B. E. MECHANICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER – VII

CONTROL ENGINEERING			
Course Code	18ME71	CIE Marks	40
Teaching Hours / Week (L:T:P)	3:0:0	SEE Marks	60
Credits	03	Exam Hours	03

Course Learning Objectives:

- To develop comprehensive knowledge and understanding of modern control theory, industrial automation, and systems analysis.
- To model mechanical, hydraulic, pneumatic and electrical systems.
- To represent system elements by blocks and its reduction techniques.
- To understand transient and steady state response analysis of a system.
- To carry out frequency response analysis using polar plot, Bode plot.
- To analyse a system using root locus plots.
- To study different system compensators and characteristics of linear systems.

Module-1

Introduction: Components of a control system, Open loop and closed loop systems.

Types of controllers: Proportional, Integral, Differential, Proportional-Integral, and Proportional- Integral-Differential controllers.

Modelling of Physical Systems: Mathematical Models of Mechanical, Electrical, Thermal, Hydraulic Systems. Module-2

Time domain performance of control systems: Typical test signal, Unit step response and time domain specifications of first order, second order system. Steady state error, error constants.

Module-3

Block diagram algebra, Reduction of block diagram, Signal flow graphs, Gain formula for signal flow graphs, State diagram from differential equations.

Module-4

Stability of linear control systems: Routh's criterion, Root locus, Determination of phase margin and gain margin using root locus.

Module-5

Stability analysis using Polar plot, Nyquist plot, Bode plot, Determination of phase margin and gain margin using Bode plot.

Assignment:

1.Study of On-Off Controller for Flow/ Temperature.

- 2. Study of Control Modes like P, PD, PI, PID for Pressure / Temperature / Flow.
- 3. Assignment on Root Locus, Bode Plots and Polar Plots.
- 4. Use of Software 'MATLAB' on the above topics.

Course Outcomes: At the end of the course, the student will be able to:

CO1: Identify the type of control and control actions.

- CO2: Develop the mathematical model of the physical systems.
- CO3: Estimate the response and error in response of first and second order systems subjected standard input signals.
- CO4: Represent the complex physical system using block diagram and signal flow graph and obtain transfer function.
- CO5: Analyse a linear feedback control system for stability using Hurwitz criterion, Routh's criterion and root Locus technique in complex domain.

CO6: Analyse the stability of linear feedback control systems in frequency domain using polar plots, Nyquist and Bode plots.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

SI. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textbo	ok/s			
1	Automatic Control Systems	Farid G., Kuo B. C	McGraw Hill Education	10th Edition,2018
2	Control systems	Manik D. N	Cengage	2017
Referer	nce Books			
1	Modern control Engineering	K. Ogeta	Pearson	5th Edition, 2010
2	Control Systems Engineering	Norman S Nice		Fourth Edition, 2007
3	Modern control Systems	Richard C Dorf	Pearson	2017
4	Control Systems Engineering	ljNagrath, M Gopal	New Age International (P) Ltd	2018
5	Control Systems Engineering	S Palani	Tata McGraw Hill Publishing Co Ltd	ISBN-13 978007067193

B. E. MECHANICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE)							
	SEMESTER - VII						
COMPL	JTER AIDED DESIGN AND N	IANUFACTURING					
Course Code	Course Code 18ME72 CIE Marks 40						
Teaching Hours /Week (L:T:P)	3:0:0	SEE Marks	60				
Credits	03	Exam Hours	03				
Course Learning Objectives:							
 To impart knowledge of CIM mathematical models 	1 and Automation and diffe	rent concepts of automation	by developing				
 To make students to unders 	tand the Computer Applica	tions in Design and Manufac	turing [CAD /				
CAM) leading to Computer i	integrated systems. Enable	them to perform various tra	nsformations of				
entities on display devices	integrated systems. Enable						
To oxnoso students to autor	mated flow lines assembly	linos Lino Balancing Tochnic	was and Elavibla				
Napufacturing Systems	fiated flow fiftes, assertibly	intes, the balancing rechnic	ues, and riexible				
To overses students to serve	utor aided process alongin	a matorial requirement al-	ning constitut				
 To expose students to comp releasing sta 	buter alded process plannin	g, material requirement plar	ining, capacity				
Io expose the students to C	NC Machine Tools, CNC pai	t programming, and industri	al robots.				
To introduce the students to	o concepts of Additive Man	ufacturing, Internet of Thing	s, and Industry				
4.0 leading to Smart Factory	/.						
Module-1							
problems. Automated Production Lines and A automated flow lines, buffer storage lines without storage, partial autom fundamentals of automated assemb	ssembly Systems: Fundame e, control of production line ation, analysis of automate	entals, system configurations e, analysis of transfer lines, a d flow lines with storage buf	s, applications, nalysis of flow fer,				
Module-2							
CAD and Computer Graphics Softw	vare: The design process, a	applications of computers in	design, software				
configuration, functions of graphics	package, constructing the	geometry.	-				
Transformations: 2D transformation	ns, translation, rotation and	scaling, homogeneous trans	formation matrix,				
concatenation, numerical problems	on transformations.	0, 0					
Computerized Manufacture Planni	ng and Control System: Co	mputer Aided Process Plann	ing, Retrieval and				
Generative Systems, benefits of CA	APP, Production Planning a	nd Control Systems, typical	activities of PPC				
System, computer integrated prod	uction management system	n, Material Requirement Pl	anning, inputs to				
MRP system, working of MRP, out	puts and benefits, Capacit	y Planning, Computer Aideo	d Quality Control,				
Shon floor control Module-3	· · · ·						
Flexible Manufacturing Systems: F	undamentals of Group Teo	hnology and Flexible Manuf	acturing Systems.				
types of FMS, FMS components, N control systems, FMS planning and Automatic parts identification system	Material handling and stor d design issues, Automate ms and data capture.	age system, applications, be d Storage and Retrieval Sys	enefits, computer stems, AS/RS and				
Line Balancing: Line balancing al	gorithms, methods of line	balancing, numerical pro	blems on largest				
candidate rule, Kilbridge and West	er method, and Ranked P	ositional Weights method, I	Mixed Model line				

balancing, computerized line balancing methods.

Module-4

Computer Numerical Control: Introduction, components of CNC, CNC programming, manual part programming, G Codes, M Codes, programming of simple components in turning, drilling and milling systems, programming with canned cycles. Cutter radius compensations.

Robot Technology: Robot anatomy, joints and links, common robot configurations, robot control systems, accuracy and repeatability, end effectors, sensors in robotics. Robot programming methods: on-line and off-line methods. Robot industrial applications: material handling, processing and assembly and inspection.

Module-5

Additive Manufacturing Systems: Basic principles of additive manufacturing, slicing CAD models for AM, advantages and limitations of AM technologies, Additive manufacturing processes: Photo polymerization, material jetting, binder jetting, material extrusion, Powder bed sintering techniques, sheet lamination, direct energy deposition techniques, applications of AM.

Future of Automated Factory: Industry 4.0, functions, applications and benefits. Components of Industry 4.0, Internet of Things (IOT), IOT applications in manufacturing, Big-Data and Cloud Computing for IOT, IOT for smart manufacturing, influence of IOT on predictive maintenance, industrial automation, supply chain optimization, supply-chain & logistics, cyber-physical manufacturing systems.

Course Outcomes: At the end of the course, the student will be able to:

CO1: Define Automation, CIM, CAD, CAM and explain the differences between these concepts. Solve simple problems of transformations of entities on computer screen

CO2: Explain the basics of automated manufacturing industries through mathematical models and analyze different types of automated flow lines.

CO3: Analyse the automated flow linestoreduce time and enhance productivity.

CO4: Explain the use of different computer applications in manufacturing, and able to prepare part programs

forsimple jobs on CNC machine tools and robot programming.

CO5: Visualize and appreciate the modern trends in Manufacturing like additive manufacturing, Industry 4.0 and applications of Internet of Things leading to Smart Manufacturing.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

SI No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year	
Textbo	Textbook/s				
1	Automation, Production Systems and Computer-Integrated Manufacturing	Mikell P Groover	Pearson Learning.	4 th Edition,2015	
2	CAD / CAM Principles and Applications	P N Rao	Tata McGraw-Hill	3 rd Edition, 2015	
3	CAD/CAM/CIM	VIDr. P. RadhakrishnanNew Age International Publishers, New Delhi.		3 rd edition	
Referer	nce Books				
1	"CAD/CAM"	Ibrahim Zeid	Tata McGraw Hill.		
2	Principles of Computer Integrated Manufacturing	S.Kant Vajpayee	, Prentice Hall of India, New Delhi.	1999	

3	Work Systems And The Methods, Measurement And Management of Work	Groover M. P.,Pearson	Prentice Hall	Upper Saddle River, NJ, 2007.
4	Computer Automation in Manufacturing	Boucher, T. O., Chapman & Hall	London, UK,	1996.
5	Introduction to Robotics: Mechanics And Control	Craig, J. J.	Addison-Wesley Publishing Company	2 nd Ed 1989.
6	Internet of Things (IoT): Digitize or Die: Transform your organization. Embrace the digital evolution. Rise above the competition	Nicolas Windpassinger	Amazon.	
7	Internet of Things: A Hands-on Approach"	ArshdeepBahga and Vijay Madisetti	Universities Press	
8	Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing,	Ian Gibson, David W. Rosen, Brent Stucker		2nd Ed. (2015)
9	Understanding Additive Manufacturing	Andreas Gebhardt, Hanser Publishers		2011
10	Understanding Additive Manufacturing",	Andreas Gebhardt,	Hanser Publishers,	2011

