QUESTION BANK WITH SOLUTIONS

ON

COMPUTER AIDED ENGINEERING DRAWING

FOR | / || SEMESTER BE

CHAPTER 1

PROJECTIONS OF POINTS

Problem 1 Draw the projections of the following Points on the same XY line, keeping convenient distance between each projectors. Name the Quadrants in which they lie.

A -30 mm above HP \& 35 mm in front of VP.
B -35 mm above HP \& 40 mm behind VP.
$\mathrm{C}-40 \mathrm{~mm}$ above HP \& on VP.
D - 35 mm below HP \& 30 mm in front of VP.

Solution

Problem 2 Draw the projections of the following Points on the same XY line, Keeping convenient distance between each projectors. Name the Quadrants in which they lie.
$\mathrm{E}-30 \mathrm{~mm}$ below HP \& 25 mm behind VP.
F -35 mm below HP \& 30 mm in front of VP.
$\mathrm{G}-\mathrm{On} \mathrm{HP} \& 30 \mathrm{~mm}$ in front of VP.
H - On HP \& 35 mm behind VP.

Solution

Problem 3 Draw and state the quadrants in which the following Points are located. Assume any distances.
A - Front view below XY line \& Top view above XY line.
B - Front and Top views are below XY line.
C - Front and top views are above XY line.
D - Front view above XY line \& top view below XY line.
Solution

A - III Quadrant
B - IV Quadrant
C - II Quadrant
D-I Quadrant

Problem 4 A point 30 mm above $X Y$ line is the front view of two points $A \& B$. The top view of A is 40 mm behind VP \& The top view of B is 45 mmin front of VP. Draw The projections of the points \& state the quadrants in which the points are situated.

Solution

ANSWERS: $\quad A$ is in $\| Q$
B is in $1 Q$

Problem 5 A point ' A ' is 30 mm in front of VP and 40 mm above HP. Another point B is 20 mm behind VP \& 35 mm below HP. The horizontal distance between the points measured parallel to $X Y$ line is 60 mm . Draw the three projections of the points. Join their front and top views.

Solution

Problem 6 Draw all the three views of a point P lying 60 mm below HP, 70 mm infront of VP and 40 mm from the RPP. Also state the quadrant in which it lies.

Solution

Problem 7 A point P is on HP and 35 mm in front of VP. Another Point Q is on VP and below HP. The line Joining their front views makes an angle of 30 deg to XY line , while the line joining their top views makes an angle of 45 deg with $X Y$ line. Find the distance of the point Q from HP.

Solution

q

Point Q is 20.21 mm below HP

Problem 8 Two Points R and S are on HP. The point R is 35 mm in front of VP, while S is 50 mm behind VP. The line joining their top views makes an angle of 40deg with XY. Find the horizontal distance between the two projectors.

Solution

ANSWER: Distance b/w two projectors is 101.66 mm .

Problem 9 A point G is 25 mm below HP \& is situated in the third quadrant. Its shortest distance from the intersection of XY and X1Y1 is 45 mm . Draw its projections and find its distance from VP. Solution

Problem 10 A point S is in the first quadrant and equidistant of 50 mm from all the three principal planes. Draw the projections of the point. Draw all the three views of the point.
Solution

Problem 11 Draw the projections of point G which is in first quadrant such that it is equidistant from HP \& VP. The point is 25 mm from RPP. Determine its distances from HP\&VP.
Solution

Problem 12 A point R is 25 mm above HP \& 20 mm in front of VP. Another point S is on HP and 30 mm behind VP. The distance between their projectors measured parallel to the line of intersection of VP and HP is 50 mm . Find the distance between the top views of points R and S.

Solution

Problem 11 Draw the projections of point G which is in first quadrant such that it is equidistant from HP \& VP. The point is 25 mm from RPP. Determine its distances from HP\&VP.

Solution

Problem 12 A point R is 25 mm above HP \& 20 mm in front of VP. Another point S is on HP and 30 mm behind VP. The distance between their projectors measured parallel to the line of intersection of VP and HP is 50 mm . Find the distance between the top views of points R and S.

Solution

The Distance Between TVs of R and S is 70.7 mm

Problem 13 A point M is on HP \& 30 mm in front of VP. Another point N is 20 mm below HP and 20 mm in front of VP. The distance between their projectors measured parallel to $X Y$ line is 50 mm . Find the distance between front views of the points M \& N.

Solution

Problem 14 A point P is on HP and 30 mm in front of VP. Another point Q is on VP and 40 mm above HP. The distance between their projectors parallel to $X Y$ line is 50 mm . Find the distance between their front and top views of the points P and Q.

Solution

Problem 15 A point P is 30 mm in front of VP, 40 mm above HP and 50 mm from RPP. Draw its projections. Solution

Problem 16 The point P is 45 mm above HP, 60 mm behind VP and 30 mm from RPP. Draw the three principles view of the point. Also state the quadrant in which it lies.

Solution

Problem 17 Draw all the three views of a point P lying 60 mm below $\mathrm{HP}, 70 \mathrm{~mm}$ in front of VP and 40 mm from the RPP. Also state the quadrant in which it lies.

Solution

Problem 18 A point is 30 mm in front of VP 20 mm above HP \& 25 mm in front / behind / from LPP. Draw its Projections and name the side view.

Solution

Problem 19 A point is 40 mm behind VP, 15 mm above HP and 25 mm in front / behind / from LPP .Draw its projections and name the side view.
Solution

Problem 20 A point is 30 mm behind VP, 30 mm above HP and 25 mm in front/behind/from LPP. Draw its projections and name the side view.
Solution

Problem 21 A point is lying on HP, 20 mm behind VP \& 25 mm behind / in front/from RPP. Draw its projections and name the side view.

Solution

Problem 22 A point is 35 mm below HP, 20 mm behind VP \& 25 mm behind / infront/from RPP. Draw its projections and name the side view.

Solution

X HP

Problem 23 A point is lying on VP, 20 mm below HP \& 30 mm behind / infront/from LPP. Draw its projections and name the side view.
Solution

Problem 24 A point A is 20 mm above HP \& 25 mm in front of VP. Another point B is 25 mm behind VP and 40 mm below HP. Draw their projections when the distance between their projectors parallel to $X Y$ line is zero mm . Add the right side view only to point B.
Solution

Problem 25 Draw the projections of the following Points on the same XY line, keeping convenient distance between each projectors. Name the Quadrants in which they lie.
$\mathbf{P}-20 \mathrm{~mm}$ above HP \& 35 mm in front of VP. Q - 30 mm above HP \& 40 mm behind VP.
$R-40 \mathrm{~mm}$ above HP \& on VP.
$\mathrm{S}-35 \mathrm{~mm}$ below HP \& 30 mm in front of VP.

Solution

Problem 26 Draw the projections of the following Points on the same XY line, Keeping convenient distance between each projectors. Name the Quadrants in which they lie.
$\mathrm{M}-30 \mathrm{~mm}$ below HP \& 25 mm behind VP.
$\mathrm{N}-35 \mathrm{~mm}$ below HP \& 30 mm in front of VP.
P - on HP \& 30 mm in front of VP.
Q - on HP \& 35 mm behind of VP.

Solution

Problem 27 State the quadrants in which the following Points are located. Assume any distances A - Front view below XY \& top view above XY line.
B - Front and top views are below $X Y$ line.
C - Front and top views are above $X Y$ line.
D - Front view above XY \& top view below XY line.

Solution

Problem 28 A point 30 mm above XY line is the front view of three points P, Q and R. The top view of R is 40 mm behind VP, the top view of Q is on XY line and top view of point P is 45 mm in front of VP. Draw the projections of the points \& state the quadrants in which the points are situated.

Solution

P - I Quadrant
Q - I as well as II Quadrant
R - II Quadrant

Problem 29 A point ' M ' is 30 mm in front of VP and 20 mm above HP. another point N in 15 mm behind VP \& 25 mm below HP. The horizontal distance between the points parallel to $X Y$ line is 50 mm . Draw the projections of the points M \& N and Join their front and top views. Draw the right side view for the point N only.

Solution

Problem 30 The common point 40 mm below XY line represents not only the front views of three points A, B and C but also the top view of point C. The top view of point B is lies on XY line and top view of point A lies 50 mm above it. Draw the projections of the points and add the right side view to the point A only. Also state in which quadrants the points lie.

Solution

Problem 31A point A is on HP and 35 mm in front of VP. Another Point B is on VP and below HP. The line Joining their front views makes an angle of 30 deg to $X Y$ line while the line joining their top views makes an angle 45 deg with XY line. Find the distance of the point B from HP.

