These are sample Strategies; which teachers can use to accelerate the attainment of the various course outcomes.

- Adopt different types of teaching methods to develop the outcomes through PowerPoint presentations and Videodemonstrations or Simulations.
- Chalk and Talk method for Problem Solving.
- Adopt flipped classroom teaching method.
- Adopt collaborative (Group Learning) learning in the class.
- Adopt Problem Based Learning (PBL), which fosters students' analytical skills and develops thinking skills such as evaluating, generalizing, and analyzing information.

Module-1

Simple stress and strain: Definition/derivation of normal stress, shear stress, and normal strain and shear strain – Stress strain diagram for brittle and ductile materials - Poisson's ratio & volumetric strain – Elastic constants – relationship between elastic constants and Poisson's ratio – Generalised Hook's law – Deformation of simple and compound bars, Resilience, Gradual, sudden, impact and shock loadings – thermal stresses.

Module-2

Bi-axial Stress system: Introduction, plane stress, stresses on inclined sections, principal stresses and maximum shear stresses, graphical method - Mohr's circle for plane stress.

Thick and Thin cylinders: Stresses in thin cylinders, Lame's equation for thick cylinders subjected to internal and external pressures, Changes in dimensions of cylinder (diameter, length and volume), simple numerical.

Module-3

Bending moment and Shear forces in beams: Definition of beam – Types of beams – Concept of shear force and bending moment – S.F and B.M diagrams for cantilever, simply supported and overhanging beams subjected to point loads, uniformly distributed loads, uniformly varying loads and combination of these loads – Point of contra flexure.

Module-4

Theory of simple bending – Assumptions – Derivation of bending equation - Neutral axis – Determination of bending stresses – section modulus of rectangular and circular sections (Solid and Hollow), I, T and Channel sections – Design of simple beam sections, Shear Stresses: Derivation of formula – Shear stress distribution across various beams sections like rectangular, circular, triangular, I, and T sections.

Module-5

Torsion of circular shafts: Introduction, pure torsion, assumptions, derivation of torsional equations, polar modulus, torsional rigidity / stiffness of shafts, power transmitted by solid and hollow circular shafts.

Theory of columns – Long column and short column - Euler's formula – Rankine's formula.

Course outcome (Course Skill Set)

At the end of the course, the student will be able to:

- CO1: Understand the concepts of stress and strain in simple and compound bars.
- CO2: Explain the importance of principal stresses and principal planes & Analyse cylindrical pressure vessels under various loadings
- CO3: Apply the knowledge to understand the load transferring mechanism in beams and stress distribution due to shearing force and bending moment.
- CO4: Evaluate stresses induced in different cross-sectional members subjected to shear loads.
- CO5: Apply basic equation of simple torsion in designing of circular shafts & Columns

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- For the Assignment component of the CIE, there are 25 marks and for the Internal Assessment Test component, there are 25 marks.
- The first test will be administered after 40-50% of the syllabus has been covered, and the second test will be administered after 85-90% of the syllabus has been covered
- Any two assignment methods mentioned in the 22OB2.4, if an assignment is project-based then only one assignment for the course shall be planned. The teacher should not conduct two assignments at the end of the semester if two assignments are planned.
- For the course, CIE marks will be based on a scaled-down sum of two tests and other methods of assessment.

Internal Assessment Test question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester-End Examination:

Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the course (duration 03 hours).

- 1. The question paper will have ten questions. Each question is set for 20 marks.
- 2. There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), **should have a mix of topics** under that module.
- 3. The students have to answer 5 full questions, selecting one full question from each module.
- 4. Marks scored shall be proportionally reduced to 50 marks.

Suggested Learning Resources:

Books

- Mechanics of Materials, S.I. Units, Ferdinand Beer & Russell Johnstan, 7th Ed, TATA McGrawHill-2014
- 2. Mechanics of Materials, K.V.Rao, G.C.Raju, Subhash Stores, First Edition, 2007
- 3. Strength of Materials by R.K. Bansal ,Laxmi Publications 2010.

Web links and Video Lectures (e-Resources):

- 1. Statics and Strength of Materials, Shehata, 2nd edition, 1994. (http://www.astm.org/DIGITAL_LIBRARY/JOURNALS/TESTEVAL/PAGES/JTE12637J. htm)
- 2. http://www.astm.org/DIGITAL_LIBRARY/JOURNALS/TESTEVAL/PAGE S/JTE12637J.htm
- 3. 3. http://www.freeengineeringbooks.com/Civil/Strength-of-MaterialBooks.php

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

• Use Mdsolids (https://web.mst.edu/mdsolids/) or any open source software for active teaching and learning.

MANUFAC	Semester	III				
Course Code	BME302	CIE Marks	50			
Teaching Hours/Week (L:T:P: S)	3:0:2:0	SEE Marks	50			
Total Hours of Pedagogy	40 hours Theory + 8-10 Lab slots	Total Marks	100			
Credits	04	Exam Hours	03			
Examination nature (SEE)	mination nature (SEE) Theory /Viva-Voce /Term-work/Others					

Course objectives:

- To provide knowledge of various casting process in manufacturing.
- To provide in-depth knowledge on metallurgical aspects during solidification of metal and alloys, also to provide detailed information about the moulding processes.
- To acquaint with the basic knowledge on fundamentals of metal forming processes and also to study various metal forming processes.
- To impart knowledge of various joining process used in manufacturing.
- To impart knowledge about behaviour of materials during welding, and the effect of process
- parameters in welding

Teaching-Learning Process (General Instructions)

These are sample Strategies; that teachers can use to accelerate the attainment of the various course outcomes.

- 1. Lecturer method (L) does not mean only traditional lecture method, but different type of teaching methods may be adopted to develop the outcomes.
- 2. Arrange visits to nearby power plants, receiving station and substations to give brief information about the electrical power generation.
- 3. Show Video/animation films to explain functioning of various machines
- 4. Encourage collaborative (Group Learning) Learning in the class
- 5. Ask at least three HOTS (Higher order Thinking) questions in the class, which promotes critical thinking
- 6. Adopt Problem Based Learning (PBL), which fosters students Analytical skills, develop thinking skills such as the ability to evaluate, generalize, and analyze information rather than simply recall it.
- 7. Topics will be introduced in a multiple representation.
- 8. Show the different ways to solve the same problem and encourage the students to come up with their own creative ways to solve them.
- 9. Discuss how every concept can be applied to the real world and when that's possible, it helps improve the students' understanding.
- 10. Individual teacher can device the innovative pedagogy to improve the teaching-learning.

MODULE-1

Introduction & basic materials used in foundry: Introduction: Definition, Classification of manufacturing processes. Metals cast in the foundry-classification, factors that determine the selection of a casting alloy. Introduction to casting process & steps involved – (Brief Introduction)-Not for SEE

Patterns: Definition, classification, materials used for pattern, various pattern allowances and their importance.

Sand moulding: Types of base sand, requirement of base sand. Binder, Additive's definition, need and types; preparation of sand moulds. Molding machines- Jolt type, squeeze type and Sand slinger.

Study of important moulding process: Green sand, core sand, dry sand, sweep mould, CO2mould, shell mould, investment mould, plaster mould, cement bonded mould.

Cores: Definition, need, types. Method of making cores,

Concept of gating (top, bottom, parting line, horn gate) and risers (open, blind) Functions and types.

MODULE-2

Melting furnaces: Classification of furnaces, Gas fired pit furnace, Resistance furnace, Coreless induction furnace, electric arc furnace, constructional features & working principle of cupola furnace.

Casting using metal moulds: Gravity die casting, pressure die casting, centrifugal casting, squeeze casting, slush casting, thixocasting, and continuous casting processes. Casting defects, their causes and remedies.

MODULE-3

METAL FORMING PROCESSES

Introduction of metal forming process: Mechanical behaviour of metals in elastic and plastic deformation, stress-strain relationships, Yield criteria, Application to tensile testing, train rate and temperature in metal working; Hot deformation, Cold working and annealing.

Metal Working Processes: Fundamentals of metal working, Analysis of bulk forming processes like forging, rolling, extrusion, wire drawing by slab method,

Other sheet metal processes: Sheet metal forming processes (Die and punch assembly, Blanking, piercing, bending etc., Compound and Progressive die), High Energy rate forming processes.

MODULE-4

IOINING PROCESSES

Operating principle, basic equipment, merits and applications of: Fusion welding processes: Gas welding - Types - Flame characteristics; Manual metal arc welding - Gas Tungsten arc welding - Gas metal arc welding - Submerged arc welding

MODULE-5

Weldability and thermal aspects: Concept of weldability of materials; Thermal Effects in Welding (Distortion, shrinkage and residual stresses in welded structures); Welding defects and remedies.

Allied processes: Soldering, Brazing and adhesive bonding

Advance welding processes: Resistance welding processes, friction stir welding (FSW).

PRACTICAL COMPONENT OF IPCC

Course objectives:

- Impart fundamental understanding of various casting, welding and forming processes
- To provide in-depth knowledge on metallurgical aspects during solidification of metal and alloys
- Discuss design methodology and process parameters involve in obtaining defect free component

PRACTICAL COMPONENT OF IPCC (May cover all / major modules)

Sl.NO	Experiments
1	Preparation of sand specimens and conduction of the following tests:
	Compression, Shear and Tensile tests on Universal Sand Testing Machine.
2	To determine permeability number of green sand, core sand and raw sand.
3	To determine AFS fineness no. and distribution coefficient of given sand sample.
4	Studying the effect of the clay and moisture content on sand mould properties
5	Use of Arc welding tools and welding equipment Preparation of welded joints using Arc Welding
	equipment L-Joint, T-Joint, Butt joint, V-Joint, Lap joints on M.S. flats
6	Foundry Practice:
	Use of foundry tools and other equipment for Preparation of molding sand mixture.
	Preparation of green sand molds kept ready for pouring in the following cases:
	1. Using two molding boxes (hand cut molds).
	2. Using patterns (Single piece pattern and Split pattern).
7	Preparation of green sand molds kept ready for pouring in the following cases:
	1. Incorporating core in the mold.(Core boxes).
8	Forging Operations: Use of forging tools and other forging equipment.
	Preparing minimum three forged models involving upsetting, drawing and bending operations.
	Demo experiments for CIE
9	Demonstration of forging model using Power Hammer.
10	To study the defects of Cast and Welded components using Non-destructive tests like: a)
	Ultrasonic flaw detection b) Magnetic crack detection c) Dye penetration testing
11	Mould preparation of varieties of patterns, including demonstration
12	Demonstration of material flow and solidification simulation using Auto-Cast software

Course outcomes (Course Skill Set):

At the end of the course, the student will be able to:

- CO1: Describe the casting process and prepare different types of cast products. Acquire knowledge on Pattern, Core, Gating, Riser system and to use Jolt, Squeeze, and Sand Slinger Moulding machines.
- CO2: Compare the Gas fired pit, Resistance, Coreless, Electrical and Cupola Metal Furnaces. Compare the Gravity, Pressure die, Centrifugal, Squeeze, slush and Continuous Metal mold castings.
- CO3: Understand the Solidification process and Casting of Non-Ferrous Metals.
- CO4: Describe the Metal Arc, TIG, MIG, Submerged and Atomic Hydrogen Welding processes etc. used in manufacturing.
- CO5: Describe the methods of different joining processes and thermal effects in joining process

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/course if the student secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

CIE for the theory component of the IPCC (maximum marks 50)

- IPCC means practical portion integrated with the theory of the course.
- CIE marks for the theory component are 25 marks and that for the practical component is 25 marks.
- 25 marks for the theory component are split into **15 marks** for two Internal Assessment Tests (Two Tests, each of 15 Marks with 01-hour duration, are to be conducted) and **10 marks** for other assessment methods mentioned in 220B4.2. The first test at the end of 40-50% coverage of the syllabus and the second test after covering 85-90% of the syllabus.
- Scaled-down marks of the sum of two tests and other assessment methods will be CIE marks for the theory component of IPCC (that is for **25 marks**).
- The student has to secure 40% of 25 marks to qualify in the CIE of the theory component of IPCC.

