

K. S. INSTITUTE OF TECHNOLOGY

#14, Raghuvanahalli, Kanakapura Main Road, Bengaluru-5600109

PROGRAM OUTCOMES (PO's)

Engineering Graduates will be able to:

- **PO1: Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- **PO2: Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **PO3:** Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **PO4:** Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **PO5:** Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- **PO6: The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- **PO7:** Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **PO8:** Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **PO9:** Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **PO10: Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **PO11: Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **PO12: Life-long learning**: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

1st SEMESTER	
Class	COMPUTER SCIENCE & ENGINEERING
Semester	Ι
Course Name	C Programming for Problem Solving
Course Code	18CPS13/23
At the end of this course, the student will be able	
to:	
Course Outcome #	Course Outcome
CO1	Understand the basic components of a computer system and the concepts related to software, hardware and networking, structure of a C program
CO2	Develop conditional and iterative statements to write C programs
CO3	Use and implement data structures like arrays to obtain solutions for different sorting and searching techniques.
CO4	Modularize the given problem using functions with recursion
CO5	Understand and develop c programs using pointers, strings and structures
Class	COMPUTER SCIENCE & ENGINEERING
Semester	Ι
Course Name	C Programming Laboratory
Course Code	18CPL17/27
At the end of this course, the student will be able	
to:	
Course Outcome #	Course Outcome
CO1	Illustrate the knowledge of various parts of a computer.
CO2	Develop flowcharts and algorithms for a given problem.
CO3	Understand basic structure of the C programming, declaration and usage of variables.
CO4	Develop C programs using iterative and conditional statements using arrays.
CO5	Develop modular programming skills using pointers, strings and structures.

2nd SEMESTER	
Class	COMPUTER SCIENCE & ENGINEERING
Semester	II
Course Name	C Programming for Problem Solving
Course Code	18CPS13/23
At the end of this course, the student will be able	
to:	
Course Outcome #	Course Outcome
CO1	Understand the basic components of a computer system and the concepts related to software, hardware and networking, structure of a C program
CO2	Develop conditional and iterative statements to write C programs
CO3	Use and implement data structures like arrays to obtain solutions for different sorting and searching techniques.
CO4	Modularize the given problem using functions with recursion
CO5	Understand and develop c programs using pointers, strings and structures
Class	COMPUTER SCIENCE & ENGINEERING
Semester	II
Course Name	C Programming Laboratory
Course Code	18CPL17/27
At the end of this course, the student will be able	
to:	
Course Outcome #	Course Outcome
CO1	Illustrate the knowledge of various parts of a computer.
CO2	Develop flowcharts and algorithms for a given problem.
CO3	Understand basic structure of the C programming, declaration and usage of variables.
CO4	Develop C programs using iterative and conditional statements using arrays.
CO5	Develop modular programming skills using pointers, strings and structures.

	3rd SEMESTER
Course Name	Transform Calculus, Fourier Series And Numerical Techniques
Course Code	18MAT31
At the end of this course, the student will be able	
to:	
Course Outcome #	Course Outcome
CO1	Solve first and second order ordinary differential equations arising in engineering problems using single step and multistep numerical methods.
CO2	Use Laplace transform and inverse Laplace transform in solving differential/ integral equation arising in network analysis, control systems and other fields of engineering.
CO3	Demonstrate Fourier series to study the behavior of periodic functions and their applications in system communications, digital signal processing and field theory.
CO4	Determine the externals of functional using calculus of variations and solve problems arising in dynamics of rigid bodies and vibrational analysis.
CO5	Make use of Fourier transform and Z-transform to illustrate discrete/continuous function arising in wave and heat propagation, signals and systems.
Class	COMPUTER SCIENCE & ENGINEERING
Semester	III
Course Name	Data Structures And Applications
Course Code	18CS32
At the end of this course, the student will be able to):
Course Outcome #	Course Outcome
CO1	Apply the fundamental concepts of data structures and their applications essential for programming/problem solving.

CO2	Make use of stacks to evaluate mathematical expressions and queues for mazing problem.
CO3	Choose linked lists to implement of lists, stacks, queues, polynomials and sparse matrix.
CO4	Construct various types of trees using linked lists and apply tree traversal methods for expressions evaluation.
CO5	Utilize BFS, DFS, searching, sorting, hashing and files concepts to develop various applications.
Class	COMPUTER SCIENCE & ENGINEERING
Semester	III
Course Name	Analog And Digital Electronics
Course Code	18CS33
At the end of this course, the student will be able to):
Course Outcome #	Course Outcome
CO1	Design the applications of analog circuits using photo devices, timer IC, power supply and regulator and IC op-amp for various applications such as Schmitt trigger, relaxation oscillator etc
CO2	Choose the Combinational Logic circuits and simplification techniques such as Karnaugh Maps, Quine McClusky Techniques for designing various digital circuits.
CO3	Construct different circuits using Decoders, Encoders, Multiplexers, Adders and Subtractors.
CO4	Make use of the latches, Flip-Flops, HDL programs for constructing and simulating sequential circuits.
CO5	Obtain the stans to design counters and registers
	Obtain the steps to design counters and registers
Class	COMPUTER SCIENCE & ENGINEERING

