

KammavariSangham (R) - 1952

K.S.Group of Institutions

K S INSTITUTE OF TECHNOLOGY
#14, Raghuvanahalli, Kanakapura Main Road, Bengaluru-560062

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

I/II SEMESTER

18CSL17/27 –C PROGRAMMING AND PROBLEM-
SOLVING LABORATORY

K S INSTITUTE OF TECHNOLOGY

“To impart quality technical education with ethical values, employable skills and

research to achieve excellence”

• To attract and retain highly qualified, experienced & committed faculty.

• To create relevant infrastructure

• Network with industry & premier institutions to encourage emergence of new ideas

by providing research & development facilities to strive for academic excellence

• To inculcate the professional & ethical values among young students with

employable skills & knowledge acquired to transform the society

DEPARTMENT OF COMPUTER SCIENCE &

ENGINEERING

To create competent professionals in Computer Science and Engineering with adequate

skills to drive the IT industry

• Impart sound technical knowledge and quest for continuous learning.

• To equip students to furnish Computer Applications for the society through experiential

learning and research with professional ethics.

• Encourage team work through inter-disciplinary project and evolve as leaders with social

concerns.

MISSION

VISION

VISION

MISSION

DEPARTMENT OF

COMPUTER SCIENCE AND ENGINEERING

PEO1: Excel in professional career by acquiring knowledge in cutting edge

Technology and contribute to the society as an excellent employee or

as an entrepreneur in the field of Computer Science & Engineering.

PEO2: Continuously enhance their knowledge on par with the development in IT

industry and pursue higher studies in computer science &engineering.

PEO3 : Exhibit professionalism, cultural awareness, team work, ethics,

and effective communication skills with their knowledge in solving

social and environmental problems by applying computer technology.

PSO1 : Ability to understand, analyze problems and implement solutions in

Programming languages, as well to apply concepts in core areas of

Computer Science in association with professional bodies and clubs.

PSO2 : Ability to use computational skills and apply software knowledge to

develop effective solutions and data to address real world challenges.

Program Educational Objectives (PEO’s)

Program Specific Outcomes (PSO’s)

PROGRAM OUTCOMES (PO’s)

PO1: Engineering Knowledge: Apply knowledge of mathematics and science, with

fundamentals of Computer Science & Engineering to be able to solve complex engineering

problems related to CSE.

PO2: Problem Analysis: Identify, Formulate, review research literature and analyze complex

engineering problems related to CSE and reaching substantiated conclusions using first principles

of mathematics, natural sciences and engineering sciences

PO3: Design/Development of solutions: Design solutions for complex engineering problems

related to CSE and design system components or processes that meet the specified needs with

appropriate consideration for the public health and safety and the cultural societal and

environmental considerations

PO4: Conduct Investigations of Complex problems: Use research–based knowledge and

research methods including design of experiments, analysis and interpretation of data, and synthesis

of the information to provide valid conclusions.

PO5: Modern Tool Usage: Create, Select and apply appropriate techniques, resources and modern

engineering and IT tools including prediction and modeling to computer science related complex

engineering activities with an understanding of the limitations

PO6: The Engineer and Society: Apply Reasoning informed by the contextual knowledge to

assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant

to the CSE professional engineering practice

PO7: Environment and Sustainability: Understand the impact of the CSE professional

engineering solutions in societal and environmental contexts and demonstrate the knowledge of,

and need for sustainable development

PO8: Ethics: Apply Ethical Principles and commit to professional ethics and responsibilities and

norms of the engineering practice

PO9: Individual and Team Work: Function effectively as an individual and as a member or

leader in diverse teams and in multidisciplinary Settings

PO10: Communication: Communicate effectively on complex engineering activities with the

engineering community and with society at large such as able to comprehend and with write

effective reports and design documentation, make effective presentations and give and receive clear

instructions.

PO11: Project Management and Finance: Demonstrate knowledge and understanding of the

engineering management principles and apply these to one’s own work, as a member and leader

in a team, to manage projects and in multi-disciplinary environments

PO12: Life-Long Learning: Recognize the need for and have the preparation and ability to engage

in independent and life-long learning the broadest context

SYLLABUS

Subject Code: 18CPL17/27 Subject: C Programming Laboratory

Faculty: Manoj Kumar S Academic Year:2020-2021

Class: I/II Semester Department: Artificial Intelligence and

Machine Learning

CO-PO Mapping:

Course: C PROGRAMMING LAB0RATORY

Type: Programming Course Code:18CPL17/27

No of Hours per week

Theory

(Lecture Class)

Practical/Field

Work/Allied Activities
Total/Week Total teaching hours

0 2 3 40

Marks

Internal Assessment Examination Total Credits

40 60 100 1

Aim/Objective of the Course:

1. Write flowcharts, algorithms and programs.

2. Familiarize the process the debugging and execution.

3. Implement basis of C programming language.

4. Illustrate solutions to the laboratory programs.

Course Learning Outcomes:

After completing the course, the students will be able to,

CO1
 Illustrate the knowledge on various parts of a computer.

Understanding

(K2)

CO2
Develop flowcharts and write algorithms for every C Programs.

Applying

(K3)

CO3
Develop C problem solving skills.

Applying

(K3)

CO4
Develop modular programming skills.

Applying

(K3)

CO5 Analyze the tracing and debugging of a program. Analyze (K4)

CO
PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2

CO1 3 2 2 1 3 - - - - - - 2 3 1

CO2 3 2 2 1 3 - - - - - - 2 3 1

CO3 3 2 2 1 3 - - - - - - 2 3 1

CO4 3 2 2 1 3 - - - - - - 2 3 1

CO5 3 2 2 1 3 - - - - - - 2 3 1

18CP

L17/27
3 2 2 1 3

2 3 1

RUBRICS FOR LABORATORY EVALUATION

Exceptional (10-

9)

Acceptable (8-6) Marginal (5-1) Unsatisfactory

(0)

Record (10) The Record is

well written and

clearly explains

what the

experiments are

accomplishing

The record is

written and useful

in understanding

The record is

vague only the

reader can

understand.

The record does

not help the reader

understand

Program

Logic (In

the

Observatio

n book)

(10)

The program

executes and

meets all of the

specifications.

The Program

executes correctly

with no errors and

meets few of the

specifications.

The program

executes with few

logical errors

Program does not

execute

Viva (10) Demonstrates

deep knowledge;

answer the

questions with

explanations and

elaboration.

Adequate

knowledge of

most topics;

answer the

questions, but

fails to elaborate.

Superficial

knowledge of

topic; only able to

answer

basic questions.

Not able to

answer basic

questions

Internal

Test (10)
Internal test conducted for 10 marks. These 10 marks will be divided for write up,

execution of program and viva.

Computer Programming Laboratory-18CPL17/27 2020-21

Dept. of CSE, KSIT, Bengaluru 1

ALU

Control Unit

OUTP INPUT Memory Unit

Introduction to Hardware

Laboratory Session-1

Write-up on Functional block diagram of Computer, CPU, Buses, Mother Board, Chip sets,

Operating System & types of OS, Basics of Networking & Topology and NIC.

Functional block diagram of Computer:

DESCRIPTION

A computer is an electronic device which is capable of receiving information (data) in a

particular form and of performing a sequence of operations in accordance with a predetermined

but variable set of procedural instructions (program) to produce a result in the form of

information or signals.

A computer can process data, pictures, sound and graphics. They can solve highly complicated
problems quickly and accurately.

A computer as shown in below figure basically performs five major operations or functions

irrespective of their size and make. These are

1) It accepts data or instructions by way of input.

2) It stores data.

3) It can process data as required by the user.

4) It gives results in the form of output.

5) It controls all operations inside the computer.

System Unit

BLOCK DIAGRAM OF A COMPUTER

Computer Programming Laboratory-18CPL17/27 2020-21

Dept. of CSE, KSIT, Bengaluru 2

• Data and results flow

• Control instructions to other units from control unit

• Instructions from memory unit to control unit

We discuss below each of these Computer operations

1. Input: computer receives data and instructions through the input unit. The input unit consists

of one or more input devices.

Input devices include:

➢ Keyboard

➢ Mouse

➢ Joystick

➢ Scanner

Functions of input unit

➢ Accept the data and instructions from the outside world

➢ Convert it to a form that the computer can understand

➢ Supply the converted data to the computer system for further processing.

Keyboard Joystick

2. Storage: The process of saving data and instructions permanently is known as storage. A

Computer has two types of storage areas:

• Primary Storage

• Secondary Storage

Primary Storage: Primary Storage is also known as main memory, is the

storage area that is directly accessible by the CPU at very high speeds.

Data has to be fed into the system before the actual processing starts. It is

because the processing speed of Central Processing Unit (CPU) is so fast

that the data has to be provided to CPU with the same speed. Therefore

the data is first stored in the storage unit for faster access and processing.