Solution

Point B is 20.21 mm below HP

Problem 32 Two Points P and Q are on HP. The point P is 30 mm behind $V P$, while Q is 50 mm in front of $V P$. The line joining their top views makes an angle of 40deg with XY. Find the horizontal distance between their projectors parallel to XY line.

Solution

Distance Between Two Projector is 95.34 mm

Problem 31A point A is on HP and 35 mm in front of VP. Another Point B is on VP and below HP. The line Joining their front views makes an angle of 30 deg to $X Y$ line while the line joining their top views makes an angle 45 deg with XY line. Find the distance of the point B from HP.

Solution

Point B is 20.21 mm below HP

Problem 32 Two Points P and Q are on HP. The point P is 30 mm behind $V P$, while Q is 50 mm in front of VP . The line joining their top views makes an angle of 40deg with XY. Find the horizontal distance between their projectors parallel to $X Y$ line.

Solution

Distance Between Two Projector is 95.34 mm

Problem 33 A point A is 40 mm in front of VP and is situated in the fourth quadrant. its shortest distance from the intersection of $X Y$ and $X!Y 1$ is 45 mm . Draw its projections. Also find its distance from HP. Solution

Point A is 20.62 mm below HP
Y1

Problem 34 A point A is 20 mm above HP and in the first quadrant. Its shortest distance from the $X Y$ line is 40 mm .Draw the projections. Determine its distance from VP.

Solution

Problem 35 Draw the projections of the following Points on the same XY line, keeping convenient distance b tween each projectors and state the quadrants in which they lie.
$P-10 \mathrm{~mm}$ above HP \& 15 mm in front of VP.
Q-15 mm above HP \& 25 mm behind VP.
$\mathrm{R}-25 \mathrm{~mm}$ below HP \& in VP.
$\mathrm{S}-40 \mathrm{~mm}$ above HP \& in VP.

Solution

Problem 36 A point P is 25 mm above HP \& 20 mm in front of VP. Another point Q is on HP and 30 mm behind VF The distance between their projectors measured parallel to the line of intersection of VP and HP is 50 mm . Find the distance between the top views of points P and Q.

Solution

Problem 37 A point A is on HP \& 30 mm in front of VP. Another point B is 20 mm below HP and 20 mm in front of) VP. The distance between their projectors measured parallel to XY line is 50 mm . Find the distance between the front views of the points A \& B.

Solution

Problem 38 A point P is on HP and 30 mm in front of VP. Another point Q is on VP and 40 mm above HP. The distance between their projectors parallel to $X Y$ line is 50 mm . Find the distance between their front and top views of the points P and Q.

Solution

Problem 39 Draw the projections of a point A lying 30 mm above HP and in first quadrant, if its shortest distance from the line of intersection of HP and VP is 50 mm . Also find the distance of the point from VP.

Solution

Distance of A from VP is 40 mm
Problem 40 Draw the projections of the following points on the same reference XY line and state the quadrants in which they lie.
$E-35 \mathrm{~mm}$ above HP \& on VP
F - 30 mm below HP \& on VP
G - On HP \& 25 mm behind VP
$\mathrm{H}-\mathrm{On} \mathrm{HP} \& 30 \mathrm{~mm}$ in front of VP

Solution

E-I as well as II Quadrant
F - III as well as IV Quadrant
G - II as well as III Quadrant
H-I as well as IV Quadrant

Problem 41 A point 20 mm below the reference $X Y$ line is the top view of three points P, Q \& R. P is 20 mm below $H P, Q$ is 35 mm above $H P$ and R is on HP. Draw the projections of the three points and state their positions $\&$ quadrants in which they are situated.

Solution

Problem 42 A point is 30 mm in front of VP, 20 mm above HP \& 25 mm in front/behind / from LPP. Draw its Projections and name the side view.

Solution

Problem 43 A point is 40 mm behind VP, 20 mm above HP and 30 mm in front / behind / from LPP.Draw its projections and name the side view.
Solution

Problem 44 A point is 30 mm behind VP, 30 mm above HP and 25 mm in front / behind / from RPP. Draw its projections and name the side views.
Solution

Problem 45 A point is lying on VP, 10 mm below HP \& 30 mm behind / in front/ from LPP. Draw its projections and name the side view.
Solution

Choice 1 : Treating the point is in III Quadrant, it is left side view Choice 2 : Treating the point is in IV Quadrant, it is right side view

Problem 46 A point is lying on HP, 20 mm behind VP \& 35 mm behind / in front/from RPP. Draw its projections and name the side view.

Solution

Problem 47 A point is 35 mm below HP, 15 mm behind VP \& 25 mm behind / in front / from RPP. Draw its projections and name the side view.

Solution

Problem 48 A point P is 15 mm above HP \& 25 mm in front of VP. Another point Q is 25 mm behind VP and 40 mm below HP. Draw their projections when the distance between their projectors parallel to XY line is zero mm . Add the right side view only to point Q . Solution

Problem 49 Draw the projections of the following Points on the same XY line, keeping convenient distance between each projectors. Also state the quadrant in which they lie.
$P-25 \mathrm{~mm}$ above HP \& 35 mm in front of VP.
Q - 30 mm above HP \& 40 mm behind VP.
R - 40 mm above HP \& on VP.
$\mathrm{S}-35 \mathrm{~mm}$ below HP \& 30 mm in front of VP.

Solution

Problem 50 Draw the projections of the following Points on the same XY line, Keeping convenient distance between the projectors. Also state the quadrants in which they lie .

A -30 mm below HP \& 25 mm behind VP.
$B-35 \mathrm{~mm}$ below HP \& 30 mm in front of VP.
C - on HP \& 30 mm in front of VP.
D - on HP \& 35 mm behind of VP.

Solution

A - III Quadrant
B - IV Quadrant
C - I as well as IV Quadrant
D - II as well as III Quadrant

CONTENTS

PAGE No.
I
Primer Committee
II
Foreword
III
Preface
Contents IV
CHAPTER 1 : PROJECTIONS OF POINTS 1
CHAPTER 2 : PROJECTIONS STRAIGHT LINES 27
CHAPTER 3 : PROJECTIONS PLANE SURFACES 53
CHAPTER 4 : PROJECTIONS SOLIDS 77
CHAPTER 5 : DEVELOPMENT OF LATERAL SURFACES OF SOLIDS 125
CHAPTER 6 : ISOMETRIC PROJECTIONS 151

CHAPTER 2

PROJEČTIONS OF LINES

Problem 1 A line AB 80 mm long has its end A 20 mm above the HP and 30 mm infront of VP. It is inclined at 30° to HP and 45° to VP. Draw the projections of the line and find apparent lengths and apparent inclinations. Solution

ANSWERS :
$\beta=55^{\circ}$
$a^{\prime} b^{\prime}=57$
$a b=69$

Problem 2 A line AB 80 mm long is inclined to HP at 30° and inclined to VP at 45°. Draw front and top views of line and determine their lengths. Also measure the perpendicular distance of end B from both HP and VP. Solution

ANSWERS :
$\alpha=45^{\circ}$
$\beta=55^{\circ}$
$a^{\prime} b^{\prime}=57$
$a b=69$

Problem 3 A line AB has its end A 20 mm above the HP and 30 mm infront of the VP. The other end B is 60 mm above the HP. The distance between end projectors is 70 mm . draw its projections. Determine the true length and apparent inclinations.

Solution

$\alpha=30^{\circ}$
$\beta=12^{\circ}$
$a^{\prime} b^{\prime}=82$

Problem 4 A line AB has its end A 20 mm above the HP and 15 mm infront of the VP. The other end B is 60 mm above the HP. The distance between end projectors is 70 mm . draw its projections. Determine the apparent lengths and true inclinations.

Solution

ANSWERS :
$\theta=28^{\circ}$
$\phi=20^{\circ}$
$a^{\prime} b^{\prime}=81$
$a b=76$

Problem 5 The top view PQ of a straight line is 70 mm and makes an angle of 60° with $X Y$ line. The end Q is 10 mm infront of VP and 30 mm above the HP. The difference between the distances of P and Q above the $H P$ is 45 mm . draw the projections. Determine its true length and true inclinations with HP and VP.

Solution

ANSWERS :

$$
\begin{aligned}
& \theta=33^{\circ} \\
& \phi=47^{\circ} \\
& \mathrm{qp}_{2}=83
\end{aligned}
$$

Problem 6 A line PQ 85 mm long has its end P 10 mm above the HP and 15 mm infront of the VP. The top view and front view of line PQ are 75 mm and 80 mm respectively. Draw its projections. Also determine the true and apparent inclinations of the line.