CIE for the practical component of the IPCC

- **15 marks** for the conduction of the experiment and preparation of laboratory record, and **10 marks** for the test to be conducted after the completion of all the laboratory sessions.
- On completion of every experiment/program in the laboratory, the students shall be evaluated including viva-voce and marks shall be awarded on the same day.
- The CIE marks awarded in the case of the Practical component shall be based on the continuous evaluation of the laboratory report. Each experiment report can be evaluated for 10 marks. Marks of all experiments' write-ups are added and scaled down to **15 marks**.
- The laboratory test **(duration 02/03 hours)** after completion of all the experiments shall be conducted for 50 marks and scaled down to **10 marks**.
- Scaled-down marks of write-up evaluations and tests added will be CIE marks for the laboratory component of IPCC for **25 marks**.
- The student has to secure 40% of 25 marks to qualify in the CIE of the practical component of the IPCC.

SEE for IPCC

Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the course (duration 03 hours)

- 1. The question paper will have ten questions. Each question is set for 20 marks.
- 2. There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), **should have a mix of topics** under that module.
- 3. The students have to answer 5 full questions, selecting one full question from each module.
- 4. Marks scored by the student shall be proportionally scaled down to 50 Marks

The theory portion of the IPCC shall be for both CIE and SEE, whereas the practical portion will have a CIE component only. Questions mentioned in the SEE paper may include questions from the practical component.

Suggested Learning Resources:

Books

- 1. Ghosh, A. and Mallik, A. K., (2017), Manufacturing Science, East-West Press.
- 2. Parmar R. S., (2007), Welding Processes and Technology, Khanna Publishers.
- 3. Little R. L. 'Welding and Welding Technology' Tata McGraw Hill Publishing Company Limited, New Delhi 1989
- 4. Grong O. 'Metallurgical Modelling of Welding' The Institute of Materials 1997 2nd Edition
- 5. Kou S. 'Welding Metallurgy' John Wiley Publications, New York 2003 2nd Edition.

- 6. Serope Kalpakjian and Steven R. Schmid 'Manufacturing Engineering and Technology' Prentice Hall 2013 7th Edition
- 7. Principles of foundry technology, 4th edition, P L Jain, Tata McGraw Hill, 2006.
- 8. Advanced Welding Processes technology and process control, John Norrish, Wood Head Publishing, 2006.

Web links and Video Lectures (e-Resources):

- (Link:http://www.springer.com/us/book/9781447151784http://nptel.ac.in/courses/112
- 105127/)
- http://www.astm.org/DIGITAL_LIBRARY/MNL/SOURCE_PAGES/MNL11.htm
- http://www.astm.org/DIGITAL_LIBRARY/JOURNALS/COMPTECH/PAGES/CTR10654J.htm
- MOOCs: http://nptel.ac.in/courses/112105126/

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

Metal Casting: Design pattern/core for a given component drawing and develop a sand mould with optimum gating and riser system for ferrous and non-ferrous materials. Melting and casting, inspection for macroscopic casting defects.

- Welding: TIG and MIG welding processes design weld joints welding practice –weld quality inspection.
- Metal Forming: Press working operation hydraulic and mechanical press -load calculation: blanking, bending and drawing operations sheet metal layout design.

MATERIAL SCI	MATERIAL SCIENCE AND ENGINEERING		
Course Code	BME303	CIE Marks	50
Teaching Hours/Week (L:T:P: S)	3:0:2:0	SEE Marks	50
Total Hours of Pedagogy	40 hours Theory + 8-10 Lab slots	Total Marks	100
Credits	04	Exam Hours	3
Examination nature (SEE)	Theory		

Course objectives:

- Explain the basic concepts of geometrical crystallography, crystal structure and imperfections in Solids.
- Construct the phase diagrams to know the phase transformations and concept of diffusion in solids.
- Identify the heat treatment, cooling method for controlling the microstructure and plastic deformation to modify their properties.
- Explain the powder metallurgy process, types and surface modifications.
- Apply the method of materials selection, material data, properties and knowledge sources for computer-aided selection of materials.

Teaching-Learning Process (General Instructions)

These are sample Strategies; that teachers can use to accelerate the attainment of the various course outcomes.

- Adopt different types of teaching methods to develop the outcomes through PowerPoint presentations and Videodemonstrations or Simulations.
- Chalk and Talk method for Problem Solving.
- Adopt flipped classroom teaching method.
- Adopt collaborative (Group Learning) learning in the class.
- Adopt Problem Based Learning (PBL), which fosters students' analytical skills and develops thinking skills such as evaluating, generalizing, and analysing information.

MODULE-1

Structure of Materials

Introduction: Classification of materials, crystalline and non-crystalline solids, atomic bonding: Ionic Bonding and Metallic bonding.

Crystal Structure: Crystal Lattice, Unit Cell, Planes and directions in a lattice, Planar Atomic Density, Coordination number, atomic Packing Factor of all the Cubic structures and Hexa Close Packed structure. Classification and Coordination of voids, Bragg's Law.

Imperfections in Solids: Types of imperfections, Point defects: vacancies, interstitials, line defects, 2-D and 3D-defects, Concept of free volume in amorphous solids. Slip, Twinning.

MODULE-2

Physical Metallurgy

Alloy Systems: Classification of Solid solutions, Hume-Rothery Rules

Diffusion: Diffusion Mechanisms: Vacancy Diffusion and Interstitial Diffusion, Fick's laws of diffusion, Factors affecting diffusion.

Phase Diagrams: Gibbs Phase Rule, Solubility limit, phase equilibrium and Phase Diagrams: Isomorphous systems, Invariant Binary Reactions: Eutectic reaction, Eutectoid reaction and Peritectic reaction, Lever Rule, Iron-Carbon Diagram. Effect of common alloying elements in steel. Numerical on Lever rule.

MODULE-3

Nucleation and growth: Introduction to homogeneous and heterogeneous nucleation, critical radius for nucleation.

Heat treatment: Annealing, Normalizing, hardening, Tempering, Nitriding, Cyaniding, Induction Hardening and Flame Hardening, Recent advances in heat treat technology. TTT diagram, Recovery-Recrystallization-Grain Growth. Strengthening mechanisms: Strain hardening, Precipitation hardening (Solid-Solution Strengthening), Grain refinement.

1

MODULE-4

Surface coating technologies: Introduction, coating materials, coating technologies, types of coating: Electro-plating, Chemical Vapor Deposition(CVD), Physical Vapor Deposition(PVD), High Velocity Oxy-Fuel Coating, advantages and disadvantages of surface coating.

Powder metallurgy: Introduction, Powder Production Techniques: Different Mechanical methods: Chopping or Cutting, Abrasion methods, Machining methods, Ball Milling and Chemical method: Chemical reduction method.

Characterization of powders (Particle Size & Shape Distribution), Powder Shaping: Particle Packing Modifications, Lubricants & Binders, Powder Compaction & Process, Sintering and Application of Powder Metallurgy.

MODULE-5

Engineering Materials and Their Properties: Classification, **Ferrous materials:** Properties, Compositions and uses of Grey cast iron and steel. **Non-Ferrous materials:** Properties, Compositions and uses of Copper, Brass, Bronze.

Composite materials - Definition, classification, types of matrix materials & reinforcements, Metal Matrix Composites (MMCs), Ceramic Matrix Composites (CMCs) and Polymer Matrix Composites (PMCs), Particulate-reinforced and fiber- reinforced composites, Applications of composite materials.

Mechanical and functional properties of Engineering Materials

The Design Process and Materials Data: Types of design, design tools and materials data, processes of obtaining materials data, materials databases.

Material Selection Charts: Selection criteria for materials, material property Charts, deriving property limits and material indices.

PRACTICAL COMPONENT OF IPCC(May cover all / major modules)

Sl.NO	Experiments
1	Specimen preparation for macro and micro structural examinations and study the macrostructure and microstructure of a sample metal/alloys.
2	Study the heat treatment processes (Hardening and tempering) of steel/Aluminium specimens.
3	To determine the hardness values of Mild Steel/ Aluminium by Rockwell hardness/Vickers Hardness.
4	To determine the hardness values of Copper/ Brass by Brinell's Hardness testing machine.
5	To determine the tensile strength, modulus of elasticity, yield stress, % of elongation and % of reduction in area of Cast Iron, Mild Steel/Brass/ Aluminium and to observe the necking.
6	To conduct a wear test on Mild steel/ Cast Iron/Aluminium/ Copper to find the volumetric wear rate and coefficient of friction.
7	To determine the Impact strength of the mild steel using Izod test and Charpy test.
8	Study the chemical corrosion and its protection. <i>Demonstration</i>
9	Study the properties of various types of plastics. <i>Demonstration</i>
10	Computer Aided Selection of Materials: Application of GRANTA Edupack for material selection: Case studies based on material properties. <i>Demonstration</i>

Course outcomes (Course Skill Set):

At the end of the course the student will be able to:

- 1. Understand the atomic arrangement in crystalline materials and describe the periodic arrangement of atoms in terms of unit cell parameters.
- 2. Understand the importance of phase diagrams and the phase transformations.
- 3. Explain various heat treatment methods for controlling the microstructure...

- 4. Correlate between material properties with component design and identify various kinds of defects.
- 5. Apply the method of materials selection, material data and knowledge sources for computer-aided selection of materials.