Primary Storage (RAM)

Computer Programming Laboratory-18CPL17/27 2020-21

Dept. of CSE, KSIT, Bengaluru 3

This storage unit or the primary storage of the computer system is designed to do the above

functionality. It provides space for storing

data and instructions.

Secondary Storage : is also known as sencondary memory or auxiliary memmory.It basically

overcomes all the drawbacks of the primary storage area. It, is cheaper, non-volatile and used to

permanently store data and programs that are not being currently executed by the CPU.

Secondary Storage (Hard Disk)

3. Processing: The process of performing operations on the data as per the instructions specified

by the user (program) is called processing. Data and instructions are taken from the primary

memory and transferred to the arithmetic and Logical Unit (ALU), which performs all sorts of

calculations. The intermediate results of processing may be stored in the main memory, as they

might be required again. When the processing completes, the final result is then transferred to the

main memory.

4. Output: This is the process of producing results from the data for getting useful information.

Similarly the output produced by the computer after processing must also be kept somewhere

inside the computer before being given to you in human readable form. Again the output is also

stored inside the computer for further processing.

Output devices include:

Computer Programming Laboratory-18CPL17/27 2020-21

Dept. of CSE, KSIT, Bengaluru 4

a)Monitors. b) Printers. c) Speakers

5. Control unit: The control unit (CU) is the central nervous system of the entire computer. It

manages and controls all the components of the computer system. Controlling of all operations

like input, processing and output are performed by control unit. It takes care of step by step

processing of all operations inside the computer.

Buses:

A bus is a collection of wires through which data is transmitted from one part of a computer to

another. It connects physical components such as cables, printed circuits, CPU, memory,

peripherals etc., for sharing of information and communication with one another.

Types of buses:

1. Data bus: It is used to transfer the data between processor, memory and I/O devices. It is

bidirectional in nature.

2. Address bus: It is used to transfer the addresses of data and instructions stored in

memory. It is unidirectional in nature.

3. Control bus: It is used to transfer the control signals between CPU, memory and I/O

devices. It is unidirectional or bidirectional in nature.

Types of Buses

MOTHER BOARD: The motherboard serves to connect all of the parts of a computer together.

The CPU, memory, hard drives, optical drives, video card, sound card and other ports and

expansion cards all connect to the motherboard directly or via cables.

Computer Programming Laboratory-18CPL17/27 2020-21

Dept. of CSE, KSIT, Bengaluru 5

Connector side of Motherboard

Chip sets:

MOTHER BOARD

Chip: A small piece of semiconducting material (usually silicon) on which an integrated

circuit is embedded. A typical chip is less than square inches and can contain millions of

http://www.webopedia.com/TERM/S/silicon.html
http://www.webopedia.com/TERM/I/integrated_circuit_IC.html
http://www.webopedia.com/TERM/I/integrated_circuit_IC.html

Computer Programming Laboratory-18CPL17/27 2020-21

Dept. of CSE, KSIT, Bengaluru 6

electronic components (transistors).Computers consist of many chips placed on

electronic boards called printed circuit boards.

There are different types of chips. For example, CPU chips (also called microprocessors) contain

an entire processing unit, whereas memory chips contain blank memory.

Chip set:

A number of integrated circuits designed to perform one or more related functions. For example,

one chipset may provide the basic functions of a modem while another provides

the CPU functions for a computer. Newer chipsets generally include functions provided by two

or more older chipsets. In some cases, older chipsets that required two or more physical chips

can be replaced with a chipset on one chip.

Operating System and Types of Operating System:

The operating system is system software that controls and supervises the hardware components

of a computer system and it provides services to computer users. Every general-purpose

computer must have an operating system to run other programs. Operating systems perform basic

tasks, such as recognizing input from the keyboard, sending output to the display screen, keeping

http://www.webopedia.com/TERM/T/transistor.html
http://www.webopedia.com/TERM/C/computer.html
http://www.webopedia.com/TERM/B/board.html
http://www.webopedia.com/TERM/P/printed_circuit_board.html
http://www.webopedia.com/TERM/C/CPU.html
http://www.webopedia.com/TERM/M/microprocessor.html
http://www.webopedia.com/TERM/M/memory.html

Computer Programming Laboratory-18CPL17/27 2020-21

Dept. of CSE, KSIT, Bengaluru 7

Operating System controls the hardware components of a computer system

The four general kinds of operating systems (OS) are categorized as:

track of files and directories on the disk, and controlling peripheral devices such as disk

drives and printers.

• Real-time OS: This kind of OS controls machinery, industrial equipment and scientific

instruments. Its main purpose is to ensure that an operation executes in exactly the same

way, in the same amount of time, every time it happens.

• Multiuser: A multiuser OS lets many people do many things, all at the same time. It has

to balance the needs of each user and keep them separate, so that they don't interfere with

each other.

• Single user, single task: This kind of OS is designed so that a computer executes a user's

tasks one at a time, such as with early personal digital assistants.

• Single-user, multitasking: Most PCs use this kind of OS, such as Windows or Mac OS.

It lets a single user do many things at once.

Operating systems provide a software platform on top of which other programs,

called application programs, can run. The application programs must be written to run on top of

a particular operating system. Your choice of operating system, therefore, determines to a great

extent the applications you can run. For PCs, the most popular operating systems are DOS, OS/2,

and Windows, but others are available, such as Linux.

http://www.webopedia.com/TERM/A/application.htm

Computer Programming Laboratory-18CPL17/27 2020-21

Dept. of CSE, KSIT, Bengaluru 8

As a user, you normally interact with the operating system through a set of commands. For

example, the DOS operating system contains commands such as COPY and RENAME

for copying files and changing the names of files, respectively. The commands are accepted

and executed by a part of the operating system called the command processor or command line

interpreter. Graphical user interfaces allow you to enter commands by pointing

and clicking at objects that appear on the screen.

Basics of Networking:

A network is a group of two or more computer systems linked together. A network is a set of

technologies including hardware, software and media that can be used to connect computers

together, enabling them to communicate, exchange information and share resources in real time.

Benefits of a Network:

• Allows simultaneous access to critical programs and data.

• Allows people to share peripheral devices, such as printers and scanners.

• Streamlines personal communication with email.

• Makes the backup process easier.

Network Setup: There are 3 types of networks

• LAN (Local Area Network)

• WAN (Wide Area Network)

• MAN (Metropolitan Area Network)

Local Area Network (LANs)

A network of computers located relatively near each other and

connected by a cable. A LAN is a data communication system

consisting of several devices such as computers and printers. A

LAN can consist of just two or three PCs connected together to

share resources, or it can include hundreds of computers of

different kinds. Any network that exists within a single building, or

even a group of adjacent buildings, is considered a LAN. Local Area Network

Computer Programming Laboratory-18CPL17/27 2020-21

Dept. of CSE, KSIT, Bengaluru 9

For example, two departments located on the same floor of a building may have their own

separate LANs, but if the departments need to share data,

then they can create a link between the two LANs.

Wide Area Network (WANs)

Two or more LANs connected together, generally across a

wide geographical area using high-speed or dedicated

telephone line. For example, a company may have its

corporate headquarters and manufacturing plant in one city
Wide Area Network

and its marketing office in another. Each site needs resources, data, and programs locally, but it

also needs to share data with the other sites. To accomplish this feat of data communication, the

company can attach devices that connect over public utilities to create a WAN. These remote

LANs are connected through a telecommunication network or via the internet through an Internet

Service Provider (ISP) that contracts with the telecommunication networks to gain access to the

Internet’s backbone.

Metropolitan Area Networks (MANs)

The Metropolitan Area Network (MAN) is a large-scale

network that connects multiple corporate LANs together.

MANs usually

are not owned by a single organization; their communication

devices and equipment are usually maintained by a group or

single network provider that sells its networking services to

corporate customers. Similar to a WAN network but is

confined to a single city or metropolitan area. Metropolitan Area

Topology - The physical layout of the cables that connect the nodes of the network.

Network Topologies:

• Bus topology

• Star topology

• Ring topology

• Mesh topology

Computer Programming Laboratory-18CPL17/27 2020-21

Dept. of CSE, KSIT, Bengaluru 10

Bus Topology

• Hybrid topology

Bus topology - In this network structure, a single cable runs in a building or campus. All the

nodes(terminals/computers) are connected to this single cable. IT is suitable for LAN.

Advantages:

• Failure of one node will not affect the whole network

• Well suited for quick setup

• Easy to install and expand

• High rate of data transmission as compare to star and

ring topology

Disadvantages :

• A cable break can disable the entire network

• Trouble shouting is very difficult

• Only a single message can travel at a time

Star topology - In this network structure, all the

computers are connected with a centralized system

called server. The central computer is also called a

hub. To transmit information from one node to another

node, it should be transmitted through a central hub.

