ANNEXURE 2.2.2

K.S. INSTITUTE OF TECHNOLOGY, BANGALORE - 560109 III SESSIONAL TEST QUESTION PAPER 2021 – 22 ODD SEMESTER

	N D D D D D D D D D D D D D D D D D D D		
USN			

SET-B

Degree

: B.E

Semester:V

Branch

: Electronics and Communication Engg

CourseCode: 18EC55

CourseTitle: ELECTROMAGNETIC WAVES Duration

: 90Minutes

Date: 27/1/2022 MaxMarks: 30

Q No.	Note: Answer ONE full question from each part. Questions	Marks	CO Mapping	K- Level
74	PART-A			
1(a)	I. Utilize the concepts of conduction current density to show that conduction current density is equal to the displacement current density for the applied voltage of $V(t) = V_0 \cos \omega t$.	6	CO5	Applying K3
)	II. Solve the amplitude of displacement current densityadjacent to an automobile antenna wheremagnetic field intensity of an FM signal is $H_x = 0.15 \cos \left[3.12(3 \times 10^8 \text{ t} - \text{y}) \right] \text{ A/m}$.			
(b)	Starting from fundamentals, solveMaxwell's equations in both point & integral form for time varying fields?	6	CO5	Applying K3
(c)	I. Develop an expression for skin depth for a uniform plane wave traveling in a good conductor? II. A plane wave is incident normally on a good conductor, which can be considered flat and normally on a good conductor.	6	CO5	Applying K3
•	can be considered flat and non-magnetic. The velocity of the wave inside the conductor at a certain frequency is 3.142 x 10 ⁵ m/s, while the skin depth for this conductor the same frequency is given as 0.04 mm. Solve			
	the wavelength inside the medium and frequency of the wave. The conductivity of the material, The distance, the wave travels inside the conductor at 1.5 GHz		189	
	before its field intensity gets reduced to 20 dB below its initial value.	×		
)	OR			
2(a)	Develop the expression of Maxwells second equation from the modification of Amperes Law.	6	CO5	Applying K3
(b)	I. Utilize the concepts of Maxwells equation to derive the wave equation in one dimension for an electromagnetic wave traveling in free space?	6	CO5	Applying K3
	II. The electric field amplitude of a uniform plane wave propagating in the a_z direction is 250 V/m, If $E = E_x a_x$ and $\omega = 1$ Mrad/s, Solvei) frequency, ii)wavelength, iii) period, iv) amplitude of H.			
(c)	I. Solvethe frequency at which conduction current density is equal to the displacement current in a medium with $\sigma = 2 \times 10^{-4} \text{ s/m}$ and $\epsilon_r = 81$.	6	CO5	Applying K3
	II. In a certain dielectric medium, the relative permittivity is 5, conductivity is zero & displacement current density $J_d = 20\cos(1.5 \times 10^8 t - bx)a_y \text{nA/m}^2.$ Solve the electric flux density & Electric field intensity?			
	PART-B		17.71	
3(a)	State Faraday's law of electromagnetic Induction? Utilize the concepts toDerive Maxwell's Equation. Write a note on Magnetic circuits?	6	CO4	Applying K3

(b)	Solve the magnetization in a magnetic material where i) $\mu = 1.8 \times 10^{-5} \text{ H/m & H} = 120 \text{ A/m}$ ii) $B = 300 \mu\text{T}$ and $\chi_m = 15$	6	CO4	Applying K3
	OR			N
4(a)	Develop the concepts of magnetic boundary conditions to derive the expressions for tangential and boundary conditions.	6	CO4	Applying K3
(b)	Within a certain region, $\dot{\epsilon} = 10^{-11}$ F/m and $\mu = 10^{-5}$ H/m. If $B_x = 2$ x 10^{-4} cos 10^{-5} t sin 10^{-3} y T.	6	CO4	Applying K3
	i)SolveE.			
	ii) Solve the total magnetic flux passing through the surface	1		
	$x = 0$, $0 < y > 40m$, $0 < z < 2m$ at $t = 1 \mu s$.	E 1		
	iii) Solvethe value of closed line integral of E around the perimeter of the given surface.	dis		