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/course if the student secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

CIE for the theory component of the IPCC (maximum marks 50)

- IPCC means practical portion integrated with the theory of the course.
- CIE marks for the theory component are **25 marks** and that for the practical component is **25 marks**.
- 25 marks for the theory component are split into **15 marks** for two Internal Assessment Tests (Two Tests, each of 15 Marks with 01-hour duration, are to be conducted) and **10 marks** for other assessment methods mentioned in 220B4.2. The first test at the end of 40-50% coverage of the syllabus and the second test after covering 85-90% of the syllabus.
- Scaled-down marks of the sum of two tests and other assessment methods will be CIE marks for the theory component of IPCC (that is for **25 marks**).
- The student has to secure 40% of 25 marks to qualify in the CIE of the theory component of IPCC.

CIE for the practical component of the IPCC

- **15 marks** for the conduction of the experiment and preparation of laboratory record, and **10 marks** for the test to be conducted after the completion of all the laboratory sessions.
- On completion of every experiment/program in the laboratory, the students shall be evaluated including viva-voce and marks shall be awarded on the same day.
- The CIE marks awarded in the case of the Practical component shall be based on the continuous evaluation of the laboratory report. Each experiment report can be evaluated for 10 marks. Marks of all experiments' write-ups are added and scaled down to **15 marks**.
- The laboratory test **(duration 02/03 hours)** after completion of all the experiments shall be conducted for 50 marks and scaled down to **10 marks**.
- Scaled-down marks of write-up evaluations and tests added will be CIE marks for the laboratory component of IPCC for 25 marks.
- The student has to secure 40% of 25 marks to qualify in the CIE of the practical component of the IPCC.

SEE for IPCC

Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the course (**duration 03 hours**)

- 1. The question paper will have ten questions. Each question is set for 20 marks.
- 2. There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), **should have a mix of topics** under that module.
- 3. The students have to answer 5 full questions, selecting one full question from each module.
- 4. Marks scoredby the student shall be proportionally scaled down to 50 Marks

The theory portion of the IPCC shall be for both CIE and SEE, whereas the practical portion will have a CIE component only. Questions mentioned in the SEE paper may include questions from the practical component.

Suggested Learning Resources:

Text Books:

- 1. Callister Jr, W.D., Rethwisch, D.G., (2018), Materials Science and Engineering: An Introduction, 10th Edition, Hoboken, NJ: Wiley.
- 2. Ashby, M.F. (2010), Materials Selection in Mechanical Design, 4th Edition, Butterworth-Heinemann.
- 3. Azaroff, L.V., (2001) Introduction to solids, 1st Edition, McGraw Hill Book Company.
- 4. Avner, S.H., (2017), Introduction to Physical Metallurgy, 2nd Edition, McGraw Hill Education.

Reference Books

- 1. Jones, D.R.H., and Ashby, M.F., (2011), Engineering Materials 1: An Introduction to Properties, Application and Design, 4th Edition, Butterworth-Heinemann.
- 2. Jones, D.R.H., and Ashby,M.F., (2012), Engineering Materials 2: An Introduction to Microstructure and Processing, 4th Edition, Butterworth-Heinemann.
- 3. Abbaschian, R., Abbaschian, L., Reed-Hill, R. E., (2009), Physical Metallurgy Principles, 4th Edition, Cengate Learning.
- 4. P. C. Angelo and R. Subramanian: Powder Metallurgy- Science, Technology and Applications, PHI, New Delhi, 2008.

Web links and Video Lectures (e-Resources):

Web links and Video Lectures (e-Resources):

- 1. Bhattacharya,B., Materials Selection and Design, NPTEL Course Material, Department of Mechanical Engineering, Indian Institute of Technology Kanpur, http://nptel.ac.in/courses/112104122/
- 2. Prasad, R., Introduction to Materials Science and Engineering, NPTEL Course Material, Department of Materials

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

Course seminar

Industrial tour/Visit to Advanced Research Centres

BASIC THEI	RMODYNAMICS	Semester	3rd
Course Code	BME304	CIE Marks	50
Teaching Hours/Week (L:T:P: S)	2:2:0:0	SEE Marks	50
Total Hours of Pedagogy	40	Total Marks	100
Credits	03	Exam Hours	03
Examination type (SEE)	Theory		

Course Objectives:

- Learn about thermodynamic system and its equilibrium, basic law of zeroth law of thermodynamics.
- Understand various forms of energy heat transfer and work, Study the first law of thermodynamics.
- Study the second law of thermodynamics.
- Interpret the behaviour of pure substances and its application in practical problems.
- Study of Ideal and real gases and evaluation of thermodynamic properties.

Teaching-Learning Process (General Instructions)

These are sample Strategies, which teachers can use to accelerate the attainment of the various course outcomes.

- **1.** Adopt different types of teaching methods to develop the outcomes through PowerPoint presentations and Video demonstrations or Simulations.
- 2. Chalk and Talk method for Problem Solving.
- **3.** Adopt flipped classroom teaching method.
- **4.** Adopt collaborative (Group Learning) learning in the class
- **5.** Adopt Problem Based Learning (PBL), which fosters students' analytical skills and develops thinking skills such as evaluating, generalizing, and analysing information.

Module-1

Introduction and Review of fundamental concepts: Thermodynamic definition and scope, Microscopic and Macroscopic approaches. Characteristics of system boundary and control surface, examples. Thermodynamic properties; definition and units, intensive, extensive properties, specific properties, pressure, specific volume, Thermodynamic state, state point, state diagram, path and process, quasi-static process, cyclic and non-cyclic; processes; Thermodynamic equilibrium; definition, mechanical equilibrium; diathermic wall, thermal equilibrium, chemical equilibrium (*The topics are Only for Self-study and not to be asked in SEE. However, may be asked for CIE*)

Zeroth law of thermodynamics, Temperature; concepts, scales, international fixed points and measurement of temperature. Constant volume gas thermometer, constant pressure gas thermometer, mercury in glass thermometer, thermocouples, electrical resistance thermometer. Numerical.

Work and Heat: Mechanics, definition of work and its limitations. Thermodynamic definition of work; examples, sign convention. Displacement work; as a part of a system boundary, as a whole of a system boundary, expressions for displacement work in various processes through p-v diagrams. Shaft work; Electrical work. Other types of work. Heat; definition, units and sign convention. Problems.

Module-2

First Law of Thermodynamics: Joules experiments, equivalence of heat and work. Statement of the First law of thermodynamics, extension of the First law to non - cyclic processes, energy, energy as a property, modes of energy, Problems.

Extension of the First law to control volume; steady flow energy equation (SFEE), Problems.

Module-3

Second Law of Thermodynamics: Limitations of first law of thermodynamics, Thermal reservoir, heat engine and heat pump: Schematic representation, efficiency and COP. Reversed heat engine. Kelvin - Planck statement of the Second law of Thermodynamics; PMM I and PMM II, Clausius statement of Second law of Thermodynamics, Equivalence of the two statements; Carnot cycle, Carnot principles. Problems

Entropy: Clausius inequality, Statement- proof, Entropy- definition, a property, change of entropy, entropy as a quantitative test for irreversibility, principle of increase in entropy, entropy as a coordinate. Problems

Module-4

Availability, Irreversibility and General Thermodynamic relations. Introduction, Availability (Exergy), Unavailable energy, Relation between increase in unavailable energy and increase in entropy. Maximum work, maximum useful work for a system and control volume, irreversibility. Problems

Pure Substances: P-T and P-V diagrams, triple point and critical points. Sub-cooled liquid, saturated liquid, mixture of saturated liquid and vapor, saturated vapor and superheated vapor states of pure substance with water as example. Enthalpy of change of phase (Latent heat). Dryness fraction (quality), T-S and H-S diagrams, representation of various processes on these diagrams. Steam tables and its use. Throttling calorimeter, separating and throttling calorimeter. Problems.

Module-5

Ideal gases: Ideal gas mixtures, Daltons law of partial pressures, Amagat's law of additive volumes, evaluation of properties of perfect and ideal gases, Air- Water mixtures and related properties (*Processes are not to be asked for SEE*).

Real gases – Introduction, Van-der Waal's Equation of state, Van-der Waal's constants in terms of critical properties, Beattie-Bridgeman equation, Law of corresponding states, compressibility factor; compressibility chart. Difference between Ideal and real gases.

Thermodynamic relations: Maxwell's equations, TdS equation. Ratio of Heat capacities and Energy equation, Joule-Kelvin effect, Clausius-Clapeyron equation.

Course outcome (Course Skill Set)

At the end of the course, the student will be able to:

- CO1: Explain fundamentals of thermodynamics and evaluate energy interactions across the boundary of thermodynamic systems.
- CO2: Apply 1st law of thermodynamics to closed and open systems and determine quantity of energy transfers.
- CO3: Evaluate the feasibility of cyclic and non-cyclic processes using 2nd law of thermodynamics
- CO4: Apply the knowledge of entropy, reversibility and irreversibility to solve numerical problems and Interpret the behaviour of pure substances and its application in practical problems.
- CO5: Recognize differences between ideal and real gases and evaluate thermodynamic properties of ideal and real gas mixtures using various relations.

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation (CIE):

- For the Assignment component of the CIE, there are 25 marks and for the Internal Assessment Test component, there are 25 marks.
- The first test will be administered after 40-50% of the syllabus has been covered, and the second test will be administered after 85-90% of the syllabus has been covered
- Any two assignment methods mentioned in the 220B2.4, if an assignment is project-based then only one assignment for the course shall be planned. The teacher should not conduct two assignments at the end of the semester if two assignments are planned.
- For the course, CIE marks will be based on a scaled-down sum of two tests and other methods of assessment.

Internal Assessment Test question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester-End Examination:

Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the course (duration 03 hours).

- 1. The question paper will have ten questions. Each question is set for 20 marks.
- 2. There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), **should have a mix of topics** under that module.
- 3. The students have to answer 5 full questions, selecting one full question from each module.
- 4. Marks scored shall be proportionally reduced to 50 marks

Suggested Learning Resources:

Books

- 1. Basic and Applied Thermodynamics P.K.Nag, Tata McGraw Hill 2nd Ed., 2002.
- 2. Basic Engineering Thermodynamics A.Venkatesh Universities Press, 2008.
- 3. Basic Thermodynamics, B.K Venkanna, Swati B. Wadavadagi PHI, New Delhi 2010.
- 4. Thermodynamics- An Engineering Approach YunusA.Cenegal and Michael A.Boles Tata McGraw Hill publications 2002

Web links and Video Lectures (e-Resources):

- https://www.youtube.com/watch?v=9GMBpZZtjXM&list=PLD8E646BAB3366BC8
- https://www.youtube.com/watch?v=jkdMtmXo664&list=PL3zvA_WajfGAwLuULH-L0AG9fKDgplYne
- https://www.youtube.com/watch?v=1lk7XLOxtzs&list=PLkn3QISf55zy2Nlqr5F09oO2qcIw NNfrZ&index=3
- https://www.youtube.com/watch?v=Dy2UeVCSRYs&list=PL2_EyjPqHc10CTN7cHiM5xB2q D7BHUry7

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

- Organise Industrial visits to Thermal power plants and submission of report
- Case study report and power point presentation on steam power plant
- List of thermal energy devices at homes, hostels and college premises and applicable laws

Introduction to Modelling a	nd Design for Manufacturing	Semester	3
Course Code	BMEL305	CIE Marks	50
Teaching Hours/Week (L: T:P: S)	0:0:2*:0	SEE Marks	50
Total Hours of Pedagogy	14 Sessions	Total Marks	100
Credits	01	Exam Hours	3
Examination nature (SEE)	Practical		

*One hour per week can be taken additionally

Course objectives:

- 1. To improve the visualisation skills and understand the conventions used in engineering drawing.
- 2. To inculcate understanding of the theory of projection and make drawings using orthographic projections and sectional views.
- 3. To impart fundamental knowledge of drawing of different machine parts.
- 4. To enable the students with concepts of dimensioning and standards related to drawings.
- 5. To enable the students to draw the assembly of various machine components.
- 6. To enable the students on limits, tolerance and fits and indicate them on machine drawings.