The central hub manages and controls all the

functions of network.

Advantages :

• Easy to install and expand

• Addition or deletion of a node is easier

• Failure of one node will not affect the entire network

• Well suited for quick setup

• Easier to debug network problems through a hub

Disadvantages :

• Failure of the hub will affect the whole network

• Cost of hub is expensive

Star Topology

Computer Programming Laboratory-18CPL17/27 2020-21

Dept. of CSE, KSIT, Bengaluru 11

Mesh Topology : In this network structure, all the computers

and network devices are interconnected with one another like a

mesh. Every node has a connection to every other node in the

network.

Advantages :

• Failure of a single node will not affect the entire
network

• Data transfer rate is very fast because all the nodes are

connected to each other

Disadvantages :

• Installation and re configuration is very difficult

Ring Topology

Hybrid Topology

Hybrid Topology : This topology uses a combination of any two or more topologies in such a

that the resulting network does not exhibit one of the standard topologies(Ex. bus, star,ring,

etc.)

Ring topology - In this network structure, all the computers are connected to each other in the

form of a ring. It connects the nodes of the network in a

circular chain in which each node is connected to the

next.

Advantages :

• All the nodes have equal chance to transfer the
data

• These are easily extensible

• It can span longer distance than other types of networks

Ring Topology

Disadvantages:

• Difficult to install

• Difficult to troubleshoot

• Adding or removing computer can disturb the entire network

Computer Programming Laboratory-18CPL17/27 2020-21

Dept. of CSE, KSIT, Bengaluru 12

Network Interface Cards (NIC) :

A network interface card is used to connect a machine to

an computer network. This card provides an interface to the media.

This may be either using an external transceiver (as shown) or

through an internal integrated transceiver mounted on the network

interface card PCB. The card usually also contains the protocol

control

firmware and Ethernet Controller needed to support the Medium Access Control (MAC) data

link protocol used by Ethernet.

Write-up on RAM, SDRAM, FLASH memory, Hard disks, Optical media, CD-ROM/R/RW,

DVDs, Flash drives, Keyboard, Mouse, Printers and Plotters.

Random Access Memory (RAM) :Random Access Memory is a volatile storage area

within the computer that is typically used to store data temporarily. The information stored in the

RAM is basically loaded from the computer’s hard disk, and includes data related to the

operating system ansd applications that are currently being executed by the processor.

RAM fixed on the motherboard

Types of RAM

There are two different types of RAM:

• DRAM (Dynamic Random Access Memory)

• SRAM (Static Random Access Memory).

Network Interface Card

http://www.webopedia.com/TERM/D/dynamic_RAM.html
http://www.webopedia.com/TERM/S/SRAM.html

Computer Programming Laboratory-18CPL17/27 2020-21

Dept. of CSE, KSIT, Bengaluru 13

Static RAM

In RAM electrical signals are sent to individual memory locations on the RAM chip for future

reading by the processor. If RAM is volatile that means that electricity must be supplied to the

chip at all times in order to keep the information. Static RAM keeps this information in a series

of transistors which remember the electrical signal given to them with just a standard power

signal. Because of the complexity of this type of RAM it is usually more expensive, but there is

less chance of information loss. The other great benefit of this type of RAM is its speed. Because

of its higher cost but greater speed, the most common usage for this type of RAM is in

something called the L2 cache. This is RAM that is kept in the processor itself for near

instantaneous access to the memory, and it doesn’t have to be large so the cost is minimal.

Dynamic RAM

Dynamic RAM is different from static RAM in that it needs to be refreshed. It uses small

capacitors to hold information, and these capacitors will drain out if not refreshed (electricity

reapplied) about every 15 nanoseconds. This slight loss in speed is made up for by the reduced

cost of this type of RAM. It is the most common form of RAM used in computers today. The

most used type is DDR2. DDR2 is the successor to DDR SDRAM (Double Data Rate

synchronous Dynamic RAM). What DDR did was to increasing the timing accuracy of RAM

synchronizing with the processor so that greater speeds could be achieved. DDR2 increased on

this principle and double the speed again. The current cutting edge computer RAM is DDR3.

This managed to double even the speed of DDR2. Unfortunately none of the DDR RAMs are

compatible with each other and can’t replace each other in a computer unless specifically

designed for it.

Synchronous Dynamic Random Access Memory (SDRAM): It is an improvement standard

DRAM because it retrieves data alternatively between two sets of memory. This eliminates the

delay caused when one bank of memory address is shut down while another is prepared for

reading. It is also called synchronous DRAM because the memory synchronous with the clock

speed that the computer’s CPU bus speeds optimized for. The faster the bus speed, the faster the

SDRAM can be. SDRAM speed is measured in Megahertz.

Computer Programming Laboratory-18CPL17/27 2020-21

Dept. of CSE, KSIT, Bengaluru 14

Flash Memory

Flash memory is a type of Electrically Erasable Programmable Read Only Memory(EEPROM).

The name comes from how the memory is designed. A section of memory cells can be erased in

a single action or in a “flash”. Flash memory cards are used for digital cameras, cellular phones,

networking hardware and PC cards.

Hard disks:A hard disk is part of a unit, often called a "disk drive," "hard drive," or "hard disk

drive," that stores and provides relatively quick access to large amounts of data on an

electromagnetically charged surface or set of surfaces. Today's computers typically come with a

hard disk that contains several billion bytes (gigabytes) of storage.

Hard disk

Optical Media:

Optical media - such as the compact disk (CD) - are storage media that hold

content in digital form and that are written and read by a laser; these media

include all the various CD and DVD variations, as well as optical jukeboxes and

auto-changers. Ex:CD-ROM,DVDetc.

http://searchstorage.techtarget.com/definition/compact-disc
http://searchstorage.techtarget.com/definition/storage
http://searchcio-midmarket.techtarget.com/definition/digital
http://searchcio-midmarket.techtarget.com/definition/laser

Computer Programming Laboratory-18CPL17/27 2020-21

Dept. of CSE, KSIT, Bengaluru 15

Stands for "Compact Disc Read-Only Memory." A CD-ROM is a CD that

can be read by a computer with an optical drive. The "ROM" part of the

term means the data on the disc is "read-only," or cannot be altered or

erased. Because of this feature and their large capacity, CD-ROMs are a

great media format for retail software. The first CD-ROMs could hold

about 600 MB of data, but now they can hold up to 700 MB. CD-ROMs

share the same technology as audio CDs, but they are formatted differently, allowing them to

store many types of data.

It is a A type of optical disk technology similar to the CD-ROM. A DVD holds a minimum of

4.7 GBof data, enough for a full-length movie. DVDs are commonly used as a medium for

digital representation of movies and other multimedia presentations that combine sound with

graphics.

The DVD specification supports disks with capacities of from 4.7GB to 17GB and access rates

of 600KBps to 1.3 MBPS. One of the best features of DVD drives is that they are backward-

compatible with CD-ROMs, meaning they can play old CD-ROMs, CD-I disks, and video CDs,

as well as new DVD-ROMs. Newer DVD players can also read CD-R disks.

Flash drives:

USB flash drives are removable, rewritable and physically much smaller drives

weighing even less than 30g. A flash drive consists of a small printed circuit

board carrying the circuit elements and a USB connector.

CD-ROM/R/RW:

• CD-R: A blank, recordable CD on which you can record information once.

• CD-ROM: A ex-CD-R that now has information on it. The ROM stands for Read-Only

Memory, meaning any CD player can read (play) the information on the CD. But no

machine in the world can erase or change the contents of the CD-ROM. It's contents are

permanent.

DVD:(digital versatile disc or digital video disc)

Keyboard: A keyboard is a primary input device used in all computers. Keyboard has a group of

switches resembling the keys on the ordinary typewriter machine. Normally keyboard has around

101 keys. The keyboard includes key that allows us to type letters, numbers and various special

symbols such as *,/,[,% etc.

http://www.webopedia.com/TERM/C/CD_ROM.html
http://www.webopedia.com/TERM/G/gigabyte.html
http://www.webopedia.com/TERM/D/DVD_ROM.html

Computer Programming Laboratory-18CPL17/27 2020-21

Dept. of CSE, KSIT, Bengaluru 16

Mouse:The mouse is the key input device to be used in a Graphical User

Interface (GUI). The users can use the mouse to handle the cursor pointer

easily on the screen to perform various functions like opening a program or

file. With mouse, the users no longer need to memorize commands, which

was earlier a necessity when working with text-based command line

environment such as MS-DOS.

Printers: The printer is an output device, which is used to get hard copy of the text displayed on

the screen. The printer is an external optional device that is connected to the computer system

using cables. The printer driver software is required to make the printer working. The

performance of a printer is measured in terms of Dots Per Inch (DPI) and Pages Per Minute

(PPM) produced by the printer.