Signature of Course InchargeSignature of module coordinator

Signature of HOD EC

Shited

K.S. INSTITUTE OF TECHNOLOGY, BANGALORE - 560109 III SESSIONAL TEST QUESTION PAPER 2021-22 ODD SEMESTER

,	NPA	EK	2021	- 22	עעט	SEIM	FPIF
1	IICN			TT	TT		

SET - A

Degree : B.E Semester:V

Branch CourseTitle: ELECTROMAGNETIC WAVES

: Electronics and Communication Engg CourseCode:

18EC55 Date: 27/1/2022

Duration

: 90Minutes

MaxMarks: 30

Q No.	Questions	Mark s	CO Mapping	K- Level
	PART-A			
	Develop the expression of Maxwells second equation from the modification of Amperes Law.	6	CO5	Applying K3
	Starting from fundamentals, developMaxwell's equations in both point & integral form for time varying fields?	6	CO5	Applying K3
(c)	Develop an expression for skin depth for a uniform plane wave traveling in a good conductor? A plane wave is incident normally on a good conductor, which	6	CO5	Applying K3
	can be considered flat and non-magnetic. The velocity of the wave inside the conductor at a certain frequency is 3.142 x 10 ⁵ m/s, while the skin depth for this conductor the same frequency is given as 0.04 mm. Solve (i) wavelength inside the medium and frequency of the wave.		e ne e	
	ii) conductivity of the material, iii) the distance, the wave travels inside conductor at 1.5 GHz before its field intensity gets reduced to 20 dB below its initial value.		8	.,
	· OR			
2(a)	I. Utilize the concepts of conduction current density to show that conduction current density is equal to the displacement current density for the applied voltage of V(t) = V _o cosot. II. Solve the amplitude of the displacement current density in the air space at a point within a large power distribution transformer where B = 0.8 cos [1.257 x 10 ⁻⁶ t - x] a _v T	6	CO5	Applyin K3
(b)	Develop the expressions ofwave equation in one dimension for an electromagnetic wave traveling in free space?	6	CO5	Applyin K3
(c)	 I. Solvethe frequency at which conduction current density is equal to the displacement current in a medium with σ = 2 x 10⁻⁴ s/m and €_r = 81. II. A parallel plate capacitor with plate area 5 cm² and plate separation of 3 mm has a voltage of 50 sin 103t volts applied to its plate. Solve the displacement current assuming έ = 2 έ₀. 	6	CO5	Applyin K3
	PART-B			
3(a)	State Faraday's law of electromagnetic Induction? Utilize the concepts to Derive Maxwell's Equation. Write a note on Magnetic circuits?	. 6	CO4	Applyin K3
(b)	The magnetization in a magnetic material for which is given in a certain region as $150 z^2 a_z A/m$. At $z = 4$ cm, Solve the magnitude of the current density due to bound charges.	6	CO4	Applyir K3

4(a)	Develop the concepts of magnetic boundary conditions to derive the expressions for tangential and boundary conditions.	6	CO4	Applying K3
(b)	The unit vector $0.64a_x + 0.6 a_y - 0.48 a_z$ is directed from region 2 $(\dot{\epsilon}_{r2} = 2, \mu_{r2} = 3, \sigma_2 = 0)$ toward region 1 $(\dot{\epsilon}_{r1} = 4, \mu_{r1} = 2, \sigma_1 = 0)$.	6	CO4	Applying K3
- 6	If $B_1 = (a_x - 2a_y + 3a_z) \sin 300t$ T at point P in region 1 adjacent to the boundary, Solve amplitude at P of i) B_{N1} ii) B_{11} iii) B_{N2} iv) B_2			
Sign	nature of Course Incharge Signature of module coordinator Sign	nature	of HOD	EC
				s 19 - 10 - 11