Solution

ANSWERS :
$\theta=28^{\circ}$
$\phi=20^{\circ}$
$\alpha=30^{\circ}$
$\beta=23^{\circ}$

Problem 7 Aline has its end A 10 mm above HP and 15 mm infront of VP. The end B is 55 mm above HP and line is inclined at 30° to HP and 35° to VP. The distance between the end projectors is 50 mm . draw the projections of the line. Determine the true length of the line and its inclination with VP.
Solution

ANSWERS :
$\alpha=42^{\circ}$
$\beta=44^{\circ}$
$\mathrm{TL}=80$

Problem 8 The top view of a line 75 mm long measures 50 mm . the end P is 30 mm infront of VP and 15 mm above HP. The end Q is 15 mm infront of VP and above HP. Draw the projections of the line and find its true inclinations with HP and VP.
Solution

$\beta=17^{\circ}$

Problem 9 A line AB 60 mm long has one of its extremities 20 mm infornt of VP and 15 mm above HP . The line is inclined at 25° to HP and 40° to VP. Draw its top and front views.

Solution

ANSWERS:
$\alpha=34^{\circ}$
$\beta=45^{\circ}$
$a^{\prime} b^{\prime}=46$
$a b=56$

Problem 10 A line AB measuring 70 mm has its end A 15 infront of VP and 20 mm above HP and the other end B is 60 infront of VP and 50 mm above HP. Draw the projections of the line and find the inclinations of the line with both the reference planes of projection.

Solution

Problem 11 The front view of a 90 mm long line which is inclined at 45° to the $X Y$ line, measures 65 mm . End A is 15 mm above the XY line and is in VP. Draw the projections of the line and find is inclinations with HP and VP.
Solution

ANSWERS:
$\phi=43^{\circ}$
$\alpha=76^{\circ}$
$\beta=76^{\circ}$

Problem 12 The distance between the e.d projectors through the end points of a line $A B$ is 60 mm . The end A is 10 mm above HP and 15 mm infront of $V P$. The end B is 35 mm infront of VP. The line $A B$ appears 70 mm long in the front view. Complete the projections. Find the true length of the line and its inclinations with HP and VP.

Solution

ANSWERS :

Problem 13 The distance between the end projectors through the end points of a line $A B$ is 40 mm . The end A is 20 mm above HP and 15 mm in front VP. The end B is 45 mm infront of VP. The line AB appears 50 mm long in the front view. Complete the projections. Find the true length of the line and its inclinations with HP and VP.
Solution

Problem 14 The point B of a line $A B$ is on the horizontal plane, the top view of the line makes an angle of 30° with XY line, being 80 mm . The point A is on the vertical plane and 50 mm above the horizontal plane. Draw the top and front views of the line and obtain the true length of the line. Also find the inclinations of the line with the two planes. Solution

ANSWERS :
$\theta=25^{\circ}$
$\phi=32^{\circ}$
$\mathrm{TL}=95$

Problem 15 Draw the projections of a straight line AB, 100 mm long, inclined at 45° to HP and 30° to VP . The end A is in HP and the end B is in VP. Find the shortest distance between the straight line AB and the line of intersection of planes of projection.

Solution

Problem 16 A line AB 100 mm long is inclined to HP at 45° and inclined to VP at 30°. Draw front and top views of line and determine their lengths. Also determine the perpendicular distance of end Q from both HP and VP.

Solution

ANSWERS :
$\alpha=55^{\circ}$
$\beta=65^{\circ}$
$a^{\prime} b^{\prime}=87$
$a b=71$
$b^{\prime}{ }^{\prime}{ }^{\prime}=71$
$b_{1} \mathbf{b}^{\mathbf{b}^{2}}{ }^{2}=50$

Problem 17 The top view of a 75 mm long line $A B$ measures 65 mm , while the front view is 50 mm . Its one end A is in the H.P and 12 mm in front of the V.P. Draw the projections of $A B$ and determine its inclinations with the H.P. and the V.P.
Solution

ANSWERS :
$\theta=30^{\circ}$
$\phi=48^{\circ}$
$\alpha=48^{\circ}$
$\beta=60^{\circ}$

Problem 18 A line AB, 65 mm long, has its end A 20 mm above the H.P and 25 mm in front of the V.P The end B is 40 mm above the $\mathrm{H} . P$. and 65 mm in front of the V.P. Draw the projections of $A B$ and show its inclinations with the H.P. and the V.P.

Solution

Problem 19 A straight line $P Q, 65 \mathrm{~mm}$ long, is inclined at 45° to HP and $30^{\circ} \mathrm{VP}$. The point P is 70 mm from both the reference planes and the point Q is towards the reference planes. Draw the projections.

Solution

ANSWERS :
$\alpha=55^{\circ}$
$\beta=45^{\circ}$

Problem 20 A point P is 40 mm above HP and 20 mm infront of VP another point Q is 20 mm above HP and 50 mm infront of VP. The top view of line PQ is inclined at 30° to XY . Draw the projections.

Solution

Problem 21 The top view of a line PQ is 70 mm and front view is 60 mm long. The end Q is nearer to both HP and VP than the end P and is 15 above HP and 20 mm infront of VP. Draw the projections of the line if the distance between projectors is 50 mm .

Solution

ANSWERS:
$\theta=25^{\circ}$
$\phi=40^{\circ}$

Problem 22 A line AB 100 mm long measures 80 mm in front view and 70 mm in top view the mid point M of the line is 40 mm from both HP and VP. Draw its projections. Find its inclinations.
Solution

ANSWERS :
$\theta=46^{\circ}$
$\phi=37^{\circ}$
$\alpha=63^{\circ}$
$\beta=59^{\circ}$

Problem 23 A line has its end $A 15 \mathrm{~mm}$ above HP and 10 mm infront of VP. The end B is 55 mm above HP and the line is inclined at 30° to HP. The distance between the end projectors is 50 mm . draw the projections of the line and determine the true length of the line and its inclinations with VP.

Solution

ANSWERS :
$\phi=37^{0}$
$\alpha=39^{\circ}$
$\beta=44^{0}$
$\mathrm{TL}=80$

Problem 24 A line MN 90 mm long has a point P on it which divides the line in the ration $2: 1$, i.e. $M P: P N=2: 1$. this point P is 50 mm above HP and 60 mm in front of VP. The line is inclined at 35° to HP and 40° to VP. Draw the projection of the line. Find the distance between end projector and the position of the ends of the line with HP and VP.

Solution

Problem 25 A straight line $P Q$ inclined at 40° to VP has $p q=60 \mathrm{~mm}$ and $p^{\prime} q^{\prime}=50 \mathrm{~mm}$. The end P is both in HP and VP, and 40 mm to the right of left profile plane
a) Draw the projections of the straight line PQ.
b) Find the true length and true inclination with HP.
c) Draw the profile view of the straight line.
d) Find the position of the end Q with HP and VP.

Solution

$L=39$
M. 20
Y_{1}
Problem 26 A line has one end 30 mm in front of VP and 15 mm above HP and the other end is 15 mm in front of VP and is above HP. Length of the line is 60 mm . Top view of the line is 40 mm long. Draw the two views of the line and obtain the inclination of the line with HP and VP.
Solution

ANSWERS :
$\theta=48^{\circ}$
$\phi=14^{\circ}$

Problem 27 The top view of line PQ 75 mm long measures 50 mm . The end P is 30 mm in front of VP and 15 mm above HP. The end Q is 15 mm in front of VP and above HP. Draw the Projections of the line and find its true inclinations with HP and VP. Find the length of front view and distance between the end Projectors.

Solution

ANSWERS:
$\theta=12^{0}$
$\phi=48^{\circ}$
D $=48$

Problem 28 A straight line AB measuring 80 mm long has the end A in the HP and 25 mm in front of the VP. Its mid point M is 25 mm above the HP and 40 mm in front of the VP. Draw the projections of the line and determine the inclination of the line with HP and VP.

Solution

Problem 29 The front view of the line PQ 80 mm long measures 50 mm and it is inclined to XY (reference line) at 50 . One end of the line P is 20 mm above the HP and 25 mm in front of the VP. Draw the front view and top view of the line and find the inclinations of the line with HP and VP.

Solution

Problem 30 Draw the projections of a line AB 100 mm long inclined at 45^{0} to VP and 30° to HP . One end of the line is 20 mm above the HP and in the VP. Also determine the apparent length and inclinations.

Solution

Problem 31 Draw the projections of a line PQ and find its true length and inclinations when the line is inclined at 30° to the HP and 45° to the VP. The line is having one of its ends 15 mm above HP and 20 mm in front of VP. The distance between the end projectors on the XY line is 60 mm .

Problem 32 The top view $a b$ of a straight line $A B$ is 60 mm long and makes an angle of 30° with the $X Y$ line. The end A is in VP and 30 mm above HP. The end B is 65 mm above HP. Draw the projections of the line $A B$ and determine i) length of the front view ii) its true length and true inclinations with the reference planes.