		GINEERING	
Choice Based Credi	t System (CBCS) and O	utcome Based Education ((OBE)
	SEMESTER –	VII	,
	Professional Elec	tive 2	
	DESIGN FOR MANU	FACTURE	
Course Code	18ME731	CIE Marks	40
Teaching Hours / Week (L:T:P)	3:0:0	SEE Marks	60
Credits	03	Exam Hours	s 03
Course Learning Objectives:			
To educate students on factors	s to be considered in d	esigning parts and compone	ents with focus on
manufacturability.			
 To expose the students to dim 	ensional tolerances, ge	ometric tolerances and tru	e position tolerance
techniques in manufacture.			
 To impart the knowledge on determined 	esign considerations fo	r designing components pr	oduced using various
machining operations like turn	ing, drilling, milling, gr	nding etc.	
• To educate the students on de	sign rules and recomm	endations for processes lik	e casting, welding,
forgings powder metallurgy an	d injection moulding.		
Module-1			
Introduction: Definition, need for DFN	A, DFM approach for a	ost reduction, general des	ign guide lines of DFM,
advantages and disadvantages, applic	ation of DFM in indust	ries, Design for Quality Ma	anufacturability, DFQM
approach, designing for economical pr	oduction. Design for Ex	cellence (DFX).	
Engineering Tolerancing: Basics of c	limensional tolerancin	g, Redundancy, tolerance	allocation, Review of
relationship between attainable tolera	nce grades and differe	nt machining processes. Ge	eometrical tolerances.
Process capability, mean, variance, sl	kewness, kurtosis, pro	cess capability indices- C _p ,	, and C _{pk} . Cumulative
effect of tolerance- Sure fit law and tru	incated normal law, pr	oblems.	
Module-2			
True positional theory: Comparison	between coordinate a	nd true position method of	f feature location. True
position tolerance- virtual size concep	t, concepts of datum	and changing datum, floati	ng and fixed fasteners,
projected tolerance zone and function	al gages. Concept of	Zero true position tolerand	e. Simple problems on
true position tolerancing.			
Selective Assembly: Interchangeable r	part manufacture and s	elective assembly. Deciding	g the number of groups
-model-1: group tolerance of mating p	arts equal, model- 2:	total and group tolerances	of shaft equal. Control
of axial play- introducing secondary ma	achining operations, ar	d laminated shims; exampl	les.
Module-3		, - F	
Datum Features: Functional datum, da	tum for manufacturing	g, changing the datum; exai	mples.

Component Design:Design features to facilitate machining: drills, milling cutters, keyways, Doweling procedures, counter sunk screws, Reduction of machined area, simplification by separation, simplification by amalgamation, Design for machinability, Design for economy, Design for clampability, Design for accessibility. Designing for heat treatment, roller burnishing, and economical de-burring.

Module-4

Design of components with casting considerations: Pattern, mould, and parting line. Cored holes and machined holes. Identifying the possible and probable parting lines. Castings requiring special sand cores. Designing to obviate sand cores.

Welding considerations: Advantages of weldments over other design concepts, design requirements and rules, redesign of components for welding; case studies.

Engineering Design for

Design for Economical

Processes and Materials of

Manufacture

Production

Manufacture

3

4

5

Modu	le-5			
Forgin	g considerations -requirements a	nd rules-redesign of	components for forging and case	e studies.
Design	of components for powder meta	allurgy - requirement	s and rules-case studies.	
Design	of components for injection mo	ulding- requirement	s and rules-case studies.	
Course	• Outcomes: At the end of the cou	urse, the student will	be able to:	
CO1: S	elect proper materials and manuf	acturing processes for	or designing products/componer	its by applying the
re	elevant principles for ease and ec	onomic production.		
CO2: lo	dentify faulty design factors leadir	ng to increased costs	in producing mechanical compo	nents.
CO3: A	pply appropriate design tolerance	es – dimensional, geo	pmetric and true position toleran	ces for the
р	roduction processes of mechanic	al components.		
CO4: A	pply the concepts related to redu	icing machined areas	, simplification by amalgamation	and separation,
cl	ampability, accessibility etc., in th	e design of mechani	cal components.	
CO5: A	analyse the design of castings, wel	dments, forgings, po	wder metallurgy components an	d suggest design
r	nodifications to reduce the cost.			
Questi	ion paper pattern:			
• •	The question paper will have ten f	full questions carryin	g equal marks.	
•	Each full question will be for 20 m	arks.		
• •	There will be two full questions (w	vith a maximum of fo	our sub- questions) from each mo	dule.
•	Each full question will have sub- q	uestion covering all t	the topics under a module.	
• -	The students will have to answer f	five full questions. se	lecting one full question from ea	ch module
SI No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textbo	pok/s	I	1	-
1	Designing for Manufacture	Peck H	Pitman Publications	1983
2	Engineering Design: A	Dieter, G.E.	McGraw Hill Co.Ltd	2000
	Materials and processing			
2	Approach	Bralla Jamas C	McCrow Hill Now York	1096
5	for Manufacturing: A Practical	Bralla, James G.	McGraw Hill, New York	1980
	Guide to Low-cost Production			
Refere	ence Books	1	1	1
1	Engineering Design	Eggert, R.J	Pearson Education, Inc., New	2005
			Jersey	
2	Engineering Design	Matousek , R	Blackie and Son Limited, Glasgow	1967

Kalandar Saheb,

S.D and Prabhakar, O.

Trucks, H.E.

Linberg, Roy A.

ISPE

U.S.A.

Mich., Dearborn, SME

Allyn and Bacon, Boston,

1999

2nd ed.,1987

4th ed., 1990

B. E. MECHANICAL ENGINEERING					
Choice Based Credit System (CBCS) and Outcome Based Education (OBE)					
SEMESTER – VII					
	Professional Elect	ive 2			
	AUTOMATION & RO	BOTICS			
Course Code	Course Code 18ME732 CIE Marks 40				
Teaching Hours /Week (L:T:P) 3:2:0 SEE Marks 60					
Credits	Credits 03 Exam Hours 03				

Course Learning Objectives:

- To identify potential areas for automation and justify need for automation.
- To select suitable major control components required to automate a process or an activity
- To study the various parts of robots and fields of robotics.
- To study the various kinematics and inverse kinematics of robots.
- To study the control of robots for some specific applications.

Module-1:

Introduction to automation:

Basic elements of an automated system, advanced automation functions, levels of automation, process industries versus discrete manufacturing industries, continuous versus discrete control, computer process control. Hardware components for automation and process control, sensors, actuators, analog to digital converters, digital to analog converters, input/output devices for discrete data

Module-2:

Automated production lines:

Fundamentals of automated production lines, application of automated production lines, analysis of transfer lines, automated assembly systems, fundamentals of automated assembly systems, quantitative analysis of assembly systems, automatic identification methods, barcode technology, radio frequency identification, other AIDC technologies

Module-3: Industrial Robotics

Robotic configuration, robot anatomy and related attributes, robot control systems, end effectors, sensors in robotics, industrial robot applications, robot accuracy and repeatability, different types of robots, various generations of robots, degrees of freedom – Asimov's laws of robotics, dynamic stabilization of robots.

Module-4: Spatial descriptions and transformations

Robot actuators and Feedback components: Actuators: Pneumatic, Hydraulic actuators, electric & stepper motors, comparison. Position sensors –potentiometers, resolvers, encoders –Velocity sensors, Tactile sensors, Proximity sensors. Manipulator Kinematics: Homogeneous transformations as applicable to rotation and translation -D-H notation, Forward and inverse kinematics.

Module-5: Robot programming

Introduction, levels of robot programming, requirements of robot programming language, problems pertaining to robot programming languages, offline programming systems, central issues in OLP systems, automating subtasks in OLP systems, simple programs on robot applications.

Course Outcomes: At the end of the course, the student will be able to:

CO1: Translate and simulate a real time activity using modern tools and discuss the Benefits of automation. CO2: Identify suitable automation hardware for the given application.

CO3: Recommend appropriate modelling and simulation tool for the given manufacturing Application.

CO4: Explain the basic principles of Robotic technology, configurations, control and Programming of Robots.

CO5: Explain the basic principles of programming and apply it for typical Pick & place, Loading & unloading and palletizing applications

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.

- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

SI. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textboo	k/s			•
1	Computer Integrated Manufacturing	Mikell P. Groover	Pearson	3rd edition, 2009
2	Introduction to robotics mechanics and control	John J. Craig	Pearson	3rd edition, 2009
Reference	e Books	•		
1	Robotics for Engineers	Yoram Koren	McGraw Hill International	1st edition, 1985.
2	Industrial Robotics	Weiss, Nagel	McGraw Hill International	2nd edition, 2012
3	Robotic Engineering - An Integrated approach	Klafter, Chmielewski and Negin	РНІ	1st edition, 2009
4	Computer Based Industrial Control	Krishna Kant	EEE-PHI	2nd edition,2010
5	An Introduction to Automated Process Planning System	Tiess Chiu Chang & Richard A. Wysk.		

B. E. MECHANICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER – VII						
	Professional Elective 2					
	COMPUTATIONAL FLUID DYNAMICS					
Course Code	Course Code 18ME733 CIE Marks 40					
Teaching Hours /Week (L:T:P)	3:0:0	SEE Marks	60			
Credits	03	Exam Hours	03			

Course Learning Objectives:

- Study the governing equations of fluid dynamics
- Learn how to formulate and solve Euler's equation of motion.
- Become skilled at Representation of Functions on Computer
- Solve computational problems related to fluid flows

Module-1

Introduction to CFD and Governing Equations

Need of CFD as tool, role in R&D, continuum, material or substantial derivative or total derivative, gradient, divergence and curl operators, Linearity, Principle of Superposition. Derivation of Navier-Stokes equations in control volume (integral form) and partial differential form, Euler equations (governing inviscid equations). Mathematical classification of PDE (Hyperbolic, Parabolic, Elliptic). Method of characteristics, Introduction to Riemann Problem and Solution Techniques.

Module-2

One-dimensional Euler's equation

Conservative, Non-conservative form and primitive variable forms of Governing equations. Flux Jacobian Is there a systematic way to diagona lize '**A**'. Eigen values and Eigenvectors of Flux Jacobian. Decoupling of Governing equations, introduction of characteristic variables. Relation between the two non-conservative forms. Conditions for genuinely nonlinear characteristics of the flux Jacobian.