Teaching-Learning Process (General Instructions)

These are sample Strategies; which teachers can use to accelerate the attainment of the various course outcomes.

- Adopt different types of teaching methods to develop the outcomes through PowerPoint presentations and Video demonstrations or Simulations.
- Chalk and Talk method for Problem Solving.
- Adopt online sharable playlist for students
- Adopt collaborative (Group Learning) learning in the class.
- Adopt Problem Based Learning (PBL), which fosters students' analytical skills and develops thinking skills such as evaluating, generalizing, and analysing information.

Module-1

Introduction to Computer Aided Sketching Review of graphic interface of the software. Review of 2D Sketching, Parametric Solid Modeling, Assembly creation and product rendering. Limits, Fits and Tolerances: Introduction, Fundamental tolerances, Deviations, Methods of placing limit dimensions, Types of fits with symbols and applications, Geometrical tolerances on drawings, Standards followed in industry. *(Above topics to be studied as a review)*

01 Session

Geometrical Dimensioning and Tolerances (GD&T): Introduction, Fundamental tolerances, Deviations, Methods of placing limit dimensions, machining symbols, types of fits with symbols and applications, geometrical tolerances on drawings. Standards followed in industry. The basics of sketching and modelling:

Create a basic sketch - Profile Tools, Curve Tools, Editing Tools, Operation Tools, Constraints, construction geometries and adding dimensions. Part- Solid from sketches, Solid from surfaces, modify Tools, Operation Tools.

02 Sessions

Module-2 02 Sessions

Exploring design tools for production:

Create draft during a feature - Create draft as a feature - Add ribs and plastic supports - Analyze draft on a design - Create holes and threads - Use a coil feature - Mirrors and patterns - Surface creation for complex geometry - Use surfaces to replace faces - Use surfaces to split bodies and faces - Practice exercise.

Module-3 03 Sessions

TEMPLATE for AEC (if the course is a theory)

The Basics of Assemblies

The different ways to create components - Use scripts to create gears - Component color swatch and color cycling - Use McMaster-Carr parts in a design - Copy, paste, and paste new.

- Distributed designs - Create as-built joints - Create joints - Joint origins and midplane joints - Drive joints and motion studies - Interference detection and contact sets - Isolation and opacity control - Create groups and organize a timeline - Practice exercise.

Module-4 06 Sessions

Assembly Drawings: (Part drawings shall be given)

Drawing Basics-Detailing Drawings. Explode a 3D model for a drawing, Create a drawing sheet and views, Add geometry and dimensions to a drawing, Add GD & T text, BOM, tables and symbols, Place an exploded view, Edit a title block, Export to different file formats.

- 1. Reciprocating saw mechanical assembly,
- 2. Innovated bottle design for sustainability
- 3. Engine Piston
- 4. Cylinder Flange
- 5. Engine Case
- 6. Design for Injection Molding
 - 1. Plummer block (Pedestal Bearing
 - 2. Rams Bottom Safety Valve
 - 3. I.C. Engine connecting rod
 - 4. Screw jack (Bottle type)
 - 5 Tailstock of lathe
 - 6 Machine vice
 - 7. Lathe square tool post

Course outcome (Course Skill Set)

At the end of the course the student will be able to:

- 1. Demonstrate their visualization skills.
- 2. Apply limits and tolerances to assemblies and choose appropriate fits for given assemblies. Make component drawings.
- 3. Produce the assembly drawings using part drawings.
- 4. Engage in lifelong learning using sketching and drawing as communication tool.

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation (CIE):

- CIE marks for the practical course is 50 Marks.
- CIE shall be evaluated for max marks 100. Marks obtained shall be accounted for CIE final marks, reducing it by 50%.
- CIE component should comprise of
 - Continuous evaluation of Drawing work of students as and when the Modules are covered.
 - At least one closed book Test covering all the modules on the basis of below detailed weightage.
 - Weightage for Test and Continuous evaluation shall be suitably decided by respective course coordinators.

Module	Max. Marks	Evaluation Weightage	e in marks
	weightage	Computer display & printout	Preparatory sketching
Module-1	15	10	05
Module-2	15	10	05
Module-3	20	15	05
Module-4	50	40	10
Total	100	80	20

Semester End Evaluation (SEE):

SEE marks for the practical course is 50 Marks.

- The duration of SEE is 03 hours. Questions shall be set worth of 3 hours
- SEE shall be conducted jointly by the two examiners (one internal and one external) appointed by the University.
- SEE shall be conducted and evaluated for maximum of 100 marks. Marks obtained shall be accounted for SEE final marks, reducing it to 50 marks.
- Question paper shall be set jointly by both examiners and made available for each batch as per schedule.
- Questions are to be set preferably from Text Books.
- Evaluation shall be carried jointly by both the examiners.
- Scheme of Evaluation: To be defined by the examiners jointly and the same shall be submitted to the university along with question paper.
- One full question shall be set from each Modules as per the below tabled weightage details. However, the student may be awarded full marks, if he/she completes solution on computer display without sketch.

	Max. Marks	Evaluation Weightage in marks			
Module	Weightage	Computer display & printout	Preparatory sketching		
Module-1 OR Module-2	20	15	05		
Module-3	20	15	05		
Module-4	60	50	10		
Total	100	80	20		

Suggested Learning Resources:

Books

Text Books:

- 1. 'A Primer on Computer Aided Machine Drawing-2007', Published by VTU, Belgaum.
- 2. 'Machine Drawing', N.D.Bhat & V.M.Panchal, Published by Charotar Publishing House, 1999.
- 3. 'Machine Drawing', K.R. Gopala Krishna, Subhash publication.

Reference Book:

- 1. "A Text Book of Computer Aided Machine Drawing", S. Trymbakaa Murthy, CBS Publishers, New Delhi, 2007.
- 2. 'Machine Drawing', N.Siddeshwar, P.Kannaih, V.V.S. Sastri, published by Tata Mc.Grawhill, 2006.
- 3. K L Narayana, P Kannaiah, K Venkata Reddy, "Machine Drawing", New Age International, 3rd Edition. ISBN-13: 978-81-224-2518-5, 2006
- 4. Ajeet Singh, "MACHINE DRAWING", Tata McGraw-Hill Education,, ISBN: 9781259084607, 2012

Web links and Video Lectures (e-Resources):

- . https://www.autodesk.com/certification/learn/course/learn-fusion-360-in-90-minutes
- Introduction to Modelling and Design for Manufacturing
- https://www.autodesk.com/certification/learn/course/fusion360-intro-modeling-design-professional

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

•

Electric and Hy	brid Vehicle Technology	Semester	3
Course Code	BME306A	CIE Marks	50
Teaching Hours/Week (L:T:P: S)	3:0:0:0	SEE Marks	50
Total Hours of Pedagogy	40	Total Marks	100
Credits	03	Exam Hours	3
Examination type (SEE)	Theory		

Course objectives:

- To understand the models, describe hybrid vehicles and their performance.
- To understand the different possible ways of energy storage.
- To understand the different strategies related to hybrid vehicle operation & energy management.

Teaching-Learning Process (General Instructions)

These are sample Strategies, which teachers can use to accelerate the attainment of the various course outcomes.

- Adopt different types of teaching methods to develop the outcomes through PowerPoint presentations and Videodemonstrations or Simulations.
- Chalk and Talk method for Problem Solving.
- Adopt flipped classroom teaching method.
- Adopt collaborative (Group Learning) learning in the class.
- Adopt Problem Based Learning (PBL), which fosters students' analytical skills and develops thinking skills such as evaluating, generalizing, and analyzing information.

Module-1

Introduction to Electric Vehicle (EV) & Hybrid Vehicle(HV):

A brief history of Electric and Hybrid vehicles, basic architecture of hybrid drive train, vehicle motion and the dynamic equations for the vehicle, types of HV and EV, advantages over conventional vehicles, limitations of EV and HV, impact on environment of EV and HV technology, disposal of battery, cell and hazardous material and their impact on environment.

Module-2

Power Management and Energy Sources of EV and HV:

Power and Energy management strategies and its general architecture of EV and HV, various battery sources, energy storage, battery based energy storage, Battery Management Systems (BMS), fuel cells, their characteristics, Super capacitor based energy storage, flywheel, hybridization of various energy storage devices, Selection of the energy storage technology.

Module-3

DC and AC Machines & Drives in EV & HV:

Various types of motors, selection and size of motors, **Induction** motor drives and control characteristics, **Permanent** magnet motor drives and characteristics, **Brushed & Brushless** DC motor drive and characteristics, **switched reluctance motors** and characteristics, **IPM motor drives** and characteristics, mechanical and electrical connections of motors.

Module-4

Components & Design Considerations of EV & HV:

Design parameters of batteries, ultra-capacitors and fuel cells, aerodynamic considerations, calculation of the rolling resistance and the grade resistance, calculation of the acceleration force, total tractive effort, torque required on the drive wheel, transmission efficiency, consideration of vehicle mass.

Module-5

Electric and Hybrid Vehicles charging architecture:

Introduction to smart charging: Grid to vehicle and vehicle to grid, smart metering and ancillary services, preliminary discussion on vehicle to vehicle and vehicle to personal communication systems, introduction to battery charging stations and its installation and commissioning, preliminary discussion on estimation on station capacity and associated technical issues, different connectors.

Course outcome (Course Skill Set)

At the end of this course, students will demonstrate the ability to

- 1. Understand the architecture and vehicle dynamics of electric and hybrid vehicles
- 2. Analyze the power management systems for electric and hybrid vehicles
- 3. Understand different motor control strategies for electric and hybrid vehicles
- 4. Analyze various components of electric and hybrid vehicles with environment concern.
- 5. Understand the domain related grid interconnections of electric and hybrid vehicle.