Solution

ANSWERS
$\theta=30^{\circ}$
$\phi=26^{\circ}$
$\alpha=34^{\circ}$
TL $=69$
$a^{\prime} b^{\prime}=63$

Problem 33 A line $A B 65 \mathrm{~mm}$ long, has its end $A 25 \mathrm{~mm}$ above HP and 30 mm in front of VP. The other end is 45 mm above HP and 50 mm in front of VP. Draw the projections and determine its inclinations.

Solution

ANSWERS :
$\theta=18^{\circ}$
$\phi=17^{\circ}$
$\alpha=19^{\circ}$
$\beta=18^{\circ}$

Problem 34 One end of a line is 30 mm in front of VP and 30 mm above HP. The line is inclined at 40° to HP and its top view measuring 60 mm , is inclined at 50° to XY . Draw the projections of the line and determine true length and inclination with VP.

Solution

ANSWERS :
$\phi=36^{\circ}$
$\mathrm{TL}=78$

Problem 35 The top view of the line AB 80 mm long, measures 65 mm . The mid point of the line is 60 mm in front of VP and 70 mm above HP. The point A is in the VP. Draw its projections and find its inclinations.

Solution

ANSWERS :
$\theta=36^{\circ}$
$\phi=49^{\circ}$
$\alpha=62^{\circ}$
$\beta=67^{\circ}$

Problem 36 A straight line $P Q$ is inclined at 45° to $H P$ and 30° to VP. The point P is in HP and the point Q is in VP The length of the straight line is 65 mm . draw the projections of the straight line $A B$.

Solution

ANSWERS :
$\theta=36^{0}$
$\phi=49^{\circ}$

Problem 37 Draw the projections of a line AB 90 mm long and find its true and apparent inclinations with HP and VP, when its end A is on HP and 20 mm in front of VP. Its midpoint M is 20 mm above the HP and 40 mm in front of the VP.

Solution

Problem 38 A line PQ is inclined to both HP and VP by 30° and 45° respectively. one of its ends P is at a distance of 10 mm from HP and 15 mm from VP. The distance between the end projectors is 45 mm . Draw the top, front and right side views of the line. Determine the true length of the line and the distances of the end Q from VP and HP.

Solution

ANSWERS :
$\alpha=46^{\circ}$
$\beta=55^{\circ}$

Problem 39 Two lines $A B$ and $A C$ make an angle of 120° between them in their front view and top view. $A B$ is parallel to both the HP and the VP. Determine the real angle between AB and AC.

Solution

ANSWER:
$\theta=112^{\circ}$

Problem 40 The elevation of a line AB 90 mm long, is inclined at 30° to HP and measures 70 mm . The end A is 20 mm above HP and is in VP. Draw the projections of the line and find its inclination with VP.
Solution

Problem 41 A line PQ measures 80 mm in length. The point P is above HP and infront of VP by 20 mm and 30 mm respectively. The distance between the end projectors is 50 mm . the line is inclined to VP by 30°. Draw the projections of the line and specify its true inclination with HP.
Solution

ANSWERS :
$\phi=37^{\circ}$
$\alpha=39^{\circ}$
$\beta=44^{0}$

Problem 42 The top view of a line PQ 75 mm long measures 50 mm and the front view measures 60 mm . The end P is 30 mm above HP and 15 mm infont of VP. Draw the projections of the line and find its true inclinations with HP and VP. Find length of front view and distance between the end projectors.

Solution

ANSWERS :
$\theta=48^{\circ}$
$\phi=37^{\circ}$
D $=22$

Problem 43 A straight line AB measuring 80 mm long has the end A in the HP and 25 mm infront of the VP. Its mid point M is 25 mm above HP and 40 mm infront of the VP. Draw the views of the line and determine the inclination of the line with HP and VP and also find distance between end projectors.
Solution

ANSWERS :
$\theta=39^{\circ}$
$\phi=22^{0}$
D $=55$

Problem 44 The end A of a line $A B$ is in HP and 25 mm in front of $V P$. The end B is 25 mm infront of $V P$ and 50 mm above HP. The distance between the end projectors when measured parallel to the line of intersection of HP \& VP is 65 mm . Draw the projections of the line $A B$ and determine its true length and true inclinations with HP \& VP.
Solution

Problem 45 A line has its end $A, 15 \mathrm{~mm}$ from HP \& 10 mm from VP. The end B is 55 mm from HP and the line is inclined at 30° to HP. The distance between the end projectors is 50 mm . Draw the projections of the line. Determine the true length of the line and its inclination with VP.

Solution

ANSWERS:
$\theta=28^{\circ}$
$\phi=37^{\circ}$
$\alpha=39^{\circ}$
$\beta=44^{\circ}$

Problem 46 The end A of a line $A B$ is in HP and 25 mm in front of $V P$. The end B is 10 mm in front of VP and 50 mm above HP. The distance between the end projectors when measured parallel to the line of intersection of HP \& VP is 80 mm . Draw the projections of the line AB and determine its true length and true inclinations with HP \& VP.

Solution

Problem 47 A straight line PQ 80 mm long appears to a length of 50 mm and inclined at 300 to xy line in its top view Draw its projections when its end point P is 15 mm above HP and 60 mm infront VP. Point Q is nearer to VP than P. Solution

ANSWERS :
$\theta=18^{\circ}$
$\phi=33^{\circ}$
$\alpha=22^{0}$
$\beta=35^{\circ}$

Problem 48 The top view of a line $\mathrm{AB}, 80 \mathrm{~mm}$ long measures 65 mm and the length of the front view is 50 mm . The end A is on HP and 15 mm infront of VP. Draw the projections

Solution

ANSWERS :
$\theta=36^{\circ}$
$\phi=51^{\circ}$
$\alpha=69^{\circ}$
$\beta=74^{\circ}$

Problem 49 Draw the projections of a line PQ and find its apparent lengths, true length and true inclination with HP when the line PQ has its end P 25 mm above HP and 20 mm infront of VP. The distance between the end projectors of the line when measured parallel to the line of intersection of the $H P$ and VP is 60 mm . The end Q is 50 mm above the HP and the line is inclined at 30° to the VP.

Solution

Problem 50 Find the true length and true inclination of a line $A B$ with HP having one of its ends 20 mm in front of $V P$ and 30 mm above the HP . The line is inclined at 40° to VP and the right side view of the line is 60 mm long and inclined at 60° to the X1Y1 line. Draw all the three views of the line.

Solution

CHAPTER
 3

PROJECTIONS OF PLANE SURFACES

Problem 1 An equilateral triangular lamina of 25 mm side lies with one of its edges on HP such that the surface of the lamina is inclined to HP at 60°. The edge on which it rests is inclined to VP at 60°. Draw the projections.
Solution

Problem 2 An equilateral triangular lamia of 25 mm side lies on one of its sides on HP. The lamina makes 45° with HP and one of its medians is inclined at 40° to VP. Draw its projections.

Solution

Problem 3 A triangular lamina of 25 mm sides rests on one of its corners on VP such that the median passing through the corner on which it rests is inclined at 30° to HP and 45° to VP. Draw its projections.

Solution

Problem 4 A triangular plane figure of sides 25 mm is resting on HP with one of its corners, such that the surface of the lamina makes an angle of 60° with HP. If the side opposite to the corner on which the lamina rests makes an angle of 30° with VP, draw the top and front views in this position.

Solution

Problem 5 A triangular plane lamina of sides 25 mm is resting on HP with one of its corners touching it, such that the side opposite to the corner on which it rests is 15 mm above HP and makes an angle of 30° with VP. Draw the top and front views in this position. Also determine the inclination of the lamina to the reference plane.

Solution

Problem 6 A $30^{\circ}-60^{\circ}$ setsquare of 60 mm longest side is so kept such that the longest side is in HP, making an angle of 30° with VP. The set square itself is inclined at 45° to HP. Draw the projections of the setsquare.

Solution

Problem 7 An isosceles triangular plate of negligible thickness has base 25 mm long and altitude 35 mm . It is so placed on HP such that in the front view it is seen as an equilateral triangle of 25 mm sides with the side that is parallel to VP is inclined at 45° to HP. Draw its top and front views. Also determine the inclination of the plate with the reference plane.
Solution

Problem 8 A square lamina of 40 mm side rests on one of its sides on HP. The lamina makes 30° to HP and the side on which it rests makes 45° to VP. Draw its projections.

Solution

Problem 9 A square plate of 30 mm sides rests on HP such that one of the diagonals is inclined at $30^{\circ} \mathrm{to} \mathrm{HP}$ and 45° to VP. Draw its projections.