Introduction to Turbulence Modelling: Derivation of RANS equations and k-epsilon model.

Module-3

Representation of Functions on Computer

Need for representation of functions, Box Function, Hat Function, and Representation of sinx using hat functions: Aliasing, high frequency, low frequency. Representation error as a global error. Derivatives of hat functions, Haar functions, Machine Epsilon. Using Taylor series for representation of Derivatives.

Module-4

Finite difference method – Applied to Linear Convection equation, Laplace Equations, Convection Diffusion equations, Burgers equations, modified equations. Explicit methods and Implicit methods – as applied to applied to linear convection equation, Laplace equations, convection-diffusion equation^o FTCS, FTFS, FTBS, CTCS • Jacobi Method, Gauss-Siedel, Successive Over Relaxation Method, TDMA• Von Naumann stability (linear stability) analysis. Upwind Method in Finite Difference method.

Module-5

Finite volume method Finite volume method. Finding the flux at interface.

Central schemes - Lax-Friedrichs Method, Lax-Wendroff Method, Two-Step Lax-Wendroff Method and Mac Cormack Method

Upwind Method in Finite Volume methods - Flux Splitting Method Steger and Warming, vanLeer, Roe's Method and finding Roe's Averages.

Course Outcomes:

At the end of the course the student will be able to:

CO1: Understand mathematical characteristics of partial differential

equations.

CO2: Explain how to classify and computationally solve Euler and Navier-Stokes equations.

- CO3: Make use of the concepts like accuracy, stability, consistency of numerical methods for the governing equations.
- CO4: Identify and implement numerical techniques for space and time integration of partial differential equations.
- CO5: Conduct numerical experiments and carry out data analysis.

CO6: Acquire basic skills on programming of numerical methods used to solve the Governing equations.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

SI. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textbo	ok/s			
1	Computational Fluid Dynamics	T.j.chung	Cambridge University Press	
2	Computational fluid dynamics and heat transfer	Ghoshdastidar	Cengage learning	2017
3	Numerical Computation of Internal and External Flows: The Fundamentals of Computational Fluid Dynamics – Vol 1 & Vol 2		Butterworth- Heinemann	2007
4	Numerical Heat Transfer and Fluid Flow	SuhasPatankar	Taylor and Francis Publisher	
5	Introduction Computational FluidAtul SharmaWiely PublisherDynamics -Development,Atul SharmaWiely PublisherApplication and AnalysisAtul SharmaAtul Sharma			
Refere	nce Books	•		
1	Computational fluid mechanics and heat transfer	Pletcher, r. H., Tannehill, j. C., Anderson, d.	Crc press, ISBN 9781591690375	3rd ed, 2011
2	Fundamentals of engineering numerical analysis	Moin, p	Cambridge university press, , ISBN 9780521805261	2nd ed, 2010
3	Numerical methods for engineering application	Ferziger, j. H	Wiley	2nd ed, 1998
4	Computational methods for fluid dynamics	Ferziger, j. H., Peric, m	Springer	3rd ed
5	Numerical methods for conservation laws	eth Zurich, birkhauser		pp-199
6	Practical Introduction	Eleuterio F Toro	Springer	

B. E. MECHANICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER – VII

Professional Elective 2

TOTAL QUALITY MANAGEMENT				
Course Code	18ME734	CIE Marks	40	
Teaching Hours /Week (L:T:P)	3:0:0	SEE Marks	60	
Credits	03	Exam Hours	03	

Course Learning Objectives:

- Understand various approaches to TQM
- Understand the characteristics of quality leader and his role.
- Develop feedback and suggestion systems for quality management.
- Enhance the knowledge in Tools and Techniques of quality management.

Module-1

Principles and Practice: Definition, basic approach, gurus of TQM, TQM Framework, awareness, defining quality, historical review, obstacles, benefits of TQM. Quality Management Systems: Introduction, benefits of ISO registration, ISO 9000 series of standards, ISO 9001 requirements.

Module-2

Leadership: Definition, characteristics of quality leaders, leadership concept, characteristics of effective people, ethics, the Deming philosophy, role of TQM leaders, implementation, core values, concepts and framework, strategic planning communication, decision making,

Module-3

Customer Satisfaction and Customer Involvement: Customer Satisfaction: customer and customer perception of quality, feedback, using customer complaints, service quality, translating needs into requirements, customer retention, case studies. Employee Involvement – Motivation, employee surveys, empowerment, teams, suggestion system, recognition and reward, gain sharing, performance appraisal, unions and employee involvement, case studies.

Module-4

Continuous Process Improvement: process, the Juran trilogy, improvement strategies, types of problems, the PDSA Cycle, problem-solving methods, Kaizen, reengineering, six sigma, case studies. Statistical Process Control: Pareto diagram, process flow diagram, cause and effect diagram, check sheets, histograms, statistical fundamentals, Control charts, state of control, out of control process, control charts for variables, control charts for attributes, scatter diagrams, case studies.

Module-5

Total Productive Maintenance (TPM): Definition, Types of Maintenance, Steps in introduction of TPM in an organization, Pillars of TPM – 5S, Jishu Hozen, Quality Maintenance, Planned Maintenance.

Quality by Design (QbD): Definition, Key components of QbD, Role of QbD in Pharmaceutical Industry, Benefits and Challenges of QbD.

Environmental Management Systems (EMS): Definition, Basic EMS, EMS under ISO 14001, Costs and Benefits of EMS.

Course Outcomes: At the end of the course, the student will be able to:

CO1: Explain the various approaches of TQM

CO2: Infer the customer perception of quality

CO3: Analyse customer needs and perceptions to design feedback systems.

CO4: Apply statistical tools for continuous improvement of systems

CO5: Apply the tools and technique for effective implementation of TQM.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module

SI No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textboo	k/s			
1	Total Quality Management	Dale H. Besterfield	Pearson Education India,	Edition 03. ISBN: 8129702606,
2	Total Quality Management for Engineers	M. Zairi	Wood head Publishing	ISBN:185573024 3
Reference	ce Books			
1	Managing for Quality and Performance Excellence	James R. Evans and William M Lindsay	Cengage Learning.	9th edition
2	Four revolutions in management	Shoji Shiba, Alan Graham, David Walden	Oregon	1990
3	Organizational Excellence through TQM	H. Lal	New age Publications	2008
4	Engineering Optimization Methods and Applications	A Ravindran, K, M. Ragsdell	Willey India Private Limited	2nd Edition,2006
5	Introduction to Operations Research- Concepts and Cases	F.S. Hillier. G.J. Lieberman	Tata McGraw Hill	9 th Edition, 2010

B. E. MECHANICAL ENGINEERING				
Choice Based Credi	: System (CBCS) and Outcome Base	d Education (OBE)		
	SEMESTER – VII			
	Professional Elective 2			
	OPERATIONS RESEARCH			
Course Code	18ME735	CIE Marks	40	
Teaching Hours /Week (L:T:P)	3:0:0	SEE Marks	60	
Credits	03	Exam Hours	03	
Course Learning Objectives:				
To enable the students to un	derstand the scientific methods of p	providing various d	lepartments of an	
organization with a quantitati	ve basis of decision making.			
To enable the students to u	nderstand the importance of vario	ous tools and tech	iniques in finding	
optimal solutions to proble	ms involving limited resources in	the form of Me	n, Materials and	
machinery.				
Module-1				
Introduction: Evolution of OR, Defin	itions of OR, Scope of OR, Applic	ations of OR, Pha	ises in OR study.	
Characteristics and limitations of OR	, models used in OR, Linear Progra	imming Problem (LPP), Generalized	
LPP- Formulation of problems as L.P.P	. Solutions to LPP by graphical meth	od (Two Variables)		
Module-2				
LPP: Simplex method, Canonical and	Standard form of LP problem, sla	ack, surplus and a	rtificial variables,	
Solutions to LPP by Simplex method	, Big-M Method and two-phase Si	mplex Method, De	egeneracy in LPP.	
Concept of Duality, writing Dual of giv	en LPP. Solutions to L.P.P by Dual Sir	mplex Method.		
Module-3				
Transportation Problem: Formulation	of transportation problem, types,	initial basic feasil	ole solution using	
North-West Corner rule, Vogel's App	oximation method. Optimality in T	ransportation pro	blem by Modified	
Distribution (MODI) method. Unbala	nced T.P. Maximization T.P. Degen	neracy in transpo	rtation problems,	
application of transportation problem	n. Assignment Problem-Formulation	, Solutions to assi	gnment problems	
by Hungarian method, Special cas	es in assignment problems, unba	alanced, Maximiza	ation assignment	
problems. Travelling Salesman Proble	m (TSP). Difference between assign	nment and T.S.P, F	inding best route	
by Little's method. Numerical Problem	15.			
Module-4				
Network analysis: Introduction, Cons	truction of networks, Fulkerson's r	ule for numbering	g the nodes, AON	
and AOA diagrams; Critical path meth	od to find the expected completion	time of a project,	determination of	
floats in networks, PERT networks,	determining the probability of co	mpleting a project	ct, predicting the	
completion time of project; Cost an	alysis in networks. Crashing of net	works- Problems.	Queuing Theory:	
Queuing systems and their characte	ristics, Pure-birth and Pure-death r	models (only equa	ations), Kendall &	
Lee's notation of Queuing, empirical c	ueuing models – Numerical on M/N	1/1 and M/M/C Qu	euing models.	
Module-5				
Game Theory: Definition, Pure Strate	gy problems, Saddle point, Max-Mi	n and Min-Max cr	iteria, Principle of	
Dominance, Solution of games with	Saddle point. Mixed Strategy pro	oblems. Solution of	of 2X2 games by	
Arithmetic method, Solution of 2Xn m and mX2 games by graphical method. Formulation of games.				
Sequencing: Basic assumptions, Johnson's algorithm, sequencing 'n' jobs on single machine using priority				
rules, sequencing using Johnson's ru	ile-'n' jobs on 2 machines, 'n' job	os on 3 machines	, 'n' jobs on 'm'	
machines. Sequencing of 2 jobs on 'm'	machines using graphical method.			
Course Outcomes: At the end of the c	ourse, the student will be able to:			
CO1: Understand the meaning, definitions, scope, need, phases and techniques of operations research.				
CO2: Formulate as L.P.P and derive op	timal solutions to linear programmi	ng problems by gra	aphical method,	
Simplex method, Big-M method	and Dual Simplex method.			
CO3: Formulate as Transportation	and Assignment problems and	d derive optimu	m solutions for	
transportation,				

Assignment and travelling salesman problems.