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- For the Assignment component of the CIE, there are 25 marks and for the Internal Assessment Test component, there are 25 marks.
- The first test will be administered after 40-50% of the syllabus has been covered, and the second test will be administered after 85-90% of the syllabus has been covered
- Any two assignment methods mentioned in the 220B2.4, if an assignment is project-based then only one assignment for the course shall be planned. The teacher should not conduct two assignments at the end of the semester if two assignments are planned.
- For the course, CIE marks will be based on a scaled-down sum of two tests and other methods of assessment.

Internal Assessment Test question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester-End Examination:

Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the course (duration 03 hours).

- 1. The question paper will have ten questions. Each question is set for 20 marks.
- 2. There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), should have a mix of topics under that module.
- 3. The students have to answer 5 full questions, selecting one full question from each module.
- 4. Marks scored shall be proportionally reduced to 50 marks.

Suggested Learning Resources:

Text Books

- 1. Iqbal Hussain, "Electric and Hybrid Vehicles Design Fundamentals", 1st Edition, CRC Press, 2003.
- 2. James Larminie, John Lowry "Electric Vehicle Technology Explained", 1st Edition, John Wiley and Sons, 2003.

- 3. Chris Mi, M. Abul Masrur, David Wenzhong Gao, "Hybrid Electric Vehicles: Principles and Applications with Practical Perspectives", Wiley publication ,2011.
- 4. Allen Fuhs, "Hybrid Vehicles and the future of personal transportation", CRC Press, 2009.

Web links and Video Lectures (e-Resources):

- 1. Web course on "Introduction to Hybrid and Electric Vehicles" by Dr. Praveenkumar and Prof. S Majhi, IIT Guwahati available on NPTEL at https://nptel.ac.in/courses/108/103/108103009/
- 2. Video Course on "Electric Vehicles" by Prof. Amitkumar Jain, IIT Delhi available on NPTEL at https://nptel.ac.in/courses/108/102/108102121/

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

Smart Materials & Systems		Semester	III
Course Code	BME306B	CIE Marks	50
Teaching Hours/Week (L: T:P: S)	3:0:0:0	SEE Marks	50
Total Hours of Pedagogy	40	Total Marks	100
Credits	03	Exam Hours	03
Examination type (SEE)	Theory		

Course objectives:

- To make the students understand about smart materials
- To make students to know about making of material smart
- To enable the students to appreciate the material properties

Teaching-Learning Process (General Instructions)

These are sample Strategies, which teachers can use to accelerate the attainment of the various course outcomes.

- 1. Class room teaching through chalk & talk, PPT, Appropriate Videos, etc
- 2. Industry visit
- **3.** Activity based learning
- **4.** Display the sample materials in class room / laboratory

Module-1

Smart materials and structures: System intelligence- components and classification of smart structures, common smart materials and associated stimulus-response, Application areas of smart systems

Module-2

Electrically Activated Materials: Piezoelectricity, Piezoresistivity, Ferroelectricity, Piezoelectric materials- piezoelectric effect, Piezoceramics, Piezopolymers, Piezoelectric materials as sensors, Actuators and bimorphs, nanocarbon tubes

Module-3

Thermally activated materials: Shape memory materials; Shape memory alloys (SMAs), Classification - Transformation - Ni-Ti Alloys, Shape memory effect, Martensitic transformation, One way and two-way SME, binary and ternary alloy systems, Functional properties of SMAs, Shape memory ceramics - Shape memory polymers - Applications

Module-4

Smart polymers: Thermally responsive polymers, Electroactive polymers microgels, Synthesis, Properties and Applications, Protein-based smart polymers, pH-responsive and photoresponsive polymers, Self-assembly, Drug delivery using smart polymers

Module-5

Chemically Activated Materials - Chemical Gels - Self healing materials Optically Activated Materials - Optically activated polymers - Azobenzene - Liquid Crystal, Smart materials for space applications: Elastic memory composites, Smart corrosion protection coatings, Sensors, Actuators, Transducers,

Course outcome (Course Skill Set)

At the end of the course, the student will be able to:

- 1. Apply the knowledge for materials characterisation
- 2. Evaluate the materials based on actuation
- 3. Select and justify appropriate materials for specific application

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- For the Assignment component of the CIE, there are 25 marks and for the Internal Assessment Test component, there are 25 marks.
- The first test will be administered after 40-50% of the syllabus has been covered, and the second test will be administered after 85-90% of the syllabus has been covered
- Any two assignment methods mentioned in the 220B2.4, if an assignment is project-based then only one assignment for the course shall be planned. The teacher should not conduct two assignments at the end of the semester if two assignments are planned.
- For the course, CIE marks will be based on a scaled-down sum of two tests and other methods of assessment.

Internal Assessment Test question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester-End Examination:

Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the course (duration 03 hours).

- The question paper will have ten questions. Each question is set for 20 marks.
- There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), **should have a mix of topics** under that module.
- The students have to answer 5 full questions, selecting one full question from each module.
- Marks scored shall be proportionally reduced to 50 marks

Suggested Learning Resources:

Books

- 1. D.J. Leo, Engineering Analysis of Smart Material Systems, Wiley 2007.
- 2. M. Addington, D.L. Schodek, Smart Materials and New Technologies in Architecture, Elsevier 2005.
- 3. Donald R. Askeland and Pradeep P. Fulay, Essentials of Materials Science and Engineering, 2009, Cengage Laerning.

References

- 1. Gandi, M.V. and Thompson, B.S., "Smart Materials and Structures," Chapman & Hall, UK, 1992,
- 2. Culshaw, B., "Smart Structures and Materials," Artech House, Inc., Norwood, USA, 1996.
- 3. Dimitris C. Lagoudas, Shape Memory Alloys: Modelling and Engineering Applications, Springer, 2008.
- 4. T. Yoneyama & S. Mayazaki, Shape memory alloys for biomedical applications, CRCPress, 200

Web links and Video Lectures (e-Resources):

• Smart materials intelligent system design NPTEL course

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

- Prepare a smart material sample
- Visit to industry

INTERN	Semester	3	
Course Code	BME306C	CIE Marks	50
Teaching Hours/Week (L: T:P: S)	3:0:0:0	SEE Marks	50
Total Hours of Pedagogy	40	Total Marks	100
Credits	03	Exam Hours	
Examination type (SEE)	Theory		

Course objectives:

The Internet is evolving to connect people to physical things and also physical things to other physical things all in real time. It's becoming the Internet of Things (IoT). The course enables student to

- Understand the basics of Internet of things and protocols.
- Understand some of the application areas where Internet of Things can be applied.
- Learn about the middleware for Internet of Things.
- Understand the concepts of Web of Things

Teaching-Learning Process (General Instructions)

These are sample Strategies, which teacher can use to accelerate the attainment of the various course outcomes and make Teaching –Learning more effective

- 1. At the start of course, the course delivery pattern, prerequisite of the subject will be discussed
- 2. Lecture may be conducted with the aid of multi-media projector, chalk & Talk
- 3. Attendance is compulsory in lectures and laboratory, which may carries five marks in overall evaluation.
- 4. Promoting project based learning may be conducted having a share of 20 marks in the overall internal evaluation.
- 5. Assignment based on course content will be given to the student for each unit/topic and will be evaluated at regular interval. It may carry an importance of ten marks in the overall internal evaluation.
- **6.** Surprise tests/Quizzes/Seminar/Tutorial may be conducted and having share of 10 marks in the overall internal evaluation.

Module-1

IOT - What is the IoT and why is it important? Elements of an IoT ecosystem, Technology drivers, Business drivers, Trends and implications, Overview of Governance, Privacy and Security Issues.

Module-2

IOT PROTOCOLS - Protocol Standardization for IoT - Efforts - M2M and WSN Protocols - SCADA and RFID Protocols - Issues with IoT Standardization - Unified Data Standards - Protocols - IEEE802.15.4-BACNet Protocol- Modbus - KNX - Zigbee- Network layer - APS layer - Security

Module-3

IOT ARCHITECTURE - IoT Open source architecture (OIC)- OIC Architecture & Design principles-IoT Devices and deployment models- IoTivity: An Open source IoT stack - Overview- IoTivity stack architecture- Resource model and Abstraction.

Module-4

WEB OF THINGS - Web of Things versus Internet of Things – Two Pillars of the Web – Architecture Standardization for WoT – Platform Middleware for WoT – Unified Multitier WoT Architecture – WoT Portals and Business Intelligence.

Module-5

IOT APPLICATIONS - IoT applications for industry: Future Factory Concepts, Brownfield IoT, Smart Objects, Smart Applications. Study of existing IoT platforms /middleware, IoT- A, Hydra etc.

Course outcome (Course Skill Set)

At the end of the course, the student will be able to:

- 1. Explain the definition and usage of the term "Internet of Things" in different contexts
- 2. Understand the key components that make up an IoT system
- 3. Differentiate between the levels of the IoT stack and be familiar with the key technologies and protocols employed at each layer of the stack
- 4. Apply the knowledge and skills acquired during the course to build and test a complete, working IoT system involving prototyping, programming and data analysis
- 5. Understand where the IoT concept fits within the broader ICT industry and possible future trends and Appreciate the role of big data, cloud computing and data analytics in a typical IoT system

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- For the Assignment component of the CIE, there are 25 marks and for the Internal Assessment Test component, there are 25 marks.
- The first test will be administered after 40-50% of the syllabus has been covered, and the second test will be administered after 85-90% of the syllabus has been covered
- Any two assignment methods mentioned in the 220B2.4, if an assignment is project-based then only one assignment for the course shall be planned. The teacher should not conduct two assignments at the end of the semester if two assignments are planned.
- For the course, CIE marks will be based on a scaled-down sum of two tests and other methods of assessment.

Internal Assessment Test question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester-End Examination:

Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the course (duration 03 hours).

- 1. The question paper will have ten questions. Each question is set for 20 marks.
- 2. There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), **should have a mix of topics** under that module.
- 3. The students have to answer 5 full questions, selecting one full question from each module.
- 4. Marks scored shall be proportionally reduced to 50 marks

Suggested Learning Resources:

Text Books

- 1. Honbo Zhou, "The Internet of Things in the Cloud: A Middleware Perspective", CRC Press, 2012.
- 2. Dieter Uckelmann, Mark Harrison, Michahelles, Florian (Eds), "Architecting the Internet of Things", Springer, 2011.
- 3. David Easley and Jon Kleinberg, "Networks, Crowds, and Markets: Reasoning About a Highly Connected World", Cambridge University Press, 2010.
- 4. Olivier Hersent, David Boswarthick, Omar Elloumi, "The Internet of Things Key applications and Protocols", Wiley, 2012.