Solution

Problem 10 A square lamia $A B C D$ of 40 mm side rests on corner C such that the diagonal $A C$ appears to be at 45° o VP. The two sides $B C$ and $C D$ containing the corner C make equal inclinations with $H P$. The surface of the lamina makes 30° with HP. Draw its top and front views.
Solution

Problem 11 The top view of a square lamia of side 30 mm is a rectangle of sides $30 \mathrm{~mm} \times 20 \mathrm{~mm}$ with the longer side of the rectangle being parallel to both HP and VP. Draw the top and front views of the square lamina. What is the inclination of the surface of the lamina with HP and VP?

Solution

Problem 12 A rectangular lamina of sides $20 \mathrm{~mm} \times 30 \mathrm{~mm}$ rests on HP on one of its longer edges. The lamina is tilted about the edge on which it rests till its plane surface is inclined $t \mathrm{HP}$ at 45°. The edge on which it rests is inclined at 30° to VP. Draw the projections of the lamina.

Solution

Problem 13 A rectangular lamina of $35 \mathrm{~mm} \times 20 \mathrm{~mm}$ rests on HP on one of its shorter edges. The lamina is rotated about the edge on which it rests till it appears as a square in the top view. The edge on which the lamina rests being parallel to both HP and VP. Draw its projections and find its inclinations.to HP and VP.

Solution

Problem 14 A rectangular lamina of $35 \mathrm{~mm} \times 20 \mathrm{~mm}$ rests on HP on one of its shorter edges. The lamina is rotated about the edge on which it rests till it appears as a square in the top view. The edge on which the lamina rests is inclined 30° to VP. Draw its projections and find its inclination to HP.

Solution

Problem 15 A rectangular lamina of sides $20 \mathrm{~mm} \times 25 \mathrm{~mm}$ has an edge in HP and adjoining edge in VP, is tilted such that the front view appears as a rectangle of $20 \mathrm{~mm} \times 15 \mathrm{~mm}$. The edge, which is in VP, is 30 mm from the right profile plane. (a) Draw the top view, front view and the left profile view in this position. (b) Find its inclinations with the corresponding principal planes.

Solution

Problem 16 The front view of a rectangular lamina of sides $30 \mathrm{~mm} \times 20 \mathrm{~mm}$ is square 20 mm sides. Draw the projections and determine the inclinations of the surface of the lamina with HP and VP.

Solution

Problem 17 A mirror $30 \mathrm{~mm} \times 40 \mathrm{~mm}$ is inclined to the wall such that its front view is a square of 30 mm side. The longer sideset the mirror appear perpendicular to both HP and VP. Find the inclination of the mirror with the wall.

Problem 18 A rectangular plate of negligible thickness of size $35 \times 20 \mathrm{~mm}$ has one of its shorter edges in VP with that edge inclined at 40° to HP. Draw the top view if its front view is a square of side 20 mm .

Solution

Problem 19 A pentagonal lamina of edges 25 mm is resting on HP with one of its sides such that the surface makes an angle of 60° with HP. The edge on which it rests is inclined at 45° to VP. Draw its projections. Solution

Problem 20 A pentagonal lamina of edges 25 mm is resting on HP with one of its corners such that the plane surface makes an angle of 60° with HP. The two of the edges containing the corner on which the lamia rests make equal inclinations with HP. When the edge opposite to this corner make an angle of 45° with VP and nearer to the observer, draw the top and front views of the plane lamina in this position.

Solution

Problem 21 A pentagonal lamina of edges 25 mm is resting on HP with one of its corners such that the edge opposite to this corner is 20 mm above HP \& makes an angle of 45° with VP. Draw the top and front views of the plane lamina in this position. Determine the inclination of the lamina with HP.

Solution

Problem 22 A pentagonal lamina of sides 25 mm is resting on one of its edges on HP with the corner opposite to that edge touching VP. This edge is parallel to VP and the corner, which touches VP, is at a height of 15 mm above HP. Draw the projections of the lamina and determine the inclinations of the lamina with HP and VP and the distance at which the parallel edge lies from VP.

Solution

Problem 23 A pentagonal lamina having edges 25 mm is placed on one of its corners on HP such that the perpendicular bisector of the edge passing through the corner on which the lamina rests is inclined at 30° to HP and $45^{\circ} \mathrm{VP}$. Draw the top and front views of the lamina.

Solution

γ

Problem 24 A pentagonal lamina of sides 25 mm is having a side both on HP and VP. The corner opposite to the side on which it rests is 15 mm above HP. Draw the top and front views of the lamina.

Solution

Problem 25 A pentagonal lamina of sides 25 mm is having a side both on HP and VP. The surface of the lamina is inclined at an angle of 60° with HP. Draw the top and front views of the lamina.

Solution

Problem 26 A regular pentagonal lamina of 25 mm side is resting on one of its corners on HP while the side opposite to this corner touches VP. If the lamina makes an angle of 60° with HP and 30° with VP, draw the projections of the lamina.

Solution

Problem 27 A pentagonal lamina having edges 25 mm is placed on one of its corners on HP such that the surface makes an angle 30° with HP and perpendicular bisector of the edge passing through the corner on which the lamina rests appears to be inclined at 30° to VP. Draw the top and front views of the lamina.

Solution

Problem 28 A regular pentagonal lamina of 25 mm side is resting on one of its sides on HP while the corner opposite to this side touches VP. If the lamina makes an angle of 60° with HP and 30° with VP, draw the projections of the lamina.
Solution

Problem 29 A pentagonal lamina of edges 25 mm is resting on VP with one of its sides such that the surface makes an angle of 60° with VP. The edge on which it rests is inclined at 45° to HP. Draw its projections.

Solution

Problem 30 A pentagonal lamina having edges 25 mm is placed on one of its corners on VP such that the surface makes an angle 30° with VP and perpendicular bisector of the edge passing through the corner on which the lamina rests appears to be inclined at 30° to HP. Draw the top and front views of the lamina.

Solution

Problem 31 A pentagonal lamina having edges 25 mm is placed on one of its corners on VP such that the surface makes an angle 30° with VP and perpendicular bisector of the edge passing through the corner on which the lamina rests is inclined at 45° to HP. Draw the top and front views of the lamina.

Solution

Problem 32 A hexagonal lamina of 30 mm sides rests on HP with one of its corners touching VP and surface inclined at 45° to it. One of its edges is inclined to HP at 30°. Draw the front and top views of the lamina in its final position.

Solution

Problem 33 Draw the top and front views of a hexagonal lamina of 30 mm sides having two of its edges parallel to both vertical and horizontal planes and one of its edges is 10 mm from each of the planes of projection. The surface of the lamina is inclined at an angle of 60° to the HP.

Solution

Problem 34 A regular hexagonal lamina of sides 30 mm is lying in such a way that one of its sides touches both the reference planes. If the lamina makes 60° with HP , draw the projections of the lamina.

Solution

Problem 35 A regular hexagonal lamina of side 30 mm is lying in such a way that one of its sides touches both the reference planes. If the side opposite to the side on which it rests is 45 mm above HP, draw the projections of the lamina.

Solution

Problem 36 A regular hexagonal lamina of sides 25 mm is lying in such a way that one of its sides on HP while the side opposite to the side on which it rests is on VP. If the lamina makes 60° to HP, Draw the projections of the lamina. Solution

Problem 37 A regular hexagonal lamina of side 25 mm is lying in such a way that one of its corners on HP while the corner opposite to the corner on which it rests is on VP. If the lamina makes 60° to HP , Draw the projections of the lamina.

Solution

Problem 38 A hexagonal lamina of sides 30 mm is resting on HP with one of its corners in VP and its surface inclined at an angle of 30° with VP. The diagonal passing through that corner which is in VP is inclined at 45° to HP. Draw the projections of the lamina.
Solution

Problem 39 A hexagonal lamina of sides 30 mm is resting on HP with one of its corners in VP and its surface inclined at an angle of 30° with VP. The diagonal passing through that corner which is in VP appears to be inclined at 40° to HP. Draw the projections of the lamina.

Solution

Problem 40 A hexagonal lamina of sides 25 mm rests on one of its sides on HP. The lamina makes 45° to HP and the side on which it rests makes 30° to VP. Draw its projections.

Solution

Problem 41 A hexagonal lamina of sides 25 mm rests on one of its corners on HP. The lamina makes 45° to HP and the diagonal passing through the corner on which it rests is inclined at 30° to VP. Draw its projections.

Solution

Problem 42 A hexagonal lamina of sides 25 mm rests on one of its corners on HP. The lamina makes 45° to HP and the diagonal passing through the corner on which it rests appears to be inclined at 30° to VP. Draw its projections.

Solution

Problem 43 A hexagonal lamina of sides 25 mm rests on one of its sides on VP. The lamina makes 45° to VP and the side on which it rests makes 45° to HP. Draw its projections.