- CO4: Solve problems on game theory for pure and mixed strategy under competitive environment.
- CO5: Solve waiting line problems for M/M/1 and M/M/K queuing models.
- CO6: Construct network diagrams and determine critical path, floats for deterministic and PERT networks including crashing of Networks
- CO7: Determine minimum processing times for sequencing of n jobs-2 machines, n jobs-3 machines, n jobs-m machines and 2 jobs-n machines using Johnson's algorithm.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

SI. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year	
Textboo	k/s				
1	Operations Research	P K Gupta and D S Hira	S. Chand and Company LTD. Publications, New Delhi	2007	
2	Operations Research, An Introduction	Hamdy A. Taha	PHI Private Limited	Seventh Edition, 2006	
Reference	Reference Books				
1	Operations Research, Theory and Applications	J K Sharma	Trinity Press, Laxmi Publications Pvt.Ltd.	Sixth Edition, 2016	
2	Operations Research	Paneerselva n	PHI		
3	Operations Research	A M Natarajan, P Balasubram ani	Pearson Education,	2005	
4	Introduction to Operations Research	Hillier and Lieberman	McGraw Hill	8thEd	

B. E. MECHANICAL ENGINEERING					
Choice Based Cr	Choice Based Credit System (CBCS) and Outcome Based Education (OBE)				
	SEMESTER – V	11			
	Professional Elect	ive 3			
ADDITIVE MANUFACTURING					
Course Code	18ME741	CIE Marks	40		
Teaching Hours /Week (L:T:P) 3:0:0 SEE Marks 60					
Credits 03 Exam Hours 03					
Course Learning Objectives:					

- To know the principle methods, areas of usage, possibilities and limitations of the Additive Manufacturing technologies.
- To be familiar with the characteristics of the different materials those are used in Additive Manufacturing.
- To know the principles of polymerization and powder metallurgy process, extrusion-based system printing processes, sheet lamination processes, beam deposition processes, direct write technologies and Direct Digital Manufacturing.
- To get exposed to process selection, software issues and post processing.

Module-1

Introduction and basic principles: Need for Additive Manufacturing, Generic AM process, stereoli tho graphy or 3dprinting, rapid proto typing the benefits of AM, distinction between AM and CNC machining, other related technologies- reverse engineering technology.

Development of Additive Manufacturing Technology: Introduction, computers, computer-aidedde sign technology, other associated technologies, the use of layers, classification of AM processes, metals ystems, hybrid systems, milestones in AM development.

Additive Manufacturing Process chain: Introduction, the eight steps in additive manufacture, variations from one AM machine to another ,metal systems, maintenance of equipment, materials handling issues, design for AM, and application areas.

Module-2

Photo polymerization processes: Stereolitho graphy (SL), Materials, SL resin curing process, Micro-stereoli thography, Process Benefits and Drawbacks, Applications of Photo polymerization Processes.

Powder bedfusion processes: Introduction, Selective laser Sintering (SLS), Materials, Powder fusion mechanism, SLS Metal and ceramic part creation, Electron Beam melting (EBM), Process Benefits and Drawbacks, Applications of Powder Bed Fusion Processes.

Extrusion-based systems: Fused Deposition Modelling (FDM), Principles, Materials, Plotting and path control, Bio-Extrusion, Process Benefits and Drawbacks, Applications of Extrusion-Based Processes.

Module-3

Printing Processes: evolution of printing as an additive manufacturing process, research achievements in printing deposition, technical challenges of printing, printing process modeling, material modification methods, three-dimensional printing, advantages of binder printing

Sheet Lamination Processes: Materials, Laminated Object Manufacturing (LOM), Ultrasonic Consolidation (UC), Gluing, Thermal bonding, LOM and UC applications.

Beam Deposition Processes: introduction, general beam deposition process, description material delivery, BD systems , process parameters, typical materials and microstructure, processing–structure–properties relationships, BD benefits and drawbacks.

Direct Write Technologies: Background ,ink -basedDW,laser transfer, DW thermals pray,DW beam deposition,DW liquid-phase directde position.

Module-4

Guidelines for Process Selection: Introduction, selection methods for apart, challenges of selection, example system for preliminary selection, production planning and control.

Software issues for Additive Manufacturing: Introduction, preparation of cad models – the STL file, problems with STL files, STL file manipulation.

Post- Processing: Support material removal, surface texture improvements, preparation for use as a pattern, property enhancements using non-thermal techniques and thermal techniques.

Module-5

The use of multiple materials in additive manufacturing: Introduction, multiple material approaches, discrete multiple material processes, porous multiple material processes, blended multiple material processes, commercial applications using multiple materials, future directions.

AM Applications: Functional models, Pattern for investment and vacuum casting, Medical models, art models, Engineering analysis models, Rapid tooling, new materials development, Bi-metallic parts, Remanufacturing. Application: Examples for Aerospace, defense, automobile, Bio-medical and general engineering industries.

Direct digital manufacturing: Align Technology, siemens and phonak, DDM drivers, manufacturing vs. prototyping, life- cycle costing, future of direct digital manufacturing.

Course Outcomes: At the end of the course the student will be able to:

- CO1: Demonstrate the knowledge of the broad range of AM processes, devices, capabilities and materials that are available.
- CO2: Demonstrate the knowledge of the broad range of AM processes, devices, capabilities and materials that are available.
- CO3: Understand the various software tools, processes and techniques that enable advanced/additive manufacturing.
- CO4: Apply the concepts of additive manufacturing to design and create components that satisfy product development/prototyping requirements, using advanced/additive manufacturing devices and processes.
- CO6: Understand characterization techniques in additive manufacturing.

CO7: Understand the latest trends and business opportunities in additive manufacturing.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

SI. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
Textbook,	Textbook/s						
1	Additive Manufacturing Technologies Rapid Prototyping to Direct Digital Manufacturing	I. Gibson l D. W. Rosen l B. Stucker	Springer New York Heidelberg Dordrecht, London	ISBN: 978-1- 4419-1119-3 e-ISBN: 978- 1-4419- 1120-9 DOI 10.1007/978 -1-4419- 1120-9			
Reference	Books						
1	"Rapid Prototyping: Principles & Applications	Chua Chee Kai, Leong Kah Fai	World Scientific	2003			
2	Rapid Prototyping: Theory & Practice	Ali K. Kamrani,	Springer	2006			

		EmandAbouel Nasr,		
3	Rapid Manufacturing: The Technologies and Applications of Rapid Prototyping and Rapid Tooling"	D.T. Pham, S.S. Dimov	Springer	2001
4	Rapid Prototyping: Principles and Applications in Manufacturing	RafiqNooran	John Wiley & Sons	2006
5	Additive Manufacturing Technology	Hari Prasad, A.V.Suresh	Cengage	2019
6	Understanding additive manufacturing: rapid prototyping, rapid tooling, rapid manufacturing	Andreas Gebhardt	Hanser Publishers	2011

B. E. MECHANICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER – VII Professional Elective 3					
EMERGING	EMERGING SUSTAINABLE BUILDING COOLING TECHNOLOGIES				
Course Code	18ME742	CIE Marks	40		
Teaching Hours /Week (L:T:P)3:0:0SEE Marks60					
Credits	03	Exam Hours	03		
	•	·			

Course Learning Objectives:

- To provide an overview of emerging delivery systems for high performance green buildings and the basis on which their sustainability can be evaluated
- To know the concepts of calculations of heating and cooling loads and the related economics.
- To learn the importance of green fuels and its impact on environment.
- To expose the students to sustainable cooling technologies.

Module-1

Social and Environmental Issues related to conventional Refrigeration and Air conditioning: Climate Change and energy poverty implications of energy consumption and refrigerants use by conventional Vapor-Compression based RAC technologies, Global and Indian environmental, energy efficiency and green building policies, laws and rules warranting a trajectory shift in the RAC economy, Introduction to Thermal comfort as an 'ends' and cooling systems as a 'means', Socio-economic and environmental benefits of a Negawatt approach to energy conservation vs. a Megawatt approach towards power generation.

Module-2

Thermal Comfort, Climate Analysis and Psychrometry: The 'human thermal comfort' lens and its implications for cooling system design, Progressive models for addressing human thermal comfort needs, Thermodynamics of human body, Factors affecting human comfort, Introduction to the ASHRAE Std. 55, Adaptive Comfort Model and the Indian Model for Adaptive Comfort (IMAC) and its implications for mitigating climate change and energy consumption from cooling technologies, Tools for predicting thermal comfort in buildings, Principles and tools for climate analysis, Composition of Psychrometric Charts, Psychrometric processes of conventional and sustainable cooling technologies and representation on psychrometric chart, Application of psychrometry to design conventional and sustainable cooling technologies.

Indoor Air Quality and Building Cooling Load Modelling:

Addressing trade-offs between indoor air quality requirements, daylighting needs, and solar heat gain

Module-3

Refrigeration Systems and Refrigerants:

Thermodynamics of Vapor Compression Refrigeration (VCR) and Vapor Absorption Machine (VAM) Cycles, Equipment used in commercial and residential VCR and VAM systems, Physical, Chemical, Thermodynamic and Environmental properties of Refrigerants and Refrigerant mixtures (zeotropic and azeotropic mixtures) used in conventional VCR system, Absorbent – Refrigerant combinations (Water-Ammonia and Lithium-Bromide) used in VAM systems, Physical, Chemical, Thermodynamic and Environmental properties of emerging Natural Refrigerants for VCR systems.