Types of printers

1. Impact Printers : Impact printers are those printers in which a physical contact is

established between the print head, ribbon(cartridge) and paper. Ex. Dot Matrix Printer

2. Non-Impact Printers : No physical contact is established between the print head, ribbon

and paper. Ex. Inkjet printer and laser printer.

Computer Programming Laboratory-18CPL17/27 2020-21

Dept. of CSE, KSIT, Bengaluru 17

Dot matrix Printer Inkjet Printer Laser Printer

Plotters: A plotter is similar to printer that produces hard-

copy output with high-quality color graphics. Plotters are

generally more expensive than printers, ranging from about

$1000 to $75000.

Problem Solving Techniques:

There are three approaches to solve a given problem :

• Algorithm

• Flowchart

• Pseudo code

Algorithm: An algorithm is a step-by-step to be followed in solving a problem. It provides a

scheme to solve a particular problem in finite number of unambiguous steps.

Features of an algorithm :

• Sequence : Each step of the algorithm is executed in the specified order

• Decision : Decision statements are used when the outcome of the process depends on

some condition

• Repetition : Executing one or more steps for a number of times

Example : To compute Sum of two numbers

Algorithm: Sum_Two_numbers

Step 1: [Initialize]

Start

Computer Programming Laboratory-18CPL17/27 2020-21

Dept. of CSE, KSIT, Bengaluru 18

Step 2: [Input two numbers]

Read number1, number2

Step 3: [Compute sum of two numbers]

Sum number1 + number2

Step4: [Display the sum]

Print Sum

Step5: [Finished]

Stop

Flowcharts : A flowchart is a graphical or symbolic representation of an algorithm. They are

basically used to design and develop complex programs to help the users to visualize the logic of

the program so that they can gain a better understanding of the program and find flaws,

bottlenecks, and other less-obvious features within it. Basically, a flowchart depicts the “flow” of

a program. The following table shows the symbols used in flowchart along with its descriptions.

Computer Programming Laboratory-18CPL17/27 2020-21

Dept. of CSE, KSIT, Bengaluru 19

Pseudo code: It is a form of structured English that describes algorithms.Pseudocode is a

compact and informal high-level description of an algorithm that uses the structural conventions

of a programming language.

E.g.: To compute sum of two numbers

Input number1, number2

Sum=number1+number2

Print Sum

Computer Programming Laboratory-18CPL17/27 2020-21

Dept. of CSE, KSIT, Bengaluru 20

Laboratory Session-2

PART-A

Familiarization with computer hardware and programming environment, concept of

naming the program files, storing, compilation, execution and debugging. Taking any

simple C- code.

Purpose: This program demonstrates naming and saving program files, compilation, execution

and debugging of source file.

To launch Code::Blocks IDE, Click on You will get a window as shown below

Code::Blocks creates what is called a Workspace to keep track of the project you are working on. It is

possible for you to be working on multiple projects within your workspace. A project is a collection of

one or more source (as well as header) files. Source files are the files that contain the source code for

your program. If you are developing a C program, you are writing C source code (.c files).

First start a new Project by clicking on Create a new project

OR To create a project, click on the File pull-down menu, open New and then Project.You get this

pop-up window

Computer Programming Laboratory-18CPL17/27 2020-21

Dept. of CSE, KSIT, Bengaluru 21

Choose Console application

Then in the next window select the programming language C (and not C++)

Computer Programming Laboratory-18CPL17/27 2020-21

Dept. of CSE, KSIT, Bengaluru 22

In the next step give the Project Title and specify the folder where you want to save your

project. (Note : Dont use any special characters or whitespaces for project title and folder

names)

Finally you will be prompted to choose the compiler. Just choose the default options here (Dont

change the options). You should be using GNU GCC Compiler. Click Finish to create the new project.

Computer Programming Laboratory-18CPL17/27 2020-21

Dept. of CSE, KSIT, Bengaluru 23

The system will then return to the [MyProgram] window and you are ready to write your program. In

the Management area of the screen (Shift-F2 toggles the Management display), you will see the files

that are part of the project in the Projects tab. To see the source files, click on the triangle symbol to

expand the Workspace and its subdirectories.

Under Sources, there is a file called main.c, which is automatically created for you when you build

a console application. Click on main.c.

Computer Programming Laboratory-18CPL17/27 2020-21

Dept. of CSE, KSIT, Bengaluru 24

main.c contains a simple Hello World program which you can edit later to solve a programming problem.

Now let us see how to compile and execute this main.c program. Just to understand the process of debugging

we knowingly introduce an error in the program by removing the semicolon after the printf statement. We

will now compile the program (To compile a file means to take the instructions that you have written and

translate it into machine code for the computer to understand).

Compile the project from the Build pull-down menu by clicking on Build option[Ctrl+F9].

The error messages are shown in the Build messages window at the bottom. Let us now try to

understand these error messages.

=== Build: Debug in MyProgram (compiler: GNU GCC Compiler) ===

main.c In function main: main.c 7 error: expected ; before return

main.c 8 warning: control reaches end of non-void function [-Wreturn-type]

=== Build failed: 1 error(s), 1 warning(s) (0 minute(s), 1 second(s)) ===

Computer Programming Laboratory-18CPL17/27 2020-21

Dept. of CSE, KSIT, Bengaluru 25

The error messages show the errors in syntax (and not the logical errors). It also indicates the line

number and the type of error. Here in this example the error says that before the return statement in

line no 7 a semicolon is missing. The next message is a warning message which has resulted

because of the previous error.

Now go to line number 6 and add a semicolon at the end. Now build your project again.

Now the build message window shows the following message. 0 error(s), 0 warning(s) (0

minute(s), 0 second(s) This means that the errors and warnings have been successfully resolved.

Now it is time to run the program. You can Execute the project from the Build pull- down menu by

clicking on Run option[Ctrl+F10].

Computer Programming Laboratory-18CPL17/27 2020-21

Dept. of CSE, KSIT, Bengaluru 26

An output window pops displaying the output of the program. A greeting message Hello world! is

printed on to the output console.

Computer Programming Laboratory-18CPL17/27 2020-21

Dept. of CSE, KSIT, Bengaluru 27

COMPUTER PROGRAMMING LABORATORY
[As Per Choice Based Credit System (CBCS) System]

(Effective from the academic year 2018 -2019)
SEMESTER – I/II

Subject Code 18CPL17/27 CIE Marks 40
Number of Lecture Hours/Week 2 SEE Marks 60
Total Number of Lab Hours 32 Exam Hours 3 Hrs

Credits – 1
Course Learning Objectives :
This course (18CPL17/27) will enable students to:
 Write flowcharts, algorithms and programs.
 Familiarize the processes of debugging and execution.
 Implement basics of C programming language.
 Illustrate solutions to the laboratory programs.
Descriptions (if any):

 The laboratory should be preceded or followed by a tutorial to explain the approach or
algorithm being implemented or implemented for the problems given.

 Note that experiment 1 is mandatory and written in the journal.
 Questions related with experiment 1, need to be asked during viva-voce for all experiments.

 Every experiment should have algorithm and flowchart be written before writing the
program.
 Code should be traced using minimum two test cases which should be recorded.
 It is preferred to implement using Linux and GCC.
Laboratory Programs:

1
Familiarization with programming environment, concept of naming the program files,
storing, compilation, execution and debugging. Taking any simple C- code.

PART - A

2

Develop a program to solve simple computational problems using arithmetic
expressions and use of each operator leading to simulation of a Commercial calculator.
(No built-in math function)

3
Develop a program to compute the roots of a quadratic equation by accepting the
coefficients. Print appropriate messages.

4
Develop a program to find the reverse of a positive integer and check for palindrome
or
not. Display appropriate messages.

5

An electricity board charges the following rates for the use of electricity: for the first
200 units 80 paise per unit: for the next 100 units 90 paise per unit: beyond 300 units
Rs 1 per unit. All users are charged a minimum of Rs. 100 as meter charge. If the total
amount is more than Rs. 400, then an additional surcharge of 15% of total amount is
charged. Write a program to read the name of the user, number of units consumed
and
print out the charges.

6 Introduce 1D Array manipulation and implement Binary search.

7
Implement using functions to check whether the given number is prime and display
appropriate messages. (No built-in math function)

PART - B

8
Develop a program to introduce 2D Array manipulation and implement Matrix

multiplication and ensure the rules of multiplication are checked.

9
Develop a Program to compute Sin(x) using Taylor series approximation. Compare
your result with the built-in Library function. Print both the results with appropriate
messages.

10
Write functions to implement string operations such as compare, concatenate, string
length. Convince the parameter passing techniques.

11 Develop a program to sort the given set of N numbers using Bubble sort.

12
Develop a program to find the square root of a given number N and execute foe all
possible inputs with appropriate messages. Note: Don’t use library function sqrt(n).