Solution

Problem 44 A hexagonal lamina of sides 25 mm rests on one of its sides on VP. The side opposite to the side on which it rests is 30 mm infront of VP \& the side on which it rests makes 45° to HP. Draw its projections. Also determine the inclination of the lamina with the reference plane.

Solution

Problem 45 A hexagonal lamina of sides 25 mm rests on one of its corners on HP. The corner opposite to the corner on which it rests is 35 mm above HP and the diagonal passing through the corner on which it rests is inclined at 30° to VP. Draw its projections. Find the inclination of the surface with HP.

Solution

Problem 46 Draw the projections of a circular plate of negligible thickness of 50 mm diameter resting on HP on a point A on the circumference, with its plane inclined at 45° to HP and the top view of the diameter passing through the resting point makes 60° with VP.
Solution

Problem 47 A circular lamina of 50 mm diameter is standing with one of its points on the rim on HP and the lamina inclined at 45° to HP. The diameter at right angles to the diameter which is passing through the point on which the lamina rests is parallel to VP. Draw its projections.

Solution

Problem 48 A circular lamina of 50 mm diameter rests on HP such that one of its diameters is inclined at 30° to VP and 45° to HP. Draw its top and front views in this position.

Solution

Problem 49 A circular lamina inelined to the VP appears in the front view as an ellipse of major axis 30 mm and minor axis 15 mm . The major axis is parallel to both HP and VP. One end of the minor axis is in both the HP and VP. Draw the projections of the lamina and determine the inclination of the lamina with the VP.
Solution

Problem 50 A circular lamina of 30 mm diameter rests on VP such that one of its diameters is inclined at 30° to VP and 45° to HP. Draw its top and front views in this position.

Solution

CHAPTER 4

PROJECTIONS OF SOLIDS

Problem 1 A square prism 35 mm sides of base and 65 mm axis length rests on HP on one of its edges of the base which is inclined to VP at 30°. Draw the projections of the prism when the axis is inclined to HP at 45°.

Solution

Problem 2 A square prism 35 mm sides of base and 60 mm axis length rests on HP on one of its corners of the base

 projections of the prism when the axis of the prism is inclined to HP at 40° and appears to be inclined to VP at 45°. Solution

Problem 3 A square prism 35 mm sides of base and 60 mm axis length rests on HP on one of its comers of the base such that the two base edges containing the corner on which it rests make equal inclinations with HP. Draw the projections of the prism when the axis of the prism is inclined to HP at 40° and to VP at 30°.

Solution

Problem 4 A square prism 35 mm sides of base and 60 mm axis length rests on HP on one of its edges of the base. Draw the projections of the prism when the axis is inclined to HP at 45° and VP at 30°.
Solution

Problem 5 A pentagonal prism 25 mm sides of base and 60 mm axis length rests on HP on one of its edges of the base which is inclined to VP at 30°. Draw the projections of the prism when the axis is inclined to HP at 40°. Solution

Problem 6 A pentagonal prism 25 mm sides of base and 60 mm axis length rests on HP on one of its edges of the base. Draw the projections of the prism when the axis is inclined to HP at 40° and VP at 30°.
Solution

Problem 7 A pentagonal prism 25 mm sides of base and 50 mm axis length rests on HP on one of its comers of the base such that the two base edges containing the comer on which it rests make equal inclinations with HP. Draw the projections of the prism when the axis of the prism is inclined to HP at 40° and appears to be inclined to VP at 45°.

Solution

Problem 8 A pentagonal prism 25 mm sides of base and 50 mm axis length rests on HP on one of its corners of the base such that the two base edges containing the comer on which it rests make equal inclinations with HP. Draw the projections of the prism when the axis of the prism is inclined to HP at 40° and to VP at 30°.
Solution

Problem 9 A hexagonal prism 25 mm sides of base and 50 mm axis length rests on HP on one of its edges. Draw the projections of the prism when the axis is inclined to HP at 45° and appears to be inclined to VP 40°. Solution

Problem 10 A hexagonal prism 25 mm sides of base and 50 mm axis length rests on HP on one of its edges of the base. Draw the projections of the prism when the axis is inclined to HP at 45° and VP at 30°.
Solution

Problem 11 A hexagonal prism 25 mm sides of base and 50 mm axis length rests on HP on one of its comers of the base such that the two base edges containing the corner on which it rests make equal inclinations with HP. Draw the projections of the prism when the axis of the prism is inclined to HP at 40° and appears to be inclined to VP at 45°. Solution

Problem 12 A hexagonal prism 25 mm sides of base and 50 mm axis length rests on HP on one of its comers of the base such that the two base edges containing the corner on which it rests make equal inclinations with HP. Draw the projections of the prism when the axis of the prism is inclined to HP at 40° and to VP at 30°.

Solution

Problem 13 A square prism 35 mm sides of base and 60 mm axis length is suspended freely from a corner of its base. Draw the projections of the prism when the axis appears to be inclined to VP at 45°.

Solution

Problem 14 Apentagonal prism 25 mm sides of base and 50 mm axis length is suspended freely from a corner of its base. Draw the projections of the prism when the axis appears to be inclined to VP at 45°.

Solution

Problem 15 A hexagonal prism 25 mm sides of base and 50 mm axis length is suspended freely from a comer of its base. Draw the projections of the prism when the axis appears to be inclined to VP at 45° Solution

Problem 16A square pyramid 35 mm sides of base and 65 mm axis length rests on HP on one of its edges of the base which is inclined to VP at 30°. Draw the projections of the pyramid when the axis is inclined to HP at 45°.

Solution

Problem 17 A square pyramid 35 mm sides of base and 60 mm axis length rests on HP on one of its comers of the base such that the two base edges containing the corner on which it rests make equal inclinations with HP. Draw the projections of the pyramid when the axis of the pyramid is inclined to HP at 40° and appears to be inclined to VP at 45°.

Solution

Ppoblem 18 A square pyramid 35 mm sides of base and 60 mm axis length rests on HP on one of its comers of the pase euch that the two batie edges containing the comer on wich It resto make equal icil 30° projections of the pyramid when the axis of the pyramid is inclined to HP at 40° and to VP at 30°.
Solution

Problem 19 A square pyramid 35 mm sides of base and 60 mm axis length rests on HP on one of its edges of the base. Draw the projections of the pyramid when the axis is inclined to HP at 45° and VP at 30°.

Solution

Problem 20 A pentagonal pyramid 25 mm sides of base and 60 mm axis length rests on HP on one of its edges of the base which is inclined to VP at 30°. Draw the projections of the pyramid when the axis is inclined to HP at 40°. Solution

Problem 21 A pentagonal pyramid 25 mm sides of base and 50 mm axis length rests on HP on one of its edges of the base. Draw the projections of the pyramid when the axis is inclined to HP at 45° and VP at 30°.

Solution

Problem 22 A pentagonal pyramid 25 mm sides of base and 50 mm axis length rests on HP on one of its comers of the base such that the two bese edges containing the corner on which it rests make equal inclinations with HP. Draw the projections of the pyramid when the axis of the pyramid is inclined to HP at 40° and appears to be inclined to VP at 45°.
Solution

Problem 23 A pentagonal pyramid 25 mm sides of base and 50 mm axis length rests on HP on one of its comers of the base such that the two base edges containing the corner on which it rests make equal inclinations with HP. Draw the projections of the pyramid when the axis of the pyramid is inclined to HP at 40° and to VP at 30°.

Solution

Problem 24 A hexagonal pyramid 25 mm sides of base and 50 mm axis length rests on HP on one of its edges of the base which is inclined to VP at 30°. Draw the projections of the pyramid when the axis is inclined to HP at 45°. Solution

Problem 25 A hexagonal pyramid 25 mm sides of base and 50 mm axis length rests on HP on one of its edges of the base. Draw the projections of the pyramid when the axis is inclined to HP at 45° and VP at 30°. Solution

Problem 26 Ahexagonal pyramid 25 mm sides of base and 50 mm axis length rests on HP on one of its corners of the base such that the two base edges containing the corner on which it rests make equal inclinations with HP. Draw the projections of the pyramid when the axis of the pyramid is inclined to HP at 40° and appears to be inclined to VP at 45°.
Solution

Problem 27 A hexagonal pyramid 25 mm sides of base and 50 mm axis length rests on HP on one of its comers of the base such that the two base edges containing the comer on which it reste make equal inclinations with HP. Draw the projections of the pyramid when the axis of the pyramid is inclined to HP at 40° and to VP at 30°.