References Books:

- Vijay Madisetti and ArshdeepBahga, "Internet of Things (A Hands-on-Approach)",1st Edition, VPT, 2014
- 2. Francis daCosta, "Rethinking the Internet of Things: A Scalable Approach to Connecting Everything", 1st Edition, Apress Publications, 2013
- 3. CunoPfister, Getting Started with the Internet of Things, O"Reilly Media, 2011, ISBN: 978-1-4493-9357-1

Web links and Video Lectures (e-Resources):

- Introduction to IoT https://www.youtube.com/watch?v=WUYAjxnwjU4&list=PLE7VH8RC_N3bpVn-e8QzOAHziEgmjQ2qE
- https://www.coursera.org/learn/beginning-custom-projects-with-raspberry-pi
- https://www.edx.org/course/introduction-to-the-internet-of-things-3

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

- 1. Familiarization with Arduino/Raspberry Pi and perform necessary software installation.
- 2. To interface LED/Buzzer with Arduino/Raspberry Pi and write a program to turn ON LED for 1 sec after every 2 seconds.
- 3. To interface Push button/Digital sensor (IR/LDR) with Arduino/Raspberry Pi and write a program to turn ON LED when push button is pressed or at sensor detection.
- 4. To interface DHT11 sensor with Arduino/Raspberry Pi and write a program to print temperature and humidity readings.
- 5. To interface motor using relay with Arduino/Raspberry Pi and write a program to turn ON motor when push button is pressed.
- 6. To interface OLED with Arduino/Raspberry Pi and write a program to print temperature and humidity readings on it.
- 7. To interface Bluetooth with Arduino/Raspberry Pi and write a program to send sensor data to smartphone using Bluetooth.
- 8. To interface Bluetooth with Arduino/Raspberry Pi and write a program to turn LED ON/OFF when '1'/'0' is received from smartphone using Bluetooth.
- 9. Write a program on Arduino/Raspberry Pi to upload temperature and humidity data to thing speak cloud.
- 10. Write a program on Arduino/Raspberry Pi to retrieve temperature and humidity data from thing speak cloud.
- 11. To install MySQL database on Raspberry Pi and perform basic SQL queries.
- 12. Write a program on Arduino/Raspberry Pi to publish temperature data to MQTT broker.

WASTE HANDLING & MANAGEMENT		Semester	III
Course Code	BME306D	CIE Marks	50
Teaching Hours/Week (L: T:P: S)	3:0:0:0	SEE Marks	50
Total Hours of Pedagogy	40	Total Marks	100
Credits	03	Exam Hours	03
Examination type (SEE)	Theory		

Course objectives: To make students to understand about;

- 1. Waste generation & effects
- 2. Solid waste management & challenges
- 3. Hazordous waste management & challenges
- 4. Innovative methods in practice to handle waste & its effects
- 5. Laws governing the waste management

Teaching-Learning Process (General Instructions)

These are sample Strategies, which teachers can use to accelerate the attainment of the various course outcomes.

- 1. Class room teaching through chalk & talk, PPT, Appropriate Videos, etc
- 2. Visit to nearby waste handling sites
- 3. Segregation of waste & Preparation of compost practical execution
- **4.** Student speeches on their observations
- 5. Conduction / participation in Waste management idea formulation competition events
- 6. Case study discussions at least 4 in each topic mentioned

Module-1: Introduction to waste management

Importance, methods of logistics, human components, technological components- waste handling equipment and technology, steps in waste management logistics.

Waste collection system and organization: Environmental aspects of waste collection, role of public authority and private sector in waste collection, organizing collection of residential waste, fee schemes, public awareness programs.

Module-2: Engineering Systems for Solid Waste Management

Characteristics of solid waste, types of solid waste, Processing and Treatment of Solid Waste; Mechanical Treatment Material Recovery Facility, Recycling and Recovery, Types of Material Recovery Facilities, Biological Treatment & Biological methods for waste processing; Composting & methods. Biomethanation, Biodeisel, Biohydrogen, Mechanical Biological Stabilization, Thermal Treatment Incineration, Residues and its utilisation, co-combustion, Pyrolysis, Gasification, Refuse Derived Fuel, solid recovered fuel.

Engineering Disposal of SW: Dumping of solid waste; sanitary land fills – site selection,.

Module-3 Hazardous Waste Management

Introduction, Hazardous waste definition, sources, identification and classification, Characteristics, Industrial waste & Plastic Waste; sources, environmental effects, challenges in handling Biomedical waste; Introduction to biomedical wastes, sources, classification, collection, segregation, treatment and disposal,

E- waste; characteristics, generation, collection, transport, recycling and disposal, Effects on the society and environment, Transportation and Disposal, recycling and reuse,

Nuclear waste; Characteristics, Types, Power reactors, Refinery and fuel fabrication wastes, Health and environmental effects, Decommissioning of Nuclear power reactors Hazardous waste landfills, Site selections.

Module-4 Innovations in waste management

Global and Indian Context, recycling, reuse, energy production, land filling, remediation of hazardous waste contaminated sites.

Revenue models, Developing Networks, Entrepreneurship activities,

Best practices in India and Abroad- Case studies, Waste management and waste handling entrepreneurs in India and other countries,

Case studies of different municipalities waste handling techniques, domestic composting, medium & large scale composting, Centralised composting

Module-5 Waste Management Laws in India

The Environmental Protection Act, The Hazardous Wastes (Management, Handling and Transboundary Movement) Rules, 2008, The Plastic Waste (Management and Handling) Rules, 2011, Bio-Medical Waste (Management and Handling) Rules, 1998, The E- Waste (Management and Handling) Rules, 2011, The Batteries (Management and Handling) Rules, 2001. Duties of constitutional bodies and Ministries

Course outcome (Course Skill Set)

At the end of the course, the student will be able to:

- 1. Identify & segregate the waste
- 2. Formulate the appropriate waste segregation, collection & disposal system
- 3. Generate a report on waste management challenges
- 4. Select a remedial measure for environmental & living being protection
- 5. Exercise the constitution laws as a citizen

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- For the Assignment component of the CIE, there are 25 marks and for the Internal Assessment Test component, there are 25 marks.
- The first test will be administered after 40-50% of the syllabus has been covered, and the second test will be administered after 85-90% of the syllabus has been covered
- Any two assignment methods mentioned in the 220B2.4, if an assignment is project-based then only one assignment for the course shall be planned. The teacher should not conduct two assignments at the end of the semester if two assignments are planned.
- For the course, CIE marks will be based on a scaled-down sum of two tests and other methods of assessment.

Internal Assessment Test question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester-End Examination:

Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the course (duration 03 hours).

- The question paper will have ten questions. Each question is set for 20 marks.
- There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), **should have a mix of topics** under that module.
- The students have to answer 5 full questions, selecting one full question from each module.
- Marks scored shall be proportionally reduced to 50 marks

Suggested Learning Resources:

Books

- 1. Handbook of Solid Waste Management, Tchobanoglous G and Kreith F, McGraw-Hill Education, 2002, 2nd Edition
- 2. Hazardous Wastes Sources, Pathways, Receptors, Richard J. Watts, John Wiley and Sons, 1998, 1st Edition.
- 3. Strategic Management, Hitt, M.A., Hoskisson, R.E., Ireland, R.D., (2016)., Cengage Learning, India.
- 4. Waste Management Practices: Municipal, Hazardous and Industrial, John Pichtel, CRC Press, 2014, 2nd Edition
- 5. Handbook of Solid Waste Management, Tchobanoglous G and Kreith F, McGraw-Hill Education, 2002, 2nd Edition

Reference books:

- 1. Waste Management Practices: Municipal, Hazardous and Industrial, John Pichtel (2014)., 2nd Ed., CRC Press, USA.
- 2. Waste: A Handbook for Management, Letcher, T.M., Vallero, D.A. (2011)., 1st Ed, Academic Press, USA.
- 3. Waste Management Strategy and Action Plan, IGES, UNEP, CCET. (2018), Phnom Penh 2018-2035. Phnom Penh, Cambodia.
- 4. National Environment Policy, 2006, Ministry of Environment and Forests, Government of India, Approved by the Union Cabinet on 18 May, 2006 2
- 5. Innovation and Entrepreneurship, Peter Drucker, (2012)., Routledge Publishers, England UK

Web links and Video Lectures (e-Resources):

- https://nptel.ac.in/content/storage2/courses/105106056/Introduction.pdf
- https://nptel.ac.in/courses/105/103/105103205/
- http://cpheeo.gov.in/cms/manual-on-municipal-solid-waste-management-2016.php
- https://nptel.ac.in/courses/105/103/105103205/
- https://nptel.ac.in/courses/120/108/120108005/
- https://nptel.ac.in/courses/105/106/105106056/
- https://nptel.ac.in/courses/105/105/105105160/
- https://nptel.ac.in/courses/103/107/103107125/
- https://nptel.ac.in/courses/110/108/110108047/
- https://nptel.ac.in/courses/105/106/105106056/
- https://nptel.ac.in/courses/105/105/105105184/
- https://nptel.ac.in/content/storage2/courses/105106056/Introduction.pdf
- https://wedocs.unep.org/bitstream/handle/20.500.11822/31379/IWM_Guidelines.pd f?se quence=1&isAllowed=y

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

- Preparation of a model for waste management for a hostel, apartment, institution,
- Speeches by students about best practices followed for domestic waste handling
- Prepare compost using machines
- Visit nearby waste dump yard and prepare a report covering challenges & remedies
- Visit industries and observe large-scale industry waste disposal practices and challenges
- Visit near by hospitals and observe large-scale bio-medical waste disposal practices and challenges
- Display everyday one/ two constitution rules on class notice board
- Poster preparation by students

Template for Practical Course and if AEC is a practical Course Annexure-V

ADVANCED PYTHON	I PROGRAMMING	Semester	3
Course Code	BME358A	CIE Marks	50
Teaching Hours/Week (L:T:P: S)	0:0:2:0	SEE Marks	50
Total Hours of Pedagogy	15	Total Marks	100
Credits	01	Exam Hours	03
Examination type (SEE)	Practica	<u>.</u> al	•

Course objectives:

- To understand the problem solving approaches.
- To learn the basic programming constructs in Python.
- To practice various computing strategies for Python-based solutions to real world problems.
- To use Python data structures lists, tuples, dictionaries.
- To do input/output with files in Python.