13
Implement structures to read, write and compute average marks and the students
scoring above and below the average marks for a class of N students.

14
Develop a program using pointers to compute the sum, mean and standard deviation
of
all elements stored in an array of n real numbers.

15 Implement recursive functions for Binary to Decimal Conversion.
Laboratory Outcomes: The student should be able to:

 Write algorithms, flowcharts and program for simple problems.
 Correct syntax and logical errors to execute a program.
 Write iterative and wherever possible recursive programs
 Demonstrate use of functions, arrays, strings and structures in problem solving.
Conduct of Practical Examination:

 All laboratory experiments, excluding the first, are to be included for practical examination.
 Experiment distribution:

o For questions having only one part: Students are allowed to pick one experiment
from the lot and are given equal opportunity.

o For questions having part A and B: Students are allowed to pick one experiment from
part A and one experiment from part B and are given equal opportunity.

 Strictly follow the instructions as printed on the cover page of the answer script for breakup
of marks.

 Change of experiment is allowed only once and marks allotted for procedure part to be
made zero.

 Marks Distribution (Subjected to change in accordance with university regulations)
a). For questions having only one part – Procedure + Execution + Viva-Voce: 15+ 70 + 15 =

100 Marks
b). For questions having part A and B

i. Part A – Procedure + Execution + Viva = 4 + 21 + 5 = 30 Marks
ii. Part B – Procedure + Execution + Viva = 10 + 49 + 11 = 70 Marks

Develop a program to solve simple computational problems using arithmetic expressions

and use of each operator leading to simulation of a commercial calculator. (No built-in math

function)

ALGORITHM

Step1. [Initialize] Start

Step2. [Input the values of two operands and operator]

read num1,op,num2

Step3. [Check the operator read] Switch (ch)

Case ‘+’ then Print(sum: num1 + num2)

Program 2

Case ‘-’ then Print(Sub: num1 -num2)

Case ‘*’ then Print(Mul:num1 * num2)

Case ‘/’ then Print(Quo: num1 / num2)

Otherwise Print “Invalid Choice” :

Step 4: [Finished] Stop

/* Program to design simple commercial calculator */

#include <stdio.h> void
main()

{

 int op1,op2;

char op;

printf("Enter Arithmetic expression\n");

scanf("%d%c%d",&op1,&op,&op2);

 switch(op)

{

case '+': printf("sum=%d\n",(op1+op2));

 break;

case '-': printf("difference=%d\n",(op1-op2));

break;

case '*': printf("product=%d\n",(op1*op2));

break;

case '/': printf("quotient=%d\n",(op1/op2));

 break;

case '%': printf("remainder=%d\n",(op1%op2));

 break;

default:

 printf("Invalid Operator\n");

}

return 0;

}

Sample Output :

Input-Output

Enter Arithmetic expression 1+2

Sum=3

Enter Arithmetic expression 1-2

Subtraction=-1

Enter Arithmetic expression

1*2

product=2

Enter Arithmetic expression 1/2

Quotient=0

Enter Arithmetic expression 1%2

Remainder=1

Enter Arithmetic expression 1>2

Invalid Operator

Develop a program to compute the roots of a quadratic equation by accepting the

coefficients. Print appropriate messages.

ALGORITHM

Step 1: [Start of the algorithm]

Start

Step 2: [Read the coefficients]

Read non zero coefficients a, b,

c Step 3: [calculate the discriminant]

db*b-4*a*c

Step 4: [check if roots are real and equal]

if (d=0)

x1-

b/(2*a) x2-b/

(2*a)

Print “Roots are equal”

Print x1,x2

Go to step 7

Step 5: [check if roots are real and

distinct] If(d>0)

x1(-b+sqrt (d)/ (2*a))

x2(-b-sqrt (d)/ (2*a))

Program 3

Print “Roots are real and distinct”

Print x1,x2 Go to step 7

Step 6: [check if roots are imaginary] If(d<0)

x1-b/(2*a)

x2sqrt (fabs(d))/(2*a)

Print “ The roots are complex”

Print “Root1  “, x1+ix2

Print “ Root2“, x1-ix2

Step 7: [terminate the algorithm]

Stop

/* Program to find roots of the quadratic equation */

#include<stdio.h>

#include<stdlib.h>

#include<math.h>

void main()

{

float a,b,c,d,x1,x2; /*Declaration of variables */

printf("Enter non zero coefficients a, b and c of a quadratic equation \n");

scanf("%f%f%f",&a,&b,&c); /* Input the coefficients */

if(a==0||b==0||c==0)

{

printf(“invalid coefficients”);

exit(0);

}

d=b*b-4*a*c; /* Computing discriminant */

if(d= =0) /* Computing real and equal roots */

{

printf("Roots are

equal\n"); x1=-b/(2*a);

x2=-b/(2*a);

printf("Root1=%f \t Root2=%f",x1,x2);

}

else if(d>0) /* Computing real and distinct roots */

{

printf("Roots are real and distinct\n");
x1=(-b+sqrt(d))/(2*a);

 x2=(-b-sqrt(d))/(2*a);

printf("Root1=%f \t Root2=%f", x1,x2);

}

else /* Computing complex roots */

{

printf("Roots are complex\n");

x1=-b/(2*a);

x2=sqrt(fabs(d))/(2*a);

printf("Root1=%f+i%f \n",x1,x2);

printf("Root2=%f-i%f \n",x1,x2);

}

}

Sample Output 1:

Enter the three co-efficient:1 4 4

The roots are real and equal

root1=-2.0000 root2=-2.0000

Input-Output

Sample Output 2:

Enter the three co-efficient:1 5 6

The roots are real and distinct

root1=-2.0000 root2=-3.0000

Sample Output 3:

Enter the three co-efficient:2 3 4

The roots are imaginary

root1= -0.75+i 119 root2=-0.75 -i 1.19

Sample Output 3:

Enter the three co-efficient:2 3 0

Invalid coefficients

Develop a program to find the reverse of a positive integer and check for palindrome or

not.

Display appropriate messages.

ALGORITHM

Step 1:[start of the algorithm]

Start

Step 2:[read the value of n]

Read n

Step 3:[initialize the variable]

tempn

rev0

Step 4:[find the reverse number]

Repeat through step 4while (n! =0)

remn%10

rev(rev*10)+dig

nn/10

Step 5: [display reversed number]

print rev

Step6:[check the reverse number with original number]

if(rev==temp)

print “no is a palindrome”

else

print “nois not a palindrome”

Step 7:[terminate the algorithm]

Stop

Program 4

/* Program to check whether the given number is palindrome or not */

#include<stdio.h>

void main()

{

int n,temp,rev,rem; /* Declaration of the variables */

printf(" Enter an integer\n");

scanf("%d",&n); /* Accept the number */

temp = n;

rev = 0;

/* Calculate the reverse of the number */

while(n != 0)

{

rem = n % 10;

rev = rev * 10 + rem;

n = n / 10;

}

/*print reversed number*/

printf(“The reversed number is %d\n”,rev);

/ * Check for palindrome */
if(rev = = temp)

printf(" %d is a palindrome",temp);

else

printf(" %d is not a palindrome",temp);

}

Sample Output 1:

Enter a number:5642

5642 is not Palindrome

Sample Output 2:

Enter a number:1221

1221 is Palindrome

Input-Output

An electricity board charges the following rates for the use of electricity: for the first 200units

80 paise per unit: for the next 100 units 90 paise per unit: beyond 300 units Rs 1 per unit. All

users are charged a minimum of Rs. 100 as meter charge. If the total amount is more than

Rs 400, then an additional surcharge of 15% of total amount is charged. Write a program to

read the name of the user, number of units consumed and print out the charges.

ALGORITHM

Step1. [Initialize] Start

Step2. [input the consumer name] Read name

Step3. [input the number of units consumes] Read units
Step4. [Calculate the Electricity bill amount]

If(units<=200) amt =100+noofunits*0.8

else if((units>200) and (units<=300))

amt=100+200*0.8+ (units -200)*0.9

else

amt=100+200*0.8+100*0.9+(units-300)*1

Step 5.[Calculate the servicecharge]

if(amt>400)service= 15/100.0*amt+amt

Step6. [Output the result] Print “Consumer name, bill amount,

service charges and total ” ,name , amt, sur, total

Step7. [Finished] Stop.