Solution

Problem 28 A square pyramid 35 mm sides of base and 60 mm axis length is suspended freely from a comer of its base. Draw the projections of the pyramid when the axis appears to be inclined to VP at 45°. Solution

Problem 29 A pentagonal pyramid 25 mm sides of base and 50 mm axis length is suspended freely from a comer o its base. Draw the projections of the pyramid when the axis appears to be inclined to VP at 45.

Solution

Problem 30 A hexagonal pyramid 25 mm sides of base and 50 mm axis length is suspended freely from acorner of its base. Draw the projections of the pyramid when the axis appears to be inclined to VP at 45°. Solution

Problem 31 A square pyramid 35 mm sides of base and 60 mm axis length rests on HP on one of its slant edges. Draw the projections of the pyramid when the axis appears to be inclined to VP at 45°.

Solution

?

Problem 32 A square pyramid 35 mm sides of base and 60 mm axis length rests on HP on one of its slant edges. Draw the projections of the pyramid when the axis is inclined to VP at 45․

Solution

Problem 33 A square pyramid 35 mm sides of base and 60 mm axis length rests on HP on one of its slant triangular faces. Draw the projections of the pyramid when the axis appears to be inclined to VP at 45.

Solution

Problem 34 A square pyramid 35 mm sides of base and 60 mm axis length rests on HP on one of its slant triangular faces. Draw the projections of the pyramid when the axis is inclined to VP at 45°.

Solution

Problem 35 A pentagonal pyramid 25 mm sides of base and 50 mm axis length rests on HP on one of its slant edges. Draw the projections of the pyramid when the axis appears to be inclined to VP at 45°.

Solution

η

Problem 36 A pentagonal pyramid 25 mm sides of base and 50 mm axis length rests on HP on one of its slant edges. Draw the projections of the pyramid when the axis is inclined to VP at 45°.

Solution

$$
9 \underbrace{\text { 모 }}_{x}
$$

Problem 37 A pentagonal pyramid 25 mm sides of base and 50 mm axis length rests on HP on one of its slant triangular faces. Draw the projections of the pyramid when the axis appears to be inclined to VP at 45^{2}. Solution

Problem 38 A pentagonal pyramid 25 mm sides of base and 50 mm axis length rests on HP on one of its slant triangular faces. Draw the projections of the pyramid when the axis is inclined to VP at 45°.

Solution

Problem 39 A hexagonal pyramid 25 mm sides of base and 50 mm axis length rests on HP on one of its slant edges. Draw the projections of the pyramid when the axis appears to be inclined to VP at 45°.
Solution

Problem 40 A hexagonal pyramid 25 mm sides of base and 50 mm axis length rests on HP on one of its slant edges. Draw the projections of the pyramid when the axis is inclined to VP at 45°.

Solution

Problem 41 A hexagonal pyramid 25 mm sides of base and 50 mm axis length rests on HP on one of its slant triangular faces. Draw the projections of the pyramid when the axis appears to be inclined to VP at 45°.

Solution

Problem 42 A hexagonal pyramid 25 mm sides of base and 50 mm axis length rests on HP on one of its slant triangular faces. Draw the projections of the pyramid when the axis is inclined to VP at 45°.

Solution

Problem 43 A cube of 40 mm sides rests on HP on an edge which is inclined to VP at 30°. Draw the projections when the lateral square face containing the edge on which it rests makes an angle of 50° to HP.

Solution

Problem 44 A tetrahedron of 55 mm sides rests on one of its corners such that an edge containing that corner is inclined to HP at 50° and VP at 30°. Draw its projections.

Solution

Problem 45 A cone of 50 mm base diameter and 60 mm axis length rests on HP on one of its generators. Draw its projections when the axis is inclined to VP at 30°. Solution

Problem 46 A tetrahedron of sides 40 mm is resting on one of its sides on HP. This side is parallel to VP and 40 mm away from it. It is tilted about resting side such that the base containing this edge is inclined at 30° to HP. Draw the projections of the solid.

Solution

Problem 47 A Hexahedron of 30 mm sides is resting on one of its corners on HP such that one of its solid diagonals is perpendicular to VP. Draw the projections of the solid.

Solution

Problem 48 A pentagonal prism of base side 25 mm and height 50 mm is resting on HP on one of its base corners such that the top most edge is at a distance of 60 mm above HP. Draw its projections, when its top view of the axis is inclined at 45° to VP. Also, determine the inclination of the longer edge of the prism to HP which contains the resting corner.

Solution

Problem 49 A square pyramid of base sides 30 mm and height 60 mm is suspended by a thread tied to one of the eerners of its base. It is then tilted such that the axis makes an angle of 45° with respect to the VP. Censidering the apex of the solid to be nearer to the observer, draw the projections of the selid.
solution

Preblem 50 A gone of base dia. 40 mm and axis length 50 mm is resting on HP on a point on the circumference of its base such that its apex is at 40 mm above the HP^{P} and its top view of the axis is inclined at 60° to VF. Braw the top and frent views of the solid. Also, determine the inelinations of the axis when the base is nearer to the observer.

Solution

$$
\begin{array}{ll}
\text { ANEWERS } & =26^{\circ} \\
=51^{\circ}
\end{array}
$$

CHAPTER 5

DEVELOPMENT OF LATERAL SURFACES OF SOLIDS

Problem 1 A triangular prism with one of its rectangular faces parallel to VP and nearer to it is cut as shown in Fig. Draw the development of the retained portions of the prism which are shown in dark lines.

Solution

Problem 2 A square prism of base side 30 mm and axis length 60 mm is resting on HP on its base with all the vertical faces being equally inclined to VP. It is cut by an inclined plane 60° to HP and perpendicular to VP and is passing through a point on the axis at a distance 50 mm from the base. Draw the development of the lower portion of the prism.

Solution

Problem 3 A square prism of base side 40 mm and axis length 65 mm is resting on HP on its base with all the vertical faces being equally inclined to VP. It is cut by an inclined plane 60° to HP and perpendicular to VP and is passing through a point on the axis at a distance 15 mm from the top face. Draw the development of the lower portion of the prism.

Solution

Problem 4 A square prism of 30 mm side of the base and height 50 mm is resting with its base on HP such that one of its vertical faces is inclined at 40° to VP. It is cut as shown in the following front view figure. Draw the development of the lateral surface of the prism.

Solution

Problem 5 A cube of side 40 mm is resting on HP with its base on HP such that one of its vertical faces is inclined at 30° to the VP. It is cut by a section plane perpendicular to VP, inclined to HP at an angle 45° and passes through the midpoint of the axis. Draw the development of the lower lateral surface of the cube.

Solution

Problem 6 A square prism of base side 35 mm rests with its base on HP and two faces equally inclined to VP. Draw the development of the lateral surfaces of the retained portions of the cut prism shown by dark lines in the Fig.
Solution

Problem 7 A rectangular prism of base $40 \mathrm{~mm} \times 25 \mathrm{~mm}$ and height 65 mm rests on HP on its base with the longer base side inclined at 30° to VP. It is cut by a plane inclined at 40° to HP , perpendicular to VP cuts the axis at its mid height. Draw the development of the remaining portion of the prism.

Solution

Problem 8 A rectangular prism of base $30 \mathrm{~mm} \times 20 \mathrm{~mm}$ and height 60 mm rests on HP on its base with the longer base side inclined at 40° to VP. It is cut by a plane inclined at 45° to HP , perpendicular to VP and bisects the axis. Draw the development of the lateral surface of the prism.
Solution

1,(a)
(a)

Problem 9 A rectangular prism of base size 25 mmx 40 mm and axis length 65 mm is resting on HP on tis base with the longer sidel of base inclified at 30° to VP : it is cut by a plate inclined at 40° to HP and perpeneneuter to VP and passes through the extreme left corner of base. Draw the development of the lateral surface of the remaining pertion of the prism.

Solution

Probilem 10 Draw the development of the truncated portion of the lateral faces of a pertagonat prism of 20 mm sides of base and 50 mm height standing vertically with one of its rectangular faces paralled tó VP afid neeref to it so ths to produce a one piece development. The inclined face of the truncated prism is 30° to its axis anid peeses throtgh the right extreme cormer of the top face of the prism.

Solution

Problem 11 A regular pentagonal prism of height 60 mm and base edge 30 mm rests with its base on HP. The vertical face closest to VP is 30° to it. Draw the development of the truncated prism with its truncated surface inclined at 60° to its axis and bisecting it.

Solution

Problem 12 A pentagonal prism of 30 mm side of base and height 50 mm lies with its base on HP such that one of the rectangular faces is inclined at 40° to VP. It is cut to the shape of a truncated pyramid with the truncated surface inclined at 30° to the axis so as to pass through a point on it 30 mm above the base. Develop the truncated portion of the prism so as to produce a one piece development.

Solution

Problem 13 A pentagonal prism of base sides 30 mm and axis length 60 mm rests with its base on HP and an edge of the base inclined at 45° to VP . It is cut by a plane perpendicular to VP , inclined at 40° to HP and passing through a point on the axis, at a distance of 30 mm from the base. Develop the remaining surfaces of the truncated prism.
Solution

Problem 14 A pentagonal prism of base sides 20 mm and height 40 mm is resting with its base on HP and base edge parallel to the VP. The prism is cut as shown in the following front view. Draw the development of the lateral surface of the prism.

Solution

Problem 15 A hexagonal prism of base side 20 mm and height 50 mm is resting on HP on its base, such that one of its base edge is parallel to VP. The prism is cut in this position as shown in the following front view. Draw the development of the lateral surface of the prism.
Solution

Problem 16 A hexagonal prism of base side 25 mm and height 55 mm is resting on HP on its base, such that one of its base edges is parallel to VP. The prism is cut in this position as shown in the following front view. Draw the development of the lateral surface of the prism.

Solution

Problem 17 The inside of a hopper of a flour mill is to be lined with thin sheet. The top and bottom of the hopper are regular pentagons with each side equal to 30 mm and 22.5 mm respectively. The height of the hopper is 30 mm . Draw the shape of the sheet to which it is to be cut so as to fit into the hopper.

Solution

Problem 18 A square pyramid of side of base 45 mm , altitude 70 mm is resting with its base on HP with two sides of the base parallel to VP. The pyramid is cut by a section plane which is perpendicular to the VP and inclined af 40° to the HP. The cutting plane bisects the axis of the pyramid. Obtain the development of the lateral surfaces the truncated pyramid.

Problem 19 A square pyramid base 40 mm side and axis 65 mm long has its base on HP and all the edges of the base
are equally inclined to VP. It is cut to with an inclined section plane so as the truncated surface at 45° to its axis,
bisecting it. Draw the development of the truncated pyramid.

Problem 20 A frustum of a square pyramid has its base 40 mm sides, top 16 mm sides and height 60 mm , its axis is vertical and a side of its base is parallel to VP. Draw the projections of the frustum and show the development of the lateral surfaces of it.

Solution

Problem 21 A square pyramid of 25 mm base edge and 50 mm height rests with its base on HP with all of its base edges equally inclined to VP. It is cut by a plane perpendicular to VP and inclined to HP at 60°, passing through the extreme right corner of base. Draw the development of the lateral surface of the pyramid.
Solution

Problem 22 A rectangular pyramid, side of base $25 \mathrm{~mm} \times 40 \mathrm{~mm}$ and height 50 mm has one of the sides of the base is inclined at 30° to the VP. Draw the development of the lateral surface of the cut pyramid, whose front view is shown below.

Solution

Problem 23 A frustum of a pentagonal pyramid, smaller base sides 16 mm and bigger top face sides 32 mm and height 40 mm , is resting on the HP on its smaller base, with one of its base sides parallel to the VP. Draw the projections of the frustum and develop the lateral surface it.

Solution

Problem 24 A regular pentagonal pyramid of side of base 35 mm and altitude 65 mm has its base on HP with a side of base perpendicular to VP. The pyramid is cut by a section plane which is perpendicular to the VP and inclined at 30° to HP. The cutting plane meets the axis of the pyramid at a point 30 mm below the vertex. Obtain the development of the remaining part of the pyramid.

3

Problem 25 A pentagonal pyramid, 30 mm sides, with a side of base perpendicular to VP. Draw the development of the lateral surfaces of the retained portion of the pyramid shown by the dark lines in the following figure.

Solution

Problem 26 A pentagonal pyramid of 30 mm edges of base and 50 mm height rests vertically with one of its base edges parallel to VP and nearer to it. It is cut as shown in following figure. Draw the development of the lateral surfaces of the upper portion of the pyramid.

Solution

Problem 27 A hexagonal pyramid, base sides 25 m find height 60 mm , is resting with its base on HP andian edge of base inclined at 40° to VP. It is cut to the shape of a truncated pyramid with the truncated surface indicated in the front view at a point on the axis 20 mm from the apex and inclined at 40° to XY. Draw the projections and show the development of the lateral surface of the remaining portion of the pyramid.

Solution

Problem 28 A hexagonal pyramid of sides 35 mm and altitude 65 mm is resting on HP on its base with two of the base sides perpendicular to VP. The pyramid is cut by a plane inclined at 30° to HP and perpendicular to VP and is intersecting the axis at 30 mm above the base. Draw the development of the remaining portion of the pyramid.

Solution

Problem 29 A hexagonal pyramid 25 mm side of base and axis 65 mm long is resting on its base on HP with one of the edges of the base parallel to VP. It is cut by a vertical section plane at a distance of 8 mm from the axis towards right side. Develop the lateral surface of the left part of the pyramid.
Solution

Problem 30 A hexagonal pyramid of 30 mm base sides with a side of base parallel to VP. Draw the development of the lateral surfaces of the retained portions of the pyramid cut by two perpendicular planes shown by dark lines in the Fig.

Solution

Problem 31 A vertical cylinder of base diameter 45 mm and axis length 60 mm is cut by a plane perpendicular to VP and inclined at 50° to HP , is passing through the centre point of the top face. Draw the development of the lateral surface of the cylinder.

Solution

Problem 32 Following figure shows the front view of a model of a steel chimney of diameter 60 mm made from a flat thin sheet metal fitted over an inclined plane roof. Develop the portion of the chimney.

Solution

Problem 33 A vertical cylinder of base diameter 50 mm and axis length 60 mm is cut by a two planes which are perpendicular to VP and inclined at 45° to HP and passing through either side the centre point of the top face. Draw the development of the lateral surface of the cylinder.

Solution

Problem 34 A pipe made of using a half tubular (circular) with a half square in shape is cut as shown in the following figure. Draw the development of the lateral surface of the object.
Solution

Problem 35 Develop the lateral surface of the cylinder of 40 mm diameter and height 60 mm which is cut in the following way.

Solution

Problem 36 A cone of base diameter 60 mm and height 70 mm is resting on its base on HP. It is cut as shown in the following figure. Draw the development of the lateral surface of the remaining portion of the cone.

Solution

Problem 37 Develop the lateral surface of the cylinder of 40 mm diameter and height 60 mm which is cut in the following way.

Solution

Problem 38 A cone of base diameter 60 mm and height 70 mm is resting on its base on HP. It is cut as shown in the following figure. Draw the development of the lateral surface of the remaining portion of the cone.

Solution

Problem 39 Draw the development of the lateral surface of a truncated vertical cylinder, 40mm diameter of base and height 50 mm , the truncated flat surface of the cylinder bisects the axis at 60° to it.

Solution

Problem 40 Develop the lateral surface of the cylinder of 40 mm diameter and height 60 mm cut in the following way. Solution

Problem 41 A right cone of 55 mm diameter of base and 75 mm height stands on its base on HP. It is cut to the shape of a truncated cone with its truncated surface inclined at 45° to the axis lying at a distance of 40 mm from the apex of the cone. Obtain the development of the lateral surface of the truncated cone.

Solution

Problem 42 Draw the development of the following truncated cone.

Solution

Problem 43 A hexagonal pyramid of 30 mm sides of base with a side of base parallel to VP. Draw the development of the lateral surfaces of the retained portion of the pyramid which is shown by dark lines in the following figure.

Solution

Problem 44 Develop the lateral surface of the cylinder of 40 mm diameter and height 60 mm which is cut in the following way.

Solution

Problem 45 Draw the development of the lateral surface of the cone, whose front view is as shown in the following figure.

Solution

Problem 46 A cone of base diameter 50 mm and height 60 mm is resting with its base on HP. It is cut, as shown in the following front view of which is as shown in figure. Draw the development of the lateral surface of it.

Solution

Problem 47 Draw the development of the lateral surface of a funnel consisting of a cylinder and a frustum of a cone. The diameter of the cylinder is 20 mm and top face diameter of the funnel is 80 mm . The height of frustum and cylinder are equal to 60 mm and 40 mm respectively.

Solution

Problem 48 Draw the development of the lateral surface of the cut cone, whose front view is shown in the following figure.

Solution

Problem 49 A funnel is to be made of sheet metal. The funnel tapers from 40 mm to 20 mm diameter to a height of 20 mm and from 20 mm to 15 mm diameter, for the next 20 mm height. The bottom of the funnel is beveled off to a plane inclined at 45° to the axis. Draw the development of the funnel.

Solution

Problem 50 A funnel is made of sheet metal. The funnel tapers from 60 mm . to 30 mm . diameters to a height of 25 mm . and then forms to a cylinder with a height of 50 mm . Bottom of funnel is beveled off completely at an angle of 45° to axis Draw the development of funnel.

Solution