Course Name	Computer Organization	
Course Code	18CS34	
At the end of this course, the student will be able to):	
Course Outcome #	Course Outcome	
CO1	Construct architecture & organization of a computer system, machine instruction formats and addressing modes.	
CO2	Build techniques for I/O communication with standard bus interfaces and interrupt service routines.	
CO3	Identify different memories and memory mapping techniques.	
CO4	Design different Arithmetic operational units.	
CO5	Derive control sequences for hardwired and micro-program control units for both single and multi bus processors.	
Class	COMPUTER SCIENCE & ENGINEERING	
Semester	III	
Course Name	Software Engineering	
Course Code	18CS35	
At the end of this course, the student will be able to:		
Course Outcome #	Course Outcome	
CO1	Able to outline the software engineering principles and illustrate the activities involved in building large software and also illustrating the process of requirements, requirements classification.	
CO2	Demonstrate Object Orientation Modelling Concepts and Class Modelling	
CO3	Analyze the system models, examine the object oriented design patterns and list out the open source development tools	
CO4	To choose the appropriate software testing type, also identify the significance of software maintenance.	
CO5	To choose the right software pricing and measurements of software metrics. Also to identify the software quality parameters and standards	

Class	COMPUTER SCIENCE & ENGINEERING	
Semester	ш	
Course Name	Discrete Mathematical Structures	
Course Code	18CS36	
At the end of this course, the student will be able to	:	
Course Outcome #	Course Outcome	
CO1	Interpret propositional and predicate logic in knowledge representation and truth verification.	
CO2	Demonstrate the properties of integers and fundamental principle of counting in discrete structures.	
CO3	Utilize the understandings of relations and functions and be able to determine their properties	
CO4	Solve the problems using the concept of graph theory and trees properties	
CO5	Solve problems using recurrence relations and Principle of Inclusion and Exclusion	
Class	COMPUTER SCIENCE & ENGINEERING	
Semester	III	
Course Name	Analog And Digital Electronics Laboratory	
Course Code	18CSL37	
At the end of this course, the student will be able to:		
Course Outcome #	Course Outcome	
CO1	Utilize Operational Amplifier and timers for different applications also make use of simulation package to design circuits	
CO2	Build window comparator and simulate.	
CO3	Choose the Combinational Logic circuits for realizing adders, subtractors and multiplexers and also simulate the same	
CO4	Design MSJK Flip Flop, also make use of simulation package to design	

	circuits.	
CO5	Construct code converters circuits, synchronous and asynchronous counters.	
Class	COMPUTER SCIENCE & ENGINEERING	
Semester	III	
Course Name	Data Structures Laboratory	
Course Code	18CSL38	
At the end of this course, the student will be able to:		
Course Outcome #	Course Outcome	
CO1	Experiment with array operations and string application programs.	
CO2	Construct the programs to implement stacks, queues and their applications.	
CO3	Develop the programs to implement various operations of linked lists and their applications.	
CO4	Make use of tree concepts to implement programs for their applications	
CO5	Apply DFS/BFS method for graph traversals and linear probing approach for hashing programs	
4th SEMESTER		
Class	COMPUTER SCIENCE & ENGINEERING	
Semester	IV	
Course Name	Complex Analysis, Probability And Statistical Methods	
Course Code	18MAT41	
At the end of this course, the student will be able to:		
Course Outcome #	Course Outcome	
CO1	Use the concepts of analytic function and complex potentials to solve the problems arising in electromagnetic field theory.	
CO2	Apply discrete and continuous probability distributions in analyzing the probability models arising in engineering field.	

CO3	Fit a suitable curve for given data and analyze the relationship between two variables using statistical methods.	
CO4	Utilize conformal transformation and complex integral arising in fluid flow visualization and image processing.	
CO5	Apply the knowledge of joint probability distributions in attempting engineering problems for feasible random events and also Understand the concepts of sampling theory and apply it to related real life problems.	
Class	COMPUTER SCIENCE ENGINEERING	
Semester	IV	
Course Name	Design And Analysis Of Algorithms	
Course Code	18CS42	
At the end of this course, the student will be able to:		
Course Outcome #	Course Outcome	
CO1	Describe computational solution to well-known problems like searching, sorting etc.	
CO2	Estimate the computational complexity of different algorithms	
CO3	Devise an algorithm using appropriate design strategies for problem solving.	
CO4	Analyze space and time tradeoffs for algorithms using both approaches	
CO5	Develop solutions using Backtracking for some of NP complete problems	
Class	COMPUTER SCIENCE & ENGINEERING	
Semester	IV	
Course Name	Operating Systems	
Course Code	18CS43	
At the end of this course, the student will be able to	:	
Course Outcome #	Course Outcome	
CO1	Identify various types of Operating Systems, its need and services.	

CO2	Apply suitable techniques for process scheduling, synchronization and thread management.	
CO3	Make use of different methods for preventing or avoiding deadlock and managing memory efficiently.	
CO4	Interview the benefits of virtual memory