Program 5

Flow chart

/*program to compute electricity bill*/

#include <stdio.h>

void main()

{

char name[10];

int unit,m=100;

 float charge;

printf("Enter your name and unit Consumed:");

scanf("%s%d",name,&unit);

if(unit<=200)

charge=unit*0.80+m;

else if(unit>200 && unit<=300)

{

charge=(unit-200)*0.90+200*0.80+m;

}

else

{

charge=(unit-300)*1+200*0.80+100*0.90+m;

}

if(charge>=400)

{

charge=charge+charge*0.15;

}

printf("Name: %s\nCharge: %f",name,charge);

}

Sample Output 1:

Enter the consumer name: JOHN

Enter number of units consume: 200

The consumer name = JOHN

The number of units consumed =200

Electricity Bill Amount = 260.00

Service charge=0.00

The Total Electricity Bill Amount: 260.00

Sample Output 2:

Enter the consumer name: RAMESH

Enter number of units consume: 460

The consumer name = RAMESH

The number of units consumed =460

Electricity Bill Amount = 510.00

Service charge=61.50

The Total Electricity Bill Amount: 571.50

Input-Output

Sample Output 3:

Enter the consumer name: VINOD

Enter number of units consume: 0

The consumer name = VINOD

The number of units consumed =0

Electricity Bill Amount = 100.00

Service charge=0.00

The Total Electricity Bill Amount: 100.00

Introduce 1D Array manipulation and implement Binary search.

ALGORITHM

Step1. [Initialize] Start

Step2. [input value for ‘n’] Read n

Step3. [Enter the n elements of single dimensional array in ascending order]

for i=0 to n-1 read A

Step4.[input a element to be search] read key

Step5. [Initialize first, last and middle]assume low= 0, last = n –1 and mid= (low+high)/2

Step6. [Implement binary search with n elements of an array]

while (low <= high)

begin while

if (mid== key) print “element found”

else if (mid>key)

high = mid –1
else

low = mid+ 1

end while

Step7. [Output the result] print “element not found”
Step8. [Finished] Stop.

Program 6

/* Program to search an element in a list of elements using binary search */

#include<stdio.h>

#include<stdlib.h>

void main()

{

int a[30],i,n,key,low,mid,high;

printf("\n enter the no of elements");

scanf("%d",&n);

printf("\n enter the elements : ");

for(i=0;i<n;i++){

scanf("%d",&a[i]);

}

printf("\nenter the key element to be searched\n");

scanf("%d",&key);

low=0;

high=n-1;

while(low<=high)

{

mid=(low+high)/2;

if(a[mid]==key)

{

printf("element %d is found at %d position :",key,mid+1);

exit(0);

}

else if(a[mid]>key)

high=mid-1;

else

low=mid+1;

}

printf("element not found\n");

}

Sample Output 1:

Enter number of elements in

an array: 5

Enter 5 integers in ascending order

4

7

8

9

45

Enter value to find 9

9 found at location 4.

Sample Output 2:

Enter number of elements in an array: 7

Enter 7 integers in ascending order

9

23

41

90

132

290

301

Enter value to find 10

Element not found

Input-Output

Implement using functions to check whether the given number is prime and display

appropriate messages. (No built-in math function)

Purpose: This program demonstrates USER DEFINED FUNCTIONS.

Procedure: Input N array elements and to find whether element is present or not

Input: Array elements

Expected Output: Successful search or unsuccessful search

ALGORITHM

Step 1. [Initialize] Start
Step 2. [Input an integer number]

Read num

Step 3.res =prime(num) [call function to find prime and not prime numbers]

Step 4. [Output] If (res = 1)

Print(“The entered number is a prime”)

Else

Print(“The entered number is not prime”)

Step 5. [Stop]

End

Algorithm: prime(num)

Step 1: Start

Step 2: Repeat i2 to n-1

Step 2.1: if(n mod i==0) then

return 0

Program 7

End If

Return 1

Step 3:STOP

/*program to find prime number*/

#include <stdio.h>

int prime(int n);

void main()

{

int num,res=0;
printf("\nENTER A NUMBER: ");

scanf("%d",&num);

res=prime(num);

if(res==1)
printf("\n%d IS A PRIME NUMBER",num);

else

printf("\n%d IS NOT A PRIME NUMBER",num);

}

int prime(int n)

{

int i;

for(i=2;i<=n-1;i++)

{

if(n%i==0)

return 0;

}

return 1;

}

Sample Output 1:

Enter any positive Integer : 7

The given number 7 is prime

Sample Output 2:

Enter any positive Integer : 100 The
given number 100 is not prime

Input-Output

PART-B

Develop a program to introduce 2D Array manipulation and implement Matrix

multiplication and ensure the rules of multiplication are checked.

Purpose: This program demonstrates Two-Dimensional array.

Procedure: Input m*n and p*q sizeof 2 matrices elements to compute matrix multiplication.

ALGORITHM

Step 1: [Start of the algorithm]

Start

Step 2: [Read the order of the matrix A]

Read m,n

Step 3: [Read the order of the matrix B]

Read p,q

Step 4: [To check for compatibility condition of matrix multiplication]
if(n!=p)

print “Matrix multiplication not possible”

go to step 11

Step 5: [Read the elements of matrix A]
Repeat through step 5 for i0 to m-1

Repeat for j0 to n-1
Read a[i][j]

Step 6: [Read the elements of matrix B]
Repeat through step 6 for j0 to q-1

Repeat for i0 to p-1
Read b[i][j]

Step 7: [Calculate the product of two given matrices]
Repeat through step 9 for i0 to m-1

Repeat for j0 to q-1
c[i][j]0

Repeat for k0 to n-1
c[i][j]c[i][j]+a[i][k]*b[k][j]

Step 8: [Print the resultant matrix]
Repeat step 10 for i0 to m-1

Repeat for j0 to n-1

Print c[i][j]
Step 9: [terminate the algorithm]

Stop

Program 8

/* Program to multiply two matrices */

#include<stdio.h>

#include<stdlib.h>

void main()

{

int i,j,m,n,p,q,k,a[5][5],b[5][5],c[5][5];

printf("Enter the order of Matrix A\n");

scanf("%d%d",&m,&n); /* Read the size of first matrix */

printf("Enter the order of Matrix B\n");

scanf("%d%d",&p,&q); /* Read the size of second matrix */

if(n!=p) /* Check whether multiplication is possible or not */

{

printf("Multiplication is not possible\n");

exit(0);

}
printf("Enter the elements of matrix A\n");
for(i=0;i<m;i++)

{

for(j=0;j<n;j++)

{

scanf("%d",&a[i][j]); /* Read the elements of matrix A in row major order*/

}

}

printf("Enter the elements of matrix B\n");
for(i=0;i<p;i++)

{

for(j=0;j<q;j++)

{

scanf("%d",&b[i][j]); /* Read the elements of matrix B in column major order */

}

}

/* Multiply the matrices */

for(i=0;i<m;i++)

{

for(j=0;j<q;j++)

{
c[i][j]=0;

for(k=0;k<n;k++)

c[i][j]=c[i][j]+a[i][k]*b[k][j];

}

}

printf("Product matrix is\n");
for(i=0;i<m;i++)

{

for(j=0;j<q;j++)

{

printf("%d\t",c[i][j]); /* Display product matrix */

}

printf("\n");

}

} /*end of main*/

Sample Output 1:

Enter the size of the first matrix A: 2 2

Enter the size of the second matrix B: 2 2

Enter the elements of first matrix

1 2

3 4

Enter the elements of second matrix
2 3

4 5

Matrix A is
1 2

3 4

Matrix B is

2 3

4 5

The product of 2 matrices is

10 13

22 29

Sample Output 2:

Enter the order of the matrix A: 2 3

Enter the order of the matrix B: 2 3

Multiplication is not possible

Input-Output

Develop a Program to compute Sin(x) using Taylor series approximation .Compare your

result with the built- in Library function. Print both the results with appropriate messages.

ALGORITHM

Step 1:[Start the algorithm]

Start

Step 2:[Read the value of x]
Read x

Step 3:[Initialize the variables]

degreex;

xx*(3.142/180.0)

Step 4;[Read the value of no of terms]

Read n

Step 5:[Initialize the variables]

termx;

sumt;
Step 6:[Repeat the following steps for i=1 to n terms
termterm*(-1)*x*x/2*i*(2*i+1);
 sum=sum+term;

Step 7:Print the result

sum of sine series=sum
sum using library function=sin(x)

Step 8: Stop

Program 9

/*Program to calculate sin(x) using Taylor series*/

#include<stdio.h>

#include<math.h>

void main()

{

 int i, n,degree;

 float x, sum,term;

 printf(" Enter the value for x : ");

 scanf("%f",&x);

 printf(" Enter the value for n : ");

 scanf("%d",&n);

 degree=x;

 x=x*3.14159/180;

 term=x;

 sum=term;

 /* Loop to calculate the value of Sine */

 for(i=1;i<=n;i++)

 {

 term=(term*(-1)*x*x)/(2*i*(2*i+1));

 sum=sum+term;

 }

printf(“sin(%f) using sine series=%f\n”,degree,sum);

printf(“sin(%f) using library function=%f\n”,degree,sin(x));

}

Sample Output 1:

Enter the value of degree 90

sin(90)= 1.000000 without using built in function sin(90)= 1.000000 using built in function

Sample Output 2:

Enter the value of degree 45

sin(45)= 0.707179 without using built in function sin(45)= 0.707179 using built in function

Input-Output

Write functions to implement string operations such as compare, concatenate, string

length. Convince the parameter passing techniques.