	To do input/output with mes in rython.
Sl.NO	Experiments
	Demonstrate following functions/methods which operates on strings in Python with suitable
1	examples: i) len() ii) strip() iii) rstrip() iv) lstrip() v) find() vi) rfind() vii) index() viii)
_	rindex(),ix) count() x) replace() xi) split() xii) join() xiii) upper() xiv) lower() xv) swapcase(
) xvi) title() xvii) capitalize() xviii) startswith() xix) endswith()
2	Implementing programs using Functions. (Factorial, largest number in a list, area of shape).
	NESTED LISTS: Write a program to read a 3 X 3 matrix and find the transpose, addition,
3	subtraction, multiplication of two 3 X 3 matrices, check whether two given 3 X 3 matrices are
	identical or not.
4	Implementing programs using Strings. (Reverse, palindrome, character count, replacing
-	characters). Real time applications using sets and Dictionaries
5	Scientific problems using Conditionals and Iterative loops. (Number series and different
	Patterns).
	Numpy Library: Linear Algebra
	a) Write a python program to find rank, determinant, and trace of an array.
6	b) Write a python program to find eigen values of matrices
	d) Write a python program to solve a linear matrix equation, or system of linear scalar
	equations.
	Graphics:
	Consider turtle object. Write functions to draw triangle, rectangle, polygon, circle and
7	sphere. Use object oriented approach.
	Design a Python program using the Turtle graphics library to construct a turtle bar chart
	representing the grades obtained by N students read from a file categorizing them into
	distinction, first class, second class, third class and failed.
8	Create a colour images using NumPy in Python.
	Demonstration Experiments (For CIE)
9	Write a python program to implement Pandas Series with labels.
10	Implementing real-time/technical applications using File handling. (copy from one file to
	another, word count, longest word).
11	Implementing real-time/technical applications using Exception handling. (divide by zero error,
	voter's age validity, student mark range validation).
12	Developing a game activity using Pygame like bouncing ball, car race etc.

Course outcomes (Course Skill Set):

At the end of the course the student will be able to:

- CO1: Develop algorithmic solutions to simple computational problems.
- CO2: Develop and execute simple Python programs.
- CO3: Use functions to decompose a Python program.
- CO4: Process compound data using Python data structures.
- CO5: Utilize Python packages in developing software applications.

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/course if the student secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together

Continuous Internal Evaluation (CIE):

CIE marks for the practical course are **50 Marks**.

The split-up of CIE marks for record/journal and test are in the ratio **60:40**.

- Each experiment is to be evaluated for conduction with an observation sheet and record write-up. Rubrics for the evaluation of the journal/write-up for hardware/software experiments are designed by the faculty who is handling the laboratory session and are made known to students at the beginning of the practical session.
- Record should contain all the specified experiments in the syllabus and each experiment write-up will be evaluated for 10 marks.
- Total marks scored by the students are scaled down to **30 marks** (60% of maximum marks).
- Weightage to be given for neatness and submission of record/write-up on time.
- Department shall conduct a test of 100 marks after the completion of all the experiments listed in the syllabus.
- In a test, test write-up, conduction of experiment, acceptable result, and procedural knowledge will carry a weightage of 60% and the rest 40% for viva-voce.
- The suitable rubrics can be designed to evaluate each student's performance and learning ability.
- The marks scored shall be scaled down to **20 marks** (40% of the maximum marks).

The Sum of scaled-down marks scored in the report write-up/journal and marks of a test is the total CIE marks scored by the student.

Semester End Evaluation (SEE):

- SEE marks for the practical course are 50 Marks.
- SEE shall be conducted jointly by the two examiners of the same institute, examiners are appointed by the Head of the Institute.
- The examination schedule and names of examiners are informed to the university before

the conduction of the examination. These practical examinations are to be conducted between the schedule mentioned in the academic calendar of the University.

- All laboratory experiments are to be included for practical examination.
- (Rubrics) Breakup of marks and the instructions printed on the cover page of the answer script to be strictly adhered to by the examiners. **OR** based on the course requirement evaluation rubrics shall be decided jointly by examiners.
- Students can pick one question (experiment) from the questions lot prepared by the examiners jointly.
- Evaluation of test write-up/ conduction procedure and result/viva will be conducted jointly by examiners.
- General rubrics suggested for SEE are mentioned here, writeup-20%, Conduction procedure and result in -60%, Viva-voce 20% of maximum marks. SEE for practical shall be evaluated for 100 marks and scored marks shall be scaled down to 50 marks (however, based on course type, rubrics shall be decided by the examiners)
- Change of experiment is allowed only once and 15% of Marks allotted to the procedure part are to be made zero.

The minimum duration of SEE is 02 hours

Suggested Learning Resources:

- G Venkatesh and Madhavan Mukund, "Computational Thinking: A Primer for Programmers and Data Scientists", 1st Edition, Notion Press, 2021.
- John V Guttag, "Introduction to Computation and Programming Using Python: With Applications to Computational Modeling and Understanding Data", Third Edition, MIT Press, 2021
- Paul Deitel and Harvey Deitel, "Python for Programmers", Pearson Education, 1st Edition, 2021.
- Eric Matthes, "Python Crash Course, A Hands on Project Based Introduction to Programming", 2nd Edition, No Starch Press, 2019.
- Martin C. Brown, "Python: The Complete Reference", 4th Edition, Mc-Graw Hill, 2018.

INTRODUCTION TO VIRTUAL REALITY		Semester	3rd
Course Code	BME358B	CIE Marks	50
Teaching Hours/Week (L: T:P: S)	0-2-0-0	SEE Marks	50
Total Hours of Pedagogy	30	Total Marks	100
Credits	01	Exam Hours	01
Examination nature (SEE) Theory/practical/Viva-Voce /Term-work/Others			ers

Course objectives:

- Describe how VR systems work and list the applications of VR.
- Understand the design and implementation of the hardware that enables VR systems to be built.
- Understand the system of human vision and its implication on perception and rendering.
- Explain the concepts of motion and tracking in VR systems.
- Describe the importance of interaction and audio in VR systems.

Teaching-Learning Process (General Instructions)

These are sample Strategies; which teachers can use to accelerate the attainment of the various course outcomes.

- 1. Adopt different types of teaching methods to develop the outcomes through PowerPoint presentations and Video demonstrations or Simulations.
- 2. Chalk and Talk method for Problem Solving.
- 3. Adopt flipped classroom teaching method.
- 4. Adopt collaborative (Group Learning) learning in the class.
- **5.** Adopt Problem Based Learning (PBL), which fosters students' analytical skills and develops thinking skills such as evaluating, generalizing, and analyzing information.

	Module-1	
Introduction to Virtual Reality: Defining Virtual Reality, History of VR, Human Physiology and		
Perception, Key Elements of Virtu	al Reality Experience, Virtual Reality System, Interface to the Virtual	
World-Input & output- Visual, Aura	al & Haptic Displays, Applications of Virtual Reality.	
Teaching- Learning Process	1. Power-point Presentation,	
	2. Video demonstration or Simulations,	
	3. Chalk and Talk are used for Problem Solving./White board	
	Module-2	
Representing the Virtual World:	Representation of the Virtual World, Visual Representation in VR, Aural	
Representation in VR and Haptic R		
m 1: r : p	4 D	
Teaching- Learning Process	1. Power-point Presentation,	
	2. Video demonstration or Simulations,	
	3. Chalk and Talk are used for Problem Solving./White board	
Module-3		
The Geometry of Virtual World	Is &The Physiology of Human Vision : Geometric Models, Changing	
Position and Orientation, Axis-Ang	gle Representations of Rotation, Viewing Transformations, Chaining the	
Transformations, Human Eye, eye movements & implications for VR.		
Teaching- Learning Process	1. Power-point Presentation,	
	2. Video demonstration or Simulations,	
	3. Chalk and Talk are used for Problem Solving./White board	
Module-4		

TEMPLATE for AEC (if the course is a theory)

Visual Perception & Rendering : Visual Perception - Perception of Depth, Perception of Motion, Perception of Color, Combining Sources of Information		
Visual Rendering -Ray Tracing and Shading Models, Rasterization, Correcting Optical Distortions, Improving Latency and Frame Rates		
Teaching- Learning Process 1. Power-point Presentation,		
	2. Video demonstration or Simulations,	
	3. Chalk and Talk are used for Problem Solving./White board	
Module-5		
Motion & Tracking : Motion in Real and Virtual Worlds- Velocities and Accelerations, The Vestibular System, Physics in the Virtual World, Mismatched Motion and Vection		
Tracking- Tracking 2D & 3D Orientation, Tracking Position and Orientation, Tracking Attached Bodies		
Teaching- Learning Process	1. Power-point Presentation,	
	2. Video demonstration or Simulations,	
	3. Chalk and Talk are used for Problem Solving./White board	
Course outcome (Course Skill Set)		

At the end of the course the student will be able to:

- CO1: Describe how VR systems work and list the applications of VR.
- CO2: Demonstrate the design and implementation of the hardware that enables VR systems to be built.
- CO3: Understand the system of human vision and its implication on perception and rendering.
- CO4: Explain the concepts of motion and tracking in VR systems.
- CO5: Describe the importance of interaction and audio in VR systems.

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Examination (CIE)

- For the Assignment component of the CIE, there are 25 marks and for the Internal Assessment Test component, there are 25 marks.
- The first test will be administered after 40-50% of the syllabus has been covered, and the second test will be administered after 85-90% of the syllabus has been covered
- Any two assignment methods mentioned in the 220B2.4, if an assignment is project-based then only one assignment for the course shall be planned. The teacher should not conduct two assignments at the end of the semester if two assignments are planned.
- For the course, CIE marks will be based on a scaled-down sum of two tests and other methods of assessment.

Internal Assessment Test question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examinations (SEE)

SEE paper shall be set for 50 questions, each of 01 mark. The pattern of the question paper is MCQ (multiple choice questions). The time allotted for SEE is **01 hour.** The student has to secure a minimum of 35% of the maximum marks meant for SEE.

Suggested Learning Resources:

Text Books

- 1. Virtual Reality, Steven M. LaValle, Cambridge University Press, 2016
- 2. Understanding Virtual Reality: Interface, Application and Design, William R Sherman and Alan B Craig, (The Morgan Kaufmann Series in Computer Graphics)". Morgan Kaufmann Publishers, San Francisco, CA, 2002.
- 3. Developing Virtual Reality Applications: Foundations of Effective Design, Alan B Craig, William R Sherman and Jeffrey D Will, Morgan Kaufmann, 2009.

Reference Books:

- 1. Gerard Jounghyun Kim, "Designing Virtual Systems: The Structured Approach", 2005.
- 2. Doug A Bowman, Ernest Kuijff, Joseph J LaViola, Jr and Ivan Poupyrev, "3D User Interfaces, Theory and Practice", Addison Wesley, USA, 2005.
- 3. Oliver Bimber and Ramesh Raskar, "Spatial Augmented Reality: Meging Real and Virtual Worlds", 2005.
- 4. Burdea, Grigore C and Philippe Coiffet, "Virtual Reality Technology", Wiley Interscience, India, 2003.

Web links and Video Lectures (e-Resources):

- http://lavalle.pl/vr/book.html
- https://nptel.ac.in/courses/106/106/106106138/
- https://www.coursera.org/learn/introduction-virtual-reality.