Module-4

Air conditioning:

Air conditioning demand scenarios for India and associated health, social justice, energy access, and environmental Implications for its peoples and communities, Potential sustainable air conditioning scenarios for India, Heat transfer and psychrometric principles of air conditioning cycles, Engineering principles of air conditioning components, Air conditioning coefficient-of-performance calculation, Energy efficient air conditioning system, Energy and greenhouse gas emissions-based performance comparison of natural refrigerant and f-gas based air conditioners.

Module-5

Sustainable Cooling Technologies:

Radical social justice fostering, energy conservation, and climate change mitigation potential of natural cooling, Design principles of natural and sustainable cooling systems, Science and engineering design principles of a) Direct, Indirect, and Hybrid (Direct-Indirect and DX) Evaporative Cooling technology, b) Structure Cooling, c) Radiant Cooling Systems, and d) Solar VAM technology, Basic equipment sizing calculations, System performance assessment methods, Comparative energy consumption, greenhouse gas emissions and life-cycle cost case studies for residential and commercial applications of conventional and sustainable cooling technologies.

Course Outcomes: At the end of the course, the student will be able to:

- CO1: Empathize with sustainable cooling as a means of enhancing social justice in India and mitigating climate change through their intellectual capabilities and ethical orientation
- CO2: Compute and Interpret cooling and heating loads in a building and how they could be efficiently managed by using building energy modelling software
- CO3: Estimate the performance of airconditioning systems using the principles of thermodynamics, heat transfer, and psychometry

CO4: Calculate and interpret the energy, cost, and greenhouse gas emissions performance of conventional

and sustainable cooling technologies.

Co6: Conduct building and sustainable cooling modelling projects on a sophisticated building energy modelling software.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

		1	1	
SI. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textbo	ok/s			
1	Refrigeration and Airconditioning	C P Arora	Tata McGraw Hill	3 rd Edition
2	Heating, Ventilating and Airconditioning	Faye C McQuiston, Jerald D. Parker, Jeffrey D. Spitler	Wiley Indian Private Ltd.	
Referer	nce Books			
1	Radiant Heating and Cooling Handbook	Richard D. Watson	McGraw-Hill Publication	2002
Link: <u>ht</u>	tps://www.accessengineeringlibrary.	com/browse/radian	t-heating-and-cooling-	
<u>handbo</u>	<u>ok#p2000a97e9970iii001</u>			
2	Evaporative Cooling		CAREL	
Link: ht	tp://www.carel.com/-evaporative-co	oling-book		

B. E. MECHANICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER – VII				
Professional Elective 3				
THEORYOF PLASTICITY				
Course Code	18ME743	CIE Marks	40	
Teaching Hours /Week (L:T:P)3:0:0SEE Marks60				
Credits 03 Exam Hours 03				
Course Learning Objectives:				

rse Learning Objectives:

- To introduce the concepts of Plasticity and mechanism of plastic deformation in metals.
- To expose the students to elasto-plastic problems involving plastic deformation of beams and bars.
- To introduce the concepts of slip line field theory.

Module-1

Brief review of fundamentals of elasticity: Concept of stress, stress invariants, principal Stresses, octahedral normal and shear stresses, spherical and deviatoric stress, stress transformation; concept of strain, engineering and natural strains, octahedral strain, deviator and spherical strain tensors, strain rate and strain rate tensor, cubical dilation, generalized Hooke's law, numerical problems.

Module-2

Plastic Deformation of Metals: Crystalline structure in metals, mechanism of plastic deformation, factors affecting plastic deformation, strain hardening, recovery, re crystallization and grain growth, flow figures or Luder's cubes.

Yield Criteria: Introduction, yield or plasticity conditions, Von Mises and Tresca criterion, geometrical representation vield surface vield locus (two-dimensional stress space) experimental evidence for vield Module-3

Stress Strain Relations: Idealised stress-strain diagrams for different material models, empirical equations, Levy-Von Mises equation, Prandtl -Reuss and Saint Venant theory, experimental verification of Saint Venant's theory of plastic flow. Concept of plastic potential, maximum work hypothesis, mechanical work for deforming a plastic substance.

Module-4

Bending of Beams: Stages of plastic yielding, analysis of stresses, linear and nonlinear stress strain curve, problems.

Torsion of Bars: Introduction, plastic torsion of a circular bar, elastic perfectly plastic material, elastic work hardening of material, problems.

Module-5

Slip Line Field Theory: Introduction, basic equations for incompressible two-dimensional flows, continuity equations, stresses in conditions of plain strain, convention for slip lines, geometry of slip line field, properties of the slip lines, construction of slip line nets.

Course Outcomes: At the end of the course the student will be able to:

CO1: Understand stress, strain, deformations, relation between stress and strain and plastic deformation in solids.

CO2: Understand plastic stress-strain relations and associated flow rules.

CO3: Perform stress analysis in beams and bars including Material nonlinearity.

CO4: Analyze the yielding of a material according to different yield theory for a given state of stress.

CO5: Interpret the importance of plastic deformation of metals in engineering problems.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.

- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

SI. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
Textbo	Textbook/s					
1	Theory of Plasticity	Chakraborty	Elsevier	3rd Edition		
2	Theory of Plasticity and Metal	Sadhu Singh	Khanna Publishers, Delhi			
	forming Process					
Refere	nce Books					
1	Engineering Plasticity-Theory and	R.A.C. Slater	McMillan Press Ltd.			
	Application to Metal Forming					
	Process					
2	Basic Engineering Plasticity	DWA Rees	Elsevier	1st Edition		
3	Engineering Plasticity	W. Johnson and	Van NoStrand Co. Ltd	2000		
		P. B. Mellor				
4	Advanced Mechanics of solids	L. S. Srinath	Tata Mc. Graw Hill	2009		

B. E. MECHANICAL ENGINEERING				
Choice Based Credit System (CBCS) and Outcome Based Education (OBE)				
SEMESTER – VII				
	Professional Elective 3			
	MECHATRONI	CS		
Course Code	18ME744	CIE Marks	40	
Teaching Hours /Week (L:T:P)3:0:0SEE Marks60				
Credits 03 Exam Hours 03				

Course Learning Objectives:

- To acquire a strong foundation in science and focus in mechanical, electronics, control, software, and computer engineering, and a solid command of the newest technologies.
- To understand the evolution and development of Mechatronics as a discipline.
- To substantiate the need for interdisciplinary study in technology education
- To understand the applications of microprocessors in various systems and to know the functions of each element.
- To demonstrate the integration philosophy in view of Mechatronics technology
- To be able to work efficiently in multidisciplinary teams.

Module-1

Introduction: Scope and elements of mechatronics, mechatronics design process, measurement system, requirements and types of control systems, feedback principle, Basic elements of feedback control systems, Classification of control system. Examples of Mechatronics Systems such as Automatic Car Park system, Engine management system, Antilock braking system (ABS) control, Automatic washing machine.

Transducers and sensors: Definition and classification of transducers, Difference between transducer and sensor, Definition and classification of sensors, Principle of working and applications of light sensors, Potentiometers, LVDT, Capacitance sensors, force and pressure sensors, Strain gauges, temperature sensors, proximity switches and Hall Effect sensors.

Module-2

Signal Conditioning: Introduction – Hardware – Digital I/O, Analog to digital conversions, resolution, Filtering Noise using passive components – Registers, capacitors, amplifying signals using OP amps. Digital Signal Processing – Digital to Analog conversion, Low pass, high pass, notch filtering. Data acquisition systems (DAQS), data loggers, Supervisory control and data acquisition (SCADA), Communication methods.

Electro Mechanical Drives:Relays and Solenoids – Stepper Motors – DC brushed motors – DC brushless motors – DC servo motors – 4-quadrant servo drives, PWM's – Pulse Width Modulation.

Module-3

Microprocessor & Microcontrollers: Introduction, Microprocessor systems, Basic elements of control systems, Microcontrollers, Difference between Microprocessor and Microcontrollers.

Microprocessor Architecture: Microprocessor architecture and terminology-CPU, memory and address, I/O and Peripheral devices, ALU, Instruction and Program, Assembler, Data Registers, Program Counter, Flags, Fetch cycle, write cycle, state, bus interrupts. Intel's 8085A Microprocessor.

Module-4

Programmable Logic Controller: Introduction to PLCs, Basic structure of PLC, Principle of operation, input and output processing, PLC programming language, ladder diagram, ladder diagrams circuits, timer counters, internal relays, master control, jump control, shift registers, data handling, and manipulations, analogue input and output, selection of PLC for application.

Application of PLC control: Extending and retracting a pneumatic piston using latches, control of two pneumatic pistons, control of process motor, control of vibrating machine, control of process tank, control of conveyer motor etc.

Module-5

Mechatronics in Computer Numerical Control (CNC) machines: Design of modern CNC machines - Machine Elements: Different types of guide ways, Linear Motion guideways. Bearings: anti-friction bearings,

hydrostatic bearing and hydrodynamic bearing. Re-circulating ball screws. Typical elements of open and closed loop control systems. Adaptive controllers for machine tools.

Mechatronics Design process: Stages of design process – Traditional and Mechatronics design concepts – Case studies of Mechatronics systems – Pick and place Robot – Automatic car park barrier.

Course Outcomes: At the end of the course the student will be able to:

CO1: Illustrate various components of Mechatronics systems.

CO2: Assess various control systems used in automation.

CO3: Design and conduct experiments to evaluate the performance of a mechatronics system or component with

respect to specifications, as well as to analyse and interpret data.

CO4: Apply the principles of Mechatronics design to product design.