ALGORITHM

Step 1: Start

Step 2: [Prompt and Input]

Write(“Enter string1‟)

Read(S1)

Write(“Enter String2‟)

Read(S2)

Step 3: [Update strings with NULL character, Call STRLEN and Output]

LENGTHSTRLEN(S1)

S1[LENGTH-1]‟\0‟

Write(S1,‟Length is‟,LENGTH)

LENGTH STRLEN(S2)

S2[LENGTH-1]‟\0‟

Write(S1,‟Length is‟,LENGTH)

Step 4: [Call STRCMP]

CMPSTRCMP(S1,S2)

If(CMP EQ 0)Then

Write(S1,‟Equals‟,S2)

Else If(CMP GT 0)Then

Write(S1,‟Greater Than‟,S2) Else

Write(S1,‟Lesser Than‟,S2)

End If

Step 5: [Call STRCAT]
Write(„Before Concatenation‟,S2)

STRCAT(S2,S1)
Write(„After Concatenation‟,S2)

Step 6: STOP

Sub-Algorithm: STRLEN(S)

This sub-Algorithm returns the length of the string S, S is a parameter of type array of characters, the variable

COUNT is of type integer

Step 1 : Start

Step 2 : [Initialize] COUNT0

Step 3 : While(S[COUNT] NE NULL)

COUNTCOUNT+1

 End While

Step 4 : [Finished] Return COUNT

Sub-Algorithm: STRCMP(S1,S2)

Program 10

This sub-Algorithm compares 2 strings S1 and S2 character by character and return the difference of the ASCII

values of the compared characters of both strings. The variable COUNT is of type integer

Step 1 : Start

Step 2 : [Initialize] COUNT0

Step 3 : [Process and Return]

While(S1[COUNT] NE NULL)

 If(S1[COUNT NE S2[COUNT]) Then

Return(S1[COUNT - S2[COUNT])

 Else

COUNTCOUNT+1

End If

End While

Return 0

Sub-Algorithm: STRCAT(DEST,SRC)

This sub-Algorithm adds SRC string to DEST string. DEST and SRC are parameters of type array of characters.

Variables COUNT and I are of type integers.

Step 1 : Start

Step 2 : [Initialize] COUNT0

I0

Step 3 : [Process and Return]

While(DEST[COUNT] NE NULL)

COUNTCOUNT+1

 End While

While(SRC[I] NE NULL)

 DEST[COUNT]SRC[I]

COUNTCOUNT+1

 II+1

End While

DEST[COUNT]‟\0‟

Step 4 : [Finished] Return

#include<stdio.h>

int STRLEN(char S1[]);

int STRCMP(char S1[],char S2[]);

void STRCAT(char dest[],char src[]);

void main()

{

char s1[20],s2[20];

printf("enter the string1 \n");

scanf(“%s”,s1);

printf("enter the string2 \n");

scanf(“%s”,s2);

int length;

length=STRLEN(s1);

printf("%s length is %d \n",s1,length);

length=STRLEN(s2);

printf("%s length is %d \n",s2,length); int cmp;

cmp=STRCMP(s1,s2);

if(cmp==0)

printf("%s is equal to %s\n",s1,s2); else if(cmp>0)

printf("%s is greater than %s\n",s1,s2); else

printf("%s is lesser than %s\n",s1,s2); printf("before concatination\n"); printf("%s\n",s2);

STRCAT(s2,s1);

 printf("after concatination\n");

printf("%s\n",s2);

return 0;

}

int STRLEN(char s[])

{

int count=0;

while(s[count]!='\0')

{

count++;

}

return count;

}

int STRCMP(char s1[],char s2[])

{

int count=0;

while(s1[count]!='\0')

{

if(s1[count]!=s2[count]) return (s1[count]-s2[count]);

count++;

}

return 0;

}

void STRCAT(char dest[],char src[])

{

int count=0,i=0;

while(dest[count]!='\0')

count++;

while(src[i]!='\0')

{

dest[count]=src[i];

count++;

i++;

}

dest[count]='\0';

return;

}

Develop a program to sort the given set of N numbers using Bubble sort.

Purpose: This program demonstrates NESTED FOR loop.

Procedure: To read an array of elements a[].While iterating, compare each pair of adjacent items

in every pass. If the former value is greater than the latter one, their positions are swapped. Over a

number of passes, at most equal to the number of elements in the list, all of the values drift into

their correct positions. Then print sorted array element.

Input: Number of elements-n

An array of unsorted elements-a[]

Expected Output: An array of sorted elements-a[]

ALGORITHM

Algorithm: Bubble sort

Step 1: [Start of the algorithm]

Start

Step 2: [Read the size of the array]

read n

Step 3: [Read the array elements]

Repeat for i=0 to n-1
read a[i]

Step 4: [Print the given array]

Repeat for i=0 to n-1

print a[i]

Step 5: Repeat through step 5 for pass1 to n-1

Repeat for comp0 to n-pass

if(a[comp]>a[comp+1])
tempa[comp]

a[comp] a[comp+1]

a[comp+1]temp

Step 6: [Print the sorted array]

Repeat for i 0 to n-1
print a[i]

Step 7 :[terminate the algorithm]

Stop

Program 11

/*Program to sort the given elements, using bubble sort*/

#include<stdio.h>

void main()

{
int a[50],i,temp,n; /* Declaration of the variables */

printf(“Enter the value of n\n”);

scanf(“%d”,&n); /* Read the size of an array */

printf(“Enter the array elements\n”);

for(i=0;i<n;i++)

scanf(“%d”,&a[i]); /* Read the elements */

printf(“The given array elements are \n”);

for(i=0;i<n;i++)

printf(“%d\t”,a[i]);

/* Perform Bubble Sort */

 for(int pass=1;pass<n;pass++)

{

for(int comp=0;comp<n-pass;comp++)

{

if(a[comp]>a[comp+1])

{

temp=a[comp];

a[comp]=a[comp+1];

a[comp+1]=temp;

}

}

}

printf(“The array after sorting\n”); /* Display the array after sorting */

for(i=0;i<n;i++)

printf(“%d\t”,a[i]);

}

Sample Output:

Enter the size of an array: 5

Enter the 5 elements of an array:

5 4 3 2 1

The given array before sorting is: 5

4

3

2

1

the sorted array is:

1

2

3

4
5

Input-Output

Develop a program to find the square root of a given number N and execute for all possible

inputs with appropriate messages. Note: Don’t use library function sqrt(n).

ALGORITHM

Step1. [Initialize] Start

Step2. [input the number]

read n

Step 3:[Initialize the variables]

term0;

sqn/2;
Step 4:[Repeat the following steps while (sq NE temp)

tempsq

sq(n/temp+temp)/2
End While

Step 7:Print the result

Square root of number is=sq
Square root using library function=sqrt(n)

Step 8: [Finished] Stop

Program 12

Start

Read n

sq = n/ 2

 temp = 0

is sqroot
!=temp?

False

True

Display n, sqroot

Stop

temp = sq

sqr = (n / temp + temp) / 2

/*program to find the square root of a number*/

#include<stdio.h>

void main()

{
float sq,temp,n:

printf(“Enter any number\n”);

scanf(“%f”,&n);

temp=0;

 sq=n/2;

while(sq!=temp)

{

temp=sq;

sq=(n/temp+temp)/2;

}

printf("The square root of '%f' is '%f'", n, sq);

printf("the square root of '%f' using built in function is '%lf' ",n,sqrt(n));

}

Sample Output 1:

Enter a number to which square root to be found: 4

Square root of a real number 4.00 is 2.000

Sample Output 2:

Enter a number to which square root to be found: 8.9

Square root of a real number 8.9 is 2.893

Sample Output 3:

Enter a number to which square root to be found: -7

Sorry Invalid Number

Input-Output

Implement structures to read, write and compute average-marks and the students scoring

above and below the average marks for a class of N students.