TEMPLATE for AEC (if the course is a theory)

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning	
 Course seminars 	

Template for Practical Course and if AEC is a practical Course Annexure-V

SPREADSHEET FO	OR ENGINEERS	Semester	3
Course Code	BME358C	CIE Marks	50
Teaching Hours/Week (L:T:P: S)	0:0:2:0	SEE Marks	50
Total Hours of Pedagogy	15 sessions	Total Marks	100
Credits	1	Exam Hours	03
Examination type (SEE)	Practica	al	•

Course objectives:

- To create different plots and charts
- To compute different functions, conditional functions and make regression analysis
- To carryout iterative solutions for roots, multiple roots, optimization and non-linear regression analysis
- To carryout matrix operations
- To Understand VBA and UDF
- To understand VBA subroutines and Macros
- To carryout numerical integration and solving differential equations using different methods

CLNC	To carryout numerical integration and solving unierential equations using unierent methods		
Sl.NO	Experiments		
1	Charting: Create an XY scatter graph, XY chart with two Y-Axes, add error bars to your plot, create a combination chart		
2	Functions: Computing Sum, Average, Count, Max and Min, Computing Weighted Average, Trigonometric Functions, Exponential Functions, Using The CONVERT Function to Convert Units		
3	Conditional Functions: Logical Expressions, Boolean Functions, IF Function, Creating a Quadratic Equation Solver, Table VLOOKUP Function, AND, OR and XOR functions.		
4	Regression Analysis: Trendline, Slope and Intercept, Interpolation and Forecast, The LINEST Function, Multilinear Regression, Polynomial Fit Functions, Residuals Plot, Slope and Tangent, Analysis ToolPack.		
5	Iterative Solutions Using Excel: Using Goal Seek in Excel, Using The Solver To Find Roots, Finding Multiple Roots, Optimization Using The Solver, Minimization Analysis, NonLinear Regression Analysis.		
6	Matrix Operations Using Excel: Adding Two Matrices, Multiplying a Matrix by a Scalar, Multiplying Two Matrices, Transposing a Matrix, Inverting a Matrix and Solving System of Linear Equations.		
7	VBA User-Defined Functions (UDF): The Visual Basic Editor (VBE), The IF Structure, The		
	Select Case Structure, The For Next Structure, The Do Loop Structure, Declaring Variables and		
	Data Types, An Array Function The Excel Object Model, For Each Next Structure.		
8	VBA Subroutines or Macros: Recording a Macro, Coding a Macro Finding Roots by Bisection, Using Arrays, Adding a Control and Creating User Forms.		
	Demonstration Experiments (For CIE)		
9	Numerical Integration Using Excel: The Rectangle Rule, The Trapezoid Rule, The Simpson's Rule, Creating a User-Defined Function Using the Simpson's Rule.		
10	Differential Equations: Euler's Method, Modified Euler's Method, The Runge Kutta Method, Solving a Second Order Differential Equation		

Course outcomes (Course Skill Set):

At the end of the course the student will be able to:

- Create different plots and charts
- Compute different functions, conditional functions and make regression analysis
- Carryout iterative solutions for roots, multiple roots, optimization and non-linear regression analysis
- Carryout matrix operations

- Understand VBA and UDF, VBA subroutines and Macros
- Carryout numerical integration and solving differential equations using different methods

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/course if the student secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together

Continuous Internal Evaluation (CIE):

CIE marks for the practical course are **50 Marks**.

The split-up of CIE marks for record/journal and test are in the ratio **60:40**.

- Each experiment is to be evaluated for conduction with an observation sheet and record write-up. Rubrics for the evaluation of the journal/write-up for hardware/software experiments are designed by the faculty who is handling the laboratory session and are made known to students at the beginning of the practical session.
- Record should contain all the specified experiments in the syllabus and each experiment write-up will be evaluated for 10 marks.
- Total marks scored by the students are scaled down to **30 marks** (60% of maximum marks).
- Weightage to be given for neatness and submission of record/write-up on time.
- Department shall conduct a test of 100 marks after the completion of all the experiments listed in the syllabus.
- In a test, test write-up, conduction of experiment, acceptable result, and procedural knowledge will carry a weightage of 60% and the rest 40% for viva-voce.
- The suitable rubrics can be designed to evaluate each student's performance and learning ability.
- The marks scored shall be scaled down to **20 marks** (40% of the maximum marks).

The Sum of scaled-down marks scored in the report write-up/journal and marks of a test is the total CIE marks scored by the student.

Semester End Evaluation (SEE):

- SEE marks for the practical course are 50 Marks.
- SEE shall be conducted jointly by the two examiners of the same institute, examiners are appointed by the Head of the Institute.
- The examination schedule and names of examiners are informed to the university before the conduction of the examination. These practical examinations are to be conducted between the schedule mentioned in the academic calendar of the University.
- All laboratory experiments are to be included for practical examination.
- (Rubrics) Breakup of marks and the instructions printed on the cover page of the answer script to be strictly adhered to by the examiners. **OR** based on the course requirement

evaluation rubrics shall be decided jointly by examiners.

- Students can pick one question (experiment) from the questions lot prepared by the examiners jointly.
- Evaluation of test write-up/ conduction procedure and result/viva will be conducted jointly by examiners.

General rubrics suggested for SEE are mentioned here, writeup-20%, Conduction procedure and result in -60%, Viva-voce 20% of maximum marks. SEE for practical shall be evaluated for 100 marks and scored marks shall be scaled down to 50 marks (however, based on course type, rubrics shall be decided by the examiners)

Change of experiment is allowed only once and 15% of Marks allotted to the procedure part are to be made zero.

The minimum duration of SEE is 03 hours

Suggested Learning Resources:

- Excel Resources 600+ Self Study Guides, Articles & Tools (wallstreetmojo.com)
- https://www.ictlounge.com/html/year_7/esafety_part7.htm
- McFedries PaulMicrosoft Excel 2019 Formulas And Functions Microsoft Press, U.S, 2019 Edition

Template for Practical Course and if AEC is a practical Course Annexure-V

Tools in Scien	tific Computing	Semester	3
Course Code	BME358D	CIE Marks	50
Teaching Hours/Week (L:T:P: S)	0:0:2:0	SEE Marks	50
Total Hours of Pedagogy	15 sessions	Total Marks	100
Credits	01	Exam Hours	03
Examination type (SEE)	Theory/ Practical /Viva-Voce /Term-work/Others		

Course objectives:

- 1. To learn the fundamentals of problem-solving using MATLAB/MATHCAD and go plot graphs using Origin software
- 2. To introduce programming for curve fitting and solving both linear and nonlinear equations.
- 3. To understand the concept of approximate methods and recognize their significance in computing.

Sl.NO	Experiments
1	Develop a program to find the eigenvalues and eigenvectors of a square matrix
2	Develop a user-friendly program for the Newton-Raphson method for solving simultaneous nonlinear equations
3	Develop a user-friendly program to find solution of simultaneous linear equations using matrix methods
4	Develop a program to find the equation that best fits for the given set of points using any of the curve fitting techniques
5	Develop a program to compute the area under the given curve described by the function using numerical techniques
6	Develop a user-friendly program for the thick or thin cylinders subjected to internal and external loads, determine the stresses developed within the cylinder and plot the variation of stresses
7	Develop a program to find the principal stresses and their associated directions for a given state of stress described by the components of stress in three dimensions (σxx , σyy , σzz , σxy , σxz , σyz),
8	Develop a user-friendly program for plotting the Mohr's circle for the given 2D stress state and determine the principal stresses and directions of principle stress
	Demonstration Experiments (For CIE)
9	Develop a program to find the multiplication and inverse of a square matrix
10	Develop a program to find and plot the response of spring-mass-dashpot system subjected to hormonic excitation.
11	Develop a program to find the roots of a quadratic equation using numerical methods
12	Develop a program to find the solution of differential equation using approximate methods

Course outcomes (Course Skill Set):

At the end of the course the student will be able to:

- 1. Understand the fundamentals of programming in scientific computations.
- 2. Develop programming for curve fitting and solving both linear and nonlinear equations.
- 3. Apply the concept of approximate methods and recognize their significance in computing.
- 4. Apply MATLAB/MATHCAD/FORTRAN/PYTHON tools, etc., for solving engineering problems

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/course if the student secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together

Continuous Internal Evaluation (CIE):

CIE marks for the practical course are **50 Marks**.

The split-up of CIE marks for record/journal and test are in the ratio **60:40**.

- Each experiment is to be evaluated for conduction with an observation sheet and record write-up. Rubrics for the evaluation of the journal/write-up for hardware/software experiments are designed by the faculty who is handling the laboratory session and are made known to students at the beginning of the practical session.
- Record should contain all the specified experiments in the syllabus and each experiment write-up will be evaluated for 10 marks.
- Total marks scored by the students are scaled down to **30 marks** (60% of maximum marks).
- Weightage to be given for neatness and submission of record/write-up on time.
- Department shall conduct a test of 100 marks after the completion of all the experiments listed in the syllabus.
- In a test, test write-up, conduction of experiment, acceptable result, and procedural knowledge will carry a weightage of 60% and the rest 40% for viva-voce.
- The suitable rubrics can be designed to evaluate each student's performance and learning ability.
- The marks scored shall be scaled down to **20 marks** (40% of the maximum marks).

The Sum of scaled-down marks scored in the report write-up/journal and marks of a test is the total CIE marks scored by the student.

Semester End Evaluation (SEE):

- SEE marks for the practical course are 50 Marks.
- SEE shall be conducted jointly by the two examiners of the same institute, examiners are appointed by the Head of the Institute.

- The examination schedule and names of examiners are informed to the university before the conduction of the examination. These practical examinations are to be conducted between the schedule mentioned in the academic calendar of the University.
- All laboratory experiments are to be included for practical examination.
- (Rubrics) Breakup of marks and the instructions printed on the cover page of the answer script to be strictly adhered to by the examiners. **OR** based on the course requirement evaluation rubrics shall be decided jointly by examiners.
- Students can pick one question (experiment) from the questions lot prepared by the examiners jointly.
- Evaluation of test write-up/ conduction procedure and result/viva will be conducted jointly by examiners.

General rubrics suggested for SEE are mentioned here, writeup-20%, Conduction procedure and result in -60%, Viva-voce 20% of maximum marks. SEE for practical shall be evaluated for 100 marks and scored marks shall be scaled down to 50 marks (however, based on course type, rubrics shall be decided by the examiners)

Change of experiment is allowed only once and 15% of Marks allotted to the procedure part are to be made zero.

The minimum duration of SEE is 03 hours

Suggested Learning Resources:

- 1. Applied Numerical Methods with MATLAB for Engineers and Scientists, Steven C. Chapra, Edition 3, McGraw-Hill, 2012
- 2. Numerical methods for engineers, Steven C. Chapra, Raymond P. Canale, 5th fifth edition, 2006, McGraw-Hill Higher Education, Boston, 2006
- 3. MATLAB and Its Applications in Engineering, Raj Kumar Bansal, et.al 2009, Pearson Education,