CO5: Function effectively as members of multidisciplinary teams.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

SI. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textboo	ok/s		·	
1	Mechatronics-Principles Concepts and Applications	Nitaigour Premchand Mahalik	Tata McGraw Hill	1 st Edition, 2003
2	Mechatronics–Electronic Control Systems in Mechanical and Electrical Engineering,	W.Bolton	Pearson Education	1stEdition, 2005
Referen	ice Books			
1	Mechatronics	HMT Ltd	Tata Mc Graw Hill	1st Edition, 2000 ISBN:978007 4636435
2	Mechatronics: Integrated Mechanical Electronic Systems	K.P. Ramachandran, G.K. Vijayaraghavan, M.S. Balasundaram.	Wiley India Pvt. Ltd. New Delhi	2008
3	Introduction to Mechatronics and Measurement Systems	David G. Aldatore, Michael B. Histand	McGraw-Hill Inc USA	2003
4	Introduction to Robotics: Analysis, Systems, Applications.	Saeed B. Niku,	Person Education	2006
5	Mechatronics System Design	Devdas Shetty, Richard A. kolk	Cengage publishers.	second edition

B. E. MECHANICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE)					
	SEMESTER – VI	I			
	Professional Electi	ive 3			
	PROJECT MANAGE	MENT			
Course Code	18ME745	CIE Marks	40		
Teaching Hours /Week (L:T:P)3:0:0SEE Marks60					
Credits	Credits 03 Exam Hours 03				

Course Learning Objectives:

- To understand how to break down a complex project into manageable segments and use of effective project management tools and techniques to arrive at solution and ensure that the project meets its deliverables and is completed within budget and on schedule.
- To impart knowledge on various components, phases, and attributes of a project.
- To prepare students to plan, develop, lead, manage, and successfully implement and deliver projects within their chosen practice area.

Module-1

Introduction: Definition of project, characteristics of projects, understand projects, types of projects, scalability of project tools, project roles Project Selection and Prioritization – Strategic planning process, Strategic analysis, strategic objectives, portfolio alignment – identifying potential projects, methods of selecting projects, financial mode / scoring models to select projects, prioritizing projects, securing and negotiating projects.

Module-2

Planning Projects: Defining the project scope, Project scope checklist, Project priorities, Work Breakdown Structure (WBS), Integrating WBS with organisation, coding the WBS for the information system. Scheduling Projects: Purpose of a project schedule, historical development, how project schedules are limited and created, develop project schedules, uncertainty in project schedules, Gantt chart.

Module-3

Resourcing Projects: Abilities needed when resourcing projects, estimate resource needs, creating staffing management plant, project team composition issues, Budgeting Projects: Cost planning, cost estimating, cost budgeting, establishing cost control. Project Risk Planning: Risk Management Planning, risk identification, risk analysis, risk response planning, Project Quality Planning and Project Kick off: Development of quality concepts, project quality management plan, project quality tools, kick off project, baseline and communicate project management plan, using Microsoft Project for project baselines.

Module-4

Performing Projects: Project supply chain management: - Plan purchasing and acquisitions, plan contracting, contact types, project partnering and collaborations, project supply chain management. 28 Project Progress and Results: Project Balanced Scorecard Approach, Internal project, customer, financial issues, Finishing the project: Terminate project early, finish projects on time, secure customer feedback and approval, knowledge management, perform administrative and contract closure.

Module-5

Network Analysis: Introduction, network construction - rules, Fulkerson's rule for numbering the events, AON and AOA diagrams; Critical path method (CPM) to find the expected completion time of a project, floats; PERTfor finding expected duration of an activity and project, determining the probability of completing a project, predicting the completion time of project; crashing of simple projects.

Course Outcomes: At the end of the course the student will be able to:

- CO1: Understand the selection, prioritization and initiation of individual projects and strategic role of project management.
- CO2: Understand the work breakdown structure by integrating it with organization.

CO3: Understand the scheduling and uncertainty in projects.

CO4: Understand risk management planning using project quality tools.

CO5: Understand the activities like purchasing, acquisitions, contracting, partnering and collaborations related to performing projects.

CO6: Determine project progress and results through balanced scorecard approach

CO7: Draw the network diagram to calculate the duration of the project and reduce it using crashing.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

SI. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textboo	ok/s			
1	Project Management	Timothy J Kloppenborg	Cengage Learning	Edition 2009
2	Project Management -A systems approach to planning scheduling and controlling	Harold kerzner	CBS publication	
3	Project Management	S Choudhury	McGraw Hill Education (India) Pvt. Ltd. New Delhi	2016
Referen	nce Books			
1	Project Management	Pennington Lawrence	Mc Graw Hill	
2	Project Management	A Moder Joseph and Phillips New Yark	Van Nostrand Reinhold	
3	Project Management,	Bhavesh M. Patal	Vikas publishing House	

B. E. MECHANICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE)			
	Open Elective-B (Sem	ester VII)	
		MENT	
Course Code	18ME751	CIE Marks	40
Teaching Hours / Week (L:T:P)	3:0:0	SEE Marks	60
Credits	03	Exam Hours	03
Course Learning Objectives:			
To understand the fundament	tals of energy sources, energy	rgy use, energy efficiency, and res	ulting
environmental implications of	various energy supplies.		
To introduce various aspects of	of environmental pollution	and its control.	
 To understand the causes and 	remedies related to social	issues like global warming, ozone	layer
depletion, climate change etc			
To introduce various acts relation	ted to prevention and cont	rol of pollution of water and air, fo	orest
protection act, wild life protect	ction act etc.		
Module-1			
Basic Introduction to Energy: Energy	and power, forms of end	ergy, primary energy sources, er	ergy flows,
world energy production and consum	ption, Key energy trends in	India: Demand, Electricity, Access	s to modern
demographics Policy and institutiona	ade, Factors affecting in	alla's energy development: Eco	vironmontal
aspects Investment	i namework, Energy prices	s and anordability, social and en	monnentai
Module-2			
Energy storage systems: Thermal energy	gy storage methods. Energy	y saving Thermal energy storage	systems
Energy Management: Principles of Energy	ergy Management, Energy	demand estimation, Energy pricing	g
Energy Audit: Purpose, Methodology	with respect to process In	dustries, Characteristic method e	mployed in
Certain Energy Intensive Industries			
Module-3	ciplinany patura of any	ronmontal studios Definition	scono and
importance Need for public awarenee	scipilitary flature of envi	Tonmental studies- Demitton,	scope and
Ecosystem: Concept. Energy flow. St	tructure and function of a	an ecosystem. Food chains, food	l webs and
ecological pyramids. Forest ecosyste	m. Grassland ecosystem.	Desert ecosystem and Aquatic e	ecosystems.
Ecological succession	,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Module-4			
Environmental Pollution: Definition	Sausa offects and control	massures of Air pollution Wate	r pollution
Soil pollution Marine pollution N	bice pollution. Thermal p	allution and Nuclear bazards	Solid wasto
Management Disaster management	ole of an individual in prov	vention of pollution Dollution cost	studios
		rention of pollution, Pollution case	e studies.
Module-5			·
Social Issues and the Environment: Cl	imate change, global warm	ning, acid rain, ozone layer depleti	ion, nuclear
accidents and holocaust. Case Sti	udies. Wasteland reclama	ation, Consumerism and waste	e products,
Environment Protection Act, Air (Prev	ention and Control of Poll	ution) Act, Water (Prevention and	a control of
Pollution) Act, Wildlife Protection	Act, Forest Conservation	Act, Issues involved in enfor	cement of
environmental legislation.			
Group assignments:			
Assignments related to e-waste ma	nagement; Municipal solid	a waste management; Air pollut	ion control
systems; water treatment systems; W	astewater treatment plan	is; solar neating systems; solar po	wer plants;
assessments etc	ower plants, biolueis, Ellv	nonmentai status assessments; El	icigy status
Course Outcomes: At the end of the c	ourse, the student will be a	able to:	

CO1: Understand energy scenario, energy sources and their utilization.

- CO2: Understand various methods of energy storage, energy management and economic analysis.
- CO3: Analyse the awareness about environment and eco system.

CO4: Understand the environment pollution along with social issues and acts.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

SI. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textbook/s				
1	Textbook for Environmental Studies for Undergraduate Courses of all Branches of Higher Education		University grant commission and Bharathi Vidyapeeth Institute of environment education and Research, Pune	
2	Energy Management Audit & Conservation- for Module 2	Barun Kumar De	Vrinda Publication	2nd Edition 2010
Referer	nce Books		·	
1	Energy Management Hand book	Turner, W. C., Doty, S. and Truner, W. C	Fairmont Press	7 th Edition 2009
2	Energy Management	Murphy, W. R	Elsevier	2007
3	Energy Management Principles	Smith, C. B	Pergamum	2007
4	Environment pollution control Engineering	C S Rao	New Age International	reprint 2015, 2nd edition
5	Environmental studies	Benny Joseph	Tata McGraw Hill	2nd edition 2008

B. E. MECHANICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE)

Semester VIII Open Elective B

		GINEERING	
			40
Course Code	18IVIE/52	CIE Marks	40
Teaching Hours /Week (L:T:P)	3:0:0	SEE Marks	60
Credits	03	Exam Hours	03

Course Learning Objectives:

- To know layout and arrangement of principal parts of an automobile.
- To understand the working of transmission and brake systems.
- To comprehend operation and working of steering and suspension systems.
- To know the Injection system and its advancements.
- To know the automobile emissions and its effects on environment.

Module-1

ENGINE COMPONENTS AND IT'S PRINCIPLE PARTS: Spark Ignition (SI) & Compression Ignition (CI) engines, cylinder – arrangements and their relatives merits, Liners, Piston, connecting rod, crankshaft, valves, valve actuating mechanisms, valve and port timing diagrams, Types of combustion chambers for S.I.Engine and C.I.Engines, methods of a Swirl generation, engine positioning. Concept of HCCI engines, Hybrid engines, Twin spark engine, Electric car.

COOLING AND LUBRICATION: Cooling requirements, Types of cooling- Thermo siphon system, Forced circulation water cooling system, Water pump, Radiator, Significance of lubrication, Splash and Forced feed system.

Module-2

TRANSMISSION SYSTEMS: Clutch-types and construction, gear boxes- manual and automatic, gear shift mechanisms, Over drive, transfer box, fluid flywheel, torque converter, propeller shaft, slip joints, universal joints. Differential and rear axle, Hotchkiss Drive and Torque Tube Drive.

BRAKES: Types of brakes, mechanical compressed air, vacuum and hydraulic braking systems, construction and working of master and wheel cylinder, brake shoe arrangements, Disk brakes, drum brakes, Antilock – Braking systems, purpose and operation of antilock-braking system, ABS Hydraulic Unit, Rear-wheel antilock, & Numerical.

Module-3

STEERING AND SUSPENSION SYSTEMS: Steering geometry and types of steering gear box-Power Steering, Types of Front Axle, Suspension, Torsion bar suspension systems, leaf spring, coil spring, independent suspension for front wheel and rear wheel, Air suspension system.

IGNITION SYSTEM: Battery Ignition system, Magneto Ignition system, electronic Ignition system.

Module-4

SUPERCHARGERS AND TURBOCHARGERS: Naturally aspirated engines, Forced Induction, Types of superchargers, Turbocharger construction and operation, Intercooler, Turbocharger lag.

FUELS, FUEL SUPPLY SYSTEMS FOR SI AND CI ENGINES: Conventional fuels, Alternative fuels, Normal and Abnormal combustion, Cetane and Octane numbers, Fuel mixture requirements for SI engines, Types of carburetors, C.D.& C.C. carburettors, Multi point and Single point fuel injection systems, fuel transfer pumps, Fuel filters, fuel injection pumps and injectors. Electronic Injection system, Common Rail Direct Injection System.

Module-5

AUTOMOTIVE EMISSION CONTROL SYSTEMS: Different air pollutants, formation of photochemical smog and causes. Automotive emission controls, Controlling crankcase emissions, Controlling evaporative emissions, Cleaning the exhaust gas, Controlling the air-fuel mixture, Controlling the combustion process, Exhaust gas recirculation, Treating the exhaust gas, Air-injection system, Air-aspirator system, Catalytic converter. **EMISSION STANDARDS:** Euro I, II, III and IV norms, Bharat Stage II, III, IV norms. Motor Vehicle Act.

Course Outcomes: At the end of the course, the student will be able to:

- Identify the different parts of an automobile and it's working.
- Understand the working of transmission and braking systems.
- Understand the working of steering and suspension systems and their applications.
- Selection and applications of various types of fuels and injection systems.
 Analyse the cause of automobile emissions, its effects on environment and methods to reduce the emissions.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

SI No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textboo	k/s		·	
1	Automobile engineering Vol I and II	Kirpal Singh	Standard Publishers	12 th Edition 2011
2	Automotive Mechanics	S. Srinivasan	Tata McGraw Hill	2003 2 nd Edition
Referen	ce Books		·	
1	Automotive Mechanics	William H Crouse & Donald L Anglin	Tata McGraw Hill Publishing Company	10 th Edition 2007
2	Automotive Mechanics: Principles and Practices,	Joseph Heitner	D Van Nostrand Company, Inc	
3	Automobile Engineering	R. B. Gupta	Satya Prakashan	4 th edition 1984.
4	Fundamentals of Automobile Engineering	K.K.Ramalingam	Scitech Publications (India) Pvt. Ltd	

B. E. MECHANICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE)

Semester VII Open Elective-B				
INDUSTRIAL SAFETY				
Course Code	18ME753	CIE Marks	40	
Teaching Hours / Week (L:T:P)	3:0:0	SEE Marks	60	
Credits	03	Exam Hours	03	

Course Learning Objectives:

- The present course highlights the importance of general safety and its prevention.
- It enables students to understand about mechanical, electrical sand chemical safety.
- The Industrial safety course helps in motivating the students to understand the reason for fire
- Its Controlling of fire by various means are highlighted.
- Importance of chemical safety, labelling of chemicals, hand signals during forklift operations in industrial and aerodromes will help in to understand and apply the techniques in practical field.
- A visit to campus, various labs, workshops, local industries and fire stations helps in analyzing the importance of safety and corrective measures through case studies.

Module-1

Terms used: accident, safety, hazard, safe, safety devices, safety guard, security, precaution, caution, appliance, slip, trip, fall. Ladders and scaffolding. Unsafe acts, reason for accidents, MSDS (material safety data sheet), computer Aided Hazard Analysis, International acts and standards OSHA, WHO. Environment act, control and abatement of environmental pollution-Biomedical waste. Lockout and tag out procedures. Safe material handling and storage. Risk analysis quantification.

Case studies: Student should identify the unsafe acts near their surroundings like housekeeping, lab as well as industrial layouts, road safety, campus layout, safety signs.

Module-2

Introduction, toxicity of products of combustion – vapour clouds – flash fire – jet fires – pool fires – autoignition, sources of ignition. Class A, B, C, D and E fire. Fire triangle, Fire extinguishers, Fire hazard and analysis, prevention of fire. Fire protection and loss prevention, steps after occurrence of fire. notice-first aid for burns, Portable fire extinguishers. Fire detection, fire alarm and firefighting systems. Safety sign boards,

instruction on portable fire extinguishers. Case studies: demonstration of fire extinguishers, visit to local fire fighting stations. Visit to fire accident sites to analyze the cause of fire and its prevention for future.

Module-3

PPE, safety guards, Mechanical hazards, workplace hazards, Forklift hazard control Safety while working with machine tools like lathe, drill press, power and band saws, grinding machines. Safety during welding, forging and pressing. Safety while handling Material, compressed gas cylinders, corrosive substance, waste drum and containers.

Case studies: Visit to machine shop, workshops, foundry lab and local industries to record the practical observation and report the same with relevant figures and comments.

Module-4

Introduction to electrical safety, Indian standards on electrical safety, Electric hazards, effect of electric current on human body, causes of electrical accidents, prevention of electric accidents, PPE used. Protection systems: Fuse, circuit breakers and overload relays – protection against over voltage and under voltage. Electric shock. Primary and secondary electric shocks, AC and DC current shocks. Safety precautions against shocks. Safety precautions in small and residential building installations. Safety procedures in electric plant. Case studies: To visit electrical sub stations, local distribution systems, observe and share the experience and report.

Module-5

Introduction to Chemical safety, Labelling of chemicals, acid hoods. Handling of acids, eye washers and showers. Safety thinking, accident investigation, safety policy of the company, safety, loss prevention and control, check list for LPG installations, safety precautions using CNG, fire prevention and safety audit, confined space entry, risk assessment.

Case studies: To visit chemical laboratory of the college and other chemical industries like LPG , CNG facilities and report.

Course Outcomes: At the end of the course, the student will be able to:

CO1: Understand the basic safety terms and international standards.

- CO2: Identify the hazards and risk analysis around the work environment and industries.
- CO3: Use the safe measures while performing work in and around the work area of the available laboratories. Able to recognize the sign boards and its application
- CO4: Recognise the types of fires extinguishers and to demonstrate the portable extinguishers used for different classes of fires.
- CO5: Report the case studies by sharing experience of the employees working in housekeeping, laboratories like workshops, electrical labs, machine shops, electronics and computer laboratories.

CO6: Recognise the chemical and electrical hazards for its prevention and control.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

SI. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
Textbo	Textbook/s					
1	Industrial Safety and Management	L M Deshmukh	McGraw Hill Education (India) private Limited	ISBN-13: 978-0-07- 061768-1		
2	Fire Prevention Hand Book	Derek, James	Butter Worth's and Company, London	1986		
3	Electrical Safety, fire safety and safety management	S.Rao, R K Jain and Saluja	Khanna Publishers	ISBN: 978- 81-7409- 306-6		
4	Industrial health and safety management	A.M.Sarma	Himalya publishing house			
5	Chemical process Industrial safety	K S N Raju	McGraw Hill Education (India) private Limited.	ISBN-13: 978-93-329- 0278-7		
6	Environmental engineering	Gerard Kiely	McGraw Hill Education (India) private Limited	ISBN-13: 978-0-07- 063429-9		
Referer	nce Books	1		- 1		
1	The Environment Act (Protection) 1986	Commercial Law Publishers (India) Pvt. Ltd. New Delhi.				
2	Water (Prevention and control of pollution) act 1974	Commercial Law publishers (India)				

		Pvt. Ltd., New Delhi.			
•	To visit respective Institution: stores, office, housekeeping area, laboratories.				
•	• To visit local industries, workshops, district firefighting system facility and local electrical power				
	stations.				

OPEN ELECTIVE B B. E. MECHANICAL ENGINEERING

Choice Based Credit System (CBCS) and Outcome Based Education (OBE)

SEMESTER – VII

OPTIMISATION TECHNIQUES			
Course Code	18ME754	CIE Marks	40
Teaching Hours / Week (L:T:P)	3:0:0	SEE Marks	60
Credits	03	Exam Hours	03

Course Learning Objectives:

- To expose the students to techniques to optimize complex engineering problems.
- To introduce non-linear programming techniques.
- To introduce the Integer programming method.

Module-1

Introduction: Statement of optimisation problem, Design vector, Design constraints, Objective function, Classification of optimisation problems based on :constraints, nature of design variables, nature of the equations involved

Single variable optimisation: Necessary and sufficient conditions, Multivariable optimization with no constraints: Necessary and sufficient conditions, Semi definite case, Saddle point, Multi variable optimization with equality constraints, Solution by direct substitution, Lagrange Multipliers, Interpretation of Lagrange multipliers, Multivariable optimization with inequality constraints: Khun Tucker conditions(concept only).

Module-2

Nonlinear Programming: One-Dimensional Minimization Methods, Introduction, Unimodal Function, Elimination methods: unrestricted search, fixed step size, accelerated step size, Exhaustive search: dichotomous search, interval halving method, Fibonacci method, golden section method, Interpolation methods: Quadratic and cubic interpolation method, direct root method, Newton method, Quasi-Newton method, secant method.

Module-3

Nonlinear Programming: Direct search methods: Classification of unconstrained minimization methods, rate of convergence, scaling of design variables, random search methods, univariate methods, pattern directions, Powell's methods, Simplex method.

Module-4

Nonlinear Programming: Indirect Search (Descent) Methods: Gradient of a function, Steepest decent method, Fletcher Reeves method, Newton's method, Davidson-Fletcher-Powell method.

Module-5

Integer Programming: Introduction, Graphical representation, Gomory's cutting plane method: concept of a cutting plane, Gomory's method for all-integer programming problems, Bala's algorithm for zero–one programming, Branch-and-Bound Method.

Course Outcomes: At the end of the course, the student will be able to:

CO1: Define and use optimization terminology, concepts, and understand how to classify an optimization problem.

CO2: Understand how to classify an optimization problem.

CO3: Apply the mathematical concepts formulate the problem of the systems.

CO4: Analyse the problems for optimal solution using the algorithms.

CO5: Interpret the optimum solution.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

SI. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year	
Textbo	ok/s				
1	Engineering Optimization Theory and Practice	S. S. Rao	John Wiley & Sons	Fourth Edition 2009	
2	Optimisation Concepts and Applications in Engineering	A. D. Belegundu, T.R. Chanrupatla,	Cambridge University Press	2011	
Refere	Reference Books				
1	Engineering Optimization: Methods and Applications	Ravindran, K. M. Ragsdell, and G. V. Reklaitis	Wiley, New York	2nd ed. 2006	

	B. E. MECHANICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER - VII				
	COM	IPUTRE AIDED MANUFAC	TURING LAB		
Cours	se Code	18MEL76	CIE Marks	40	
Teach	ning Hours /Week (L:T:P)	0:2:2	SEE Marks	60	
Credi	ts	02	Exam Hours	03	
Cours	se Learning Objectives:				
•	 To expose the students to the 	techniques of CNC progra	amming and cutting tool path g	generation	
	through CNC simulation softw	vare by using G-Codes and	M-codes.		
	 To educate the students on the 	ne usage of CAM packages			
	 To make the students underst 	tand the importance of au	tomation in industries through	exposure to	
	FMS, Robotics, and Hydraulic	s and Pneumatics.			
SI.	· · · ·	Experiments	6		
No.		·			
		PART - A			
	Manual CNC part programming	using ISO Format G/M co	desfor 2 turning and 2 milling	parts. Selection	
1	and assignment of tools, correc	tion of syntax and logical	errors, and verification of tool	pathusing CNC	
	program verification software.				
		PART - B			
	CNC part programming using CA	AM packages. Simulation of	of Turning, Drilling, Milling ope	rations.	
	3 typical simulations to be car	ried out using simulation	packages like: CademCAMLa	b-Pro, Master-	
2	CAM. Program generation using	g software. Optimize spin	dle power, torque utilization,	and cycle time.	
	Generation and printing of she	op documents like proce	ss and cycle time sneets, too	or list, and tool	
	Post processing of CNC progra	ms for standard CNC co	easure the virtual part of scree	INLIMERIC and	
	MISTURISHI		introl systems like TANOC, S		
		PART - C			
	(Only for Demo/Viva voce)				
	FMS (Flexible Manufacturing Sy	/stem) : Programming of A	utomatic storage and Retrieva	l system (ASRS)	
	and linear shuttle conveyor Inte	erfacing CNC lathe, milling	g with loading unloading arm	and ASRS to be	
	carried out on simple componer	nts.			
3	Robot programming: Using Tea	ch Pendent & Offline pro	gramming to perform pick and	place, stacking	
	of objects (2 programs).				
	Pneumatics and Hydraulics, Ele	ctro-Pneumatics: 3 typica	al experiments on Basics of the	ese topics to be	
	conducted.				
	uct of Practical Examination:				
1. All	Taboratory experiments are to be	e included for practical exa	imination.	ly adhered by	
the	examiners	ns printed on the cover pa		ly adhered by	
3. Sti	idents can pick one experiment fi	om the questions lot prer	ared by the examiners		
Schei	me of Examination:				
One	question from Part A: 40 marks				
One	question from Part B: 40 Marks				
Viva	voce: 20 Marks				
Total	: 100 Marks				
One o Viva Total	question from Part B: 40 Marks voce: 20 Marks : 100 Marks				

B. E. MECHANICAL ENGINEERING							
Choice Based Credit System (CBCS) and Outcome Based Education (OBE)							
SEMESTER - VII							
DESIGN LAB							
Cour	se Code	18MEL77	CIE Marks	40			
Teaching Hours /Week (L:T:P)		0:2:2	SEE Marks	60			
Cred	its	02	Exam Hours	03			
Cour	se Learning Objectives:	с., ic i чі ч					
To understand the concepts of natural frequency, logarithmic decrement, damping and damping							
	ratio.						
	 To understand the techniques of balancing of rotating masses. 						
	 To verify the concept of the critical speed of a rotating shaft. 						
	 To illustrate the concept of str 	ess concentration using Photo elasti	city.				
• To appreciate the equilibrium speed, sensitiveness, power and effort of a Governor.							
	• To illustrate the principles of p	pressure development in an oil film o	of a hydrodynamic j	ournal bearing.			
SI.		Experiments					
No.		-					
	-	PART - A					
1	Determination of natural freque	ncy, logarithmic decrement, dampin	g ratio and damping	g coefficient in a			
	single degree of freedom vibrati	ng systems (longitudinal and torsion	al).				
2	Balancing of rotating masses						
3	Determination of critical speed of a rotating shaft						
4	Determination of equilibrium sp	eed, sensitiveness, power and effort	of Porter/Proell /H	artnel			
	Governor.	DADT D					
5	Determination of Fringe constan	t of Photo-elastic material using					
	a) Circular disc subjected to diametral compression. b) Pure bending specimen (four-point bending						
6	Determination of stress concentration using Photo-elasticity for simple components like plate with a						
	hole under tension or bending, c	ircular disk with circular hole under	compression, 2D Cr	ane hook			
7	Determination of Pressure distri	oution in Journal bearing					
8	Determination of Principal Stress	ses and strains in a member subjecte	ed to combined loa	ding using Strain			
9	Determination of stresses in Cur	ved beam using strain gauge.					
Course Outcomes: At the end of the course, the student will be able to:							
CO1:	Compute the natural frequency o	f the free and forced vibration of sin	gle degree freedom	n systems,			
critic	al						
	speed of shafts.						
CO2: Carry out balancing of rotating masses.							
CO3: Analyse the governor characteristics.							
CO4: Determine stresses in disk, beams, plates and hook using photo elastic bench.							
CO5: Determination of Pressure distribution in Journal bearing							
CO6: Analyse the stress and strains using strain gauges in compression and bending test and stress							
distribution							
in curved beams.							
Conduct of Practical Examination:							
1. All laboratory experiments are to be included for practical examination.							
2. Br	eakup of marks and the instruction	ns printed on the cover page of answ	ver script to be stric	tly adhered by			
the examiners.							
3 Students can nick one experiment from the questions lot prepared by the examiners							

Scheme of Examination: One question from Part A: 40 marks One question from Part B: 40 Marks Viva voce: 20 Marks Total: 100 Marks

B. E. MECHANICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) **SEMESTER - VIII**

ENERGY ENGINEERING					
Course Code	18ME81	CIE Marks	40		
Teaching Hours /Week (L:T:P)	3:0:0	SEE Marks	60		
Credits	03	Exam Hours	03		

Course Learning Objectives:

- Understand energy scenario, energy sources and their utilization
- Learn about energy conversion methods
- Study the principles of renewable energy conversion systems.

Module-1

STEAM GENERATORS Coal and ash handling, Generation of steam using forced circulation, high and supercritical pressures, LaMount, Benson, Velox, Loeffer, Schmidt steam generators, Cooling towers and Ponds, Accessories such as Superheaters, De-superheater, Economizers, Air preheaters.

Module-2

Solar Energy: Introduction, Solar radiation at the earth's surface, Solar radiation measurements, Flat plate collectors, Focussing collectors, Solar pond, Solar electric power generation-Solar photovoltaics.

Biomass Energy: Photosynthesis, photosynthetic oxygen production, energy plantation. Bio Chemical Route: Biogas production from organic wastes by anaerobic fermentation, Bio gas plants-KVIC, Janta, Deenbhandu models, factors affecting bio gas generation. Thermal gasification of biomass, updraft and downdraft Module-3

Geothermal Energy: Forms of geothermal energy, Dry steam, wet steam, hot dry rock and magmatic chamber systems.

Tidal Energy: Tidal power, Site selection, Single basin and double basin systems, Advantages and disadvantages of tidal energy.

Wind Energy: Wind energy-Advantages and limitations, wind velocity and wind power, Basic components of wind energy conversion systems, horizontal and vertical axis wind mills, coefficient of performance of a wind mill rotor, Applications of wind energy.

Module-4

Hydroelectric plants: Advantages & disadvantages of water power, Hydrographs and flow duration curvesnumericals, Storage and pondage, General layout of hydel power plants- components such as Penstock, surge tanks, spill way and draft tube and their applications, pumped storage plants, Detailed classification of hydroelectric plants, water hammer.

Ocean Thermal Energy: Ocean thermal energy conversion, Principle and working of Rankine cycle, Problems associated with OTEC.

Module-5

NUCLEAR ENERGY Principles of release of nuclear energy-Fusion and fission reactions. Nuclear fuels used in the reactors, Chain reaction, Moderation, breeding, Multiplication and thermal utilization factors. General components of a nuclear reactor and materials, Brief description-Pressurized water reactor, Boiling water reactor, Sodium graphite reactor, Fast Breeder reactor, Homogeneous graphite reactor and gas cooled reactor, Radiation hazards, Shielding, Nuclear waste, Radioactive waste disposal.

Course Outcomes: At the end of the course the student will be able to:

CO1: Understand the construction and working of steam generators and their accessories.