Algorithm

Step1: Input number of students, Read n

Step 2:Initialize total = 0

Step 3:Input details of students i.e., name, usn and marks for all nstudents

For i=0 to n-1 do

Read s[i].name, s[i].usn, s[i].marks

Step 4:Display details of students i.e., name, usn and marks for all nstudents

For i=0 to n-1 do

Print s[i].name, s[i].usn, s[i].marks

End i for loop

Step5:For i=0 to n-1 do

total = total / n

End i for loop

End i for loop

Step 6:Calculate average, avg = total / n

Step 7:Display whether a student is below average or above average

For i=0 to n-1 do

If (s[i].marks > avg)

Display “Student is above average”

 Otherwise

Display “Student is below average”

 End i for loop

Step 8:Stop

Program 13

Flowchart

/*program to compute above and below the average marks*/

Program

#include<stdio.h>

 struct student

{

char name[20];

char usn[10];

int marks;

}s[10];

void main()

{

int i, n, total=0;

float avg = 0.0;

printf("\nEnter the number of students : ");

scanf("%d", &n);

for(i=0; i<n;i++)

{

 printf("enter student %d details",i+1);

printf("Enter USN: ");

scanf("%s",s[i].usn);

printf("Enter name: ");

Start

i = 0 to n-1

True

False

Read n
True

i = 0 to n-1

True

Read&print
s[i].name, s[i].usn,

s[i].marks

False
If s[i].marks

> avg

False

Display

Above average

Student

Display

Below average

Student

Stop

total = total + s[i].marks

avg = total / n

total = 0

scanf("%s",s[i].name);

printf("Enter marks: ");

scanf("%d",&s[i].marks);

printf("\n");

}

printf("Displaying Information:\n\n");

// displaying information

for(i=0; i<n; i++)

{

printf("\nUSN: %s\n",s[i].usn);

printf("Name: %s\n ", s[i].name);

printf("Marks: %d",s[i].marks);

printf("\n");

}

for(i=0;i<n;i++)

{

total=total+s[i].marks;

}

avg = total / n;

printf("\nThe average marks for the class is : %f\n", avg);

for(i=0; i<n; i++)

{

if(s[i].marks > avg)

printf("\nThe student %s has scored above average\n",s[i].name);

else

printf("\nThe student %s has scored below average\n", s[i].name);

}

}

Sample Output:

Ouput

Enter the number of students : 3

Enter the details of Student 1

Name: Raju

Usn:4AD17CS036

Marks:67

Enter the details of Student 2

Name: Sahana

Input-Output

Usn:4AD17CS405

Marks:77

Enter the details of Student 3

Name:Manasa

Usn:4AD17CS025

Marks:83

The average marks for the class is : 75.67 The student

Raju has scored below average The student Sahana has

scored above average

The student Manasa has scored above average

Develop a program using pointers to compute the sum, mean and standard deviation of all

elements stored in an array of n real numbers.

ALGORITHM

Step 1:Start

Step 2:Input the number of elements, Read n

Step 3:Initialize pointer so that it points to the beginning of the array

Step 4:Initialize variables, variance=0, sum=0

Step 5:Input array elements

 For i = 0 to n-1 do

Read array element using pointer, Read a value to be stored at location (ptr + i) Calculate sum,

sum = sum + *(ptr + i)

End i for loop

Step 6:Calculate mean, mean = sum / n

Step 7:Calculate variance

For i = 0 to n-1 do

variance = variance + (ptr[i] - mean) * (ptr[i] - mean)

End i for loop

variance = variance / n

Step 8:Calculate standard deviation,

 sd = sqrt(variance)

Step 9: Display the values of sum, mean, variance and standard deviation.

Step 10:Stop

Program 14

i = 0 to n-1

True

Read ptr+i

False

sum = sum + *(ptr + i)

mean = sum / n

Flowchart

/* Program to compute the sum, mean, and standard deviation of all elements */

#include<stdio.h>

#include<math.h>

 void main()

{

int i, n;

float mean = 0.0, variance = 0.0, sd = 0.0, num[100], sum=0.0; float *ptr;

ptr = num;

printf("\nEnter the number of Values : ");

scanf("%d",&n);
printf("\nEnter %d values\n", n);
for(i=0; i<n; i++)

{

scanf("%f", ptr+i);

sum += *(ptr+i);

}

mean = sum / n;
for(i=0; i<n; i++)

{

variance += (ptr[i] - mean) * (ptr[i] - mean);

}

Start

Read n

sum=0

variance=0

i = 0 to n-1

True

False

Display sum,

mean,

variance, sd

Stop

variance = variance +
(ptr[i] - mean) * (ptr[i] - mean)

variance = variance / n sd =

sqrt(variance)

variance /= n;

sd = sqrt(variance);

printf("\nThe values entered are");

 for(i=0; i<n; i++)

{

printf("\n\t%f", ptr[i]);

}
printf("\n\tsum=%f\n\tMean = \t%f\n\tVariance = \t%f\n\tStandard Deviation = \t%f\n", sum,mean,
variance, sd);

}

Sample Output:

Enter the number of Values : 4

Enter 4 values

1.1 2.2 3.3 4.4

The values entered are 1.1

2.2

3.3

4.4

Sum=11.0

Mean = 2.75
Variance = 1.5125

Standard Deviation = 1.22984

Input-Output

Implement Recursive functions for Binary to Decimal Conversion.

Purpose: This program demonstrates RECURSION.

Procedure: Input binary number and call the recursive function

convert for translating binary number to decimal number.

Input: A binary number bin.

Expected Output: Decimal number dec.

ALGORITHM

Step1:Start

Step2:Input binary number, Read binval

 Step3:Call recursive function that converts binary no to

decimal value

 decval = bin2dec(binval)

 Step 4:Display decimal number, Display decval

 Step5: Stop

Flowchart for recursive function Flowchart for main or driver

program

decval = bin2dec(binval)

Program 15

bin2dec(int binaryno)

If
binaryno = 0

or binaryno = 1

False

True

return binaryno

return bin2dec(binaryno /10)* 2 +

bin2dec(binaryno % 10)

Display

decval

Stop

Start

Read binval

/*program to convert binary to decimal*/

#include<stdio.h>

int bin2dec(int n);

void

main()

{

int binval, decval;
printf("\nEnter the binary

value : "); scanf("%d",
&binval);

decval = bin2dec(binval);

printf("\nDecimal equivalent of %d is %d\n", binval, decval);

}

int bin2dec(int binaryno)

{
if(binaryno == 0 ||

binaryno == 1)

return binaryno;

else

return bin2dec(binaryno /10)* 2 + bin2dec(binaryno %10);

}

Sample Output 1:

Enter the binary value :

11111 Decimal

equivalent of 11111 is

31

Sample Output 2:

Enter the binary value :

1111111 Decimal

equivalent of 1111111 is

Input-Output

127

Sample Output 3:

Enter the binary value :

11011 Decimal

equivalent of 11011 is

27

	INTRO_CPPS
	CPL Manual
	Develop a program to solve simple computational problems using arithmetic expressions and use of each operator leading to simulation of a commercial calculator. (No built-in math function)
	/* Program to design simple commercial calculator */
	Sample Output :
	Develop a program to compute the roots of a quadratic equation by accepting the coefficients. Print appropriate messages.
	/* Program to find roots of the quadratic equation */
	Sample Output 1:
	Sample Output 2:
	Sample Output 3:
	Sample Output 3: (1)
	Develop a program to find the reverse of a positive integer and check for palindrome or not.
	/* Program to check whether the given number is palindrome or not */
	Sample Output 1:
	Sample Output 2:
	An electricity board charges the following rates for the use of electricity: for the first 200units 80 paise per unit: for the next 100 units 90 paise per unit: beyond 300 units Rs 1 per unit. All users are charged a minimum of Rs. 100 as meter charge...
	/*program to compute electricity bill*/
	Sample Output 1: (1)
	Sample Output 2: (1)
	Sample Output 3:
	Introduce 1D Array manipulation and implement Binary search.
	/* Program to search an element in a list of elements using binary search */
	Sample Output 1: (2)
	Sample Output 2: (2)
	Implement using functions to check whether the given number is prime and display appropriate messages. (No built-in math function)
	Algorithm: prime(num)
	/*program to find prime number*/
	Sample Output 1:
	/* Program to multiply two matrices */
	Sample Output 1: (1)
	Sample Output 2:
	Develop a Program to compute Sin(x) using Taylor series approximation .Compare your result with the built- in Library function. Print both the results with appropriate messages.
	/*Program to calculate sin(x) using Taylor series*/
	Sample Output 1: (2)
	Sample Output 2: (1)
	Write functions to implement string operations such as compare, concatenate, string length. Convince the parameter passing techniques.
	/*Program to sort the given elements, using bubble sort*/
	}
	Develop a program to find the square root of a given number N and execute for all possible inputs with appropriate messages. Note: Don’t use library function sqrt(n).
	/*program to find the square root of a number*/
	Sample Output 1:
	Sample Output 2:
	Sample Output 3:
	Implement structures to read, write and compute average-marks and the students scoring above and below the average marks for a class of N students.
	/*program to compute above and below the average marks*/
	Sample Output:
	Develop a program using pointers to compute the sum, mean and standard deviation of all elements stored in an array of n real numbers.
	/* Program to compute the sum, mean, and standard deviation of all elements */
	Sample Output: (1)
	Implement Recursive functions for Binary to Decimal Conversion.
	/*program to convert binary to decimal*/
	Sample Output 1: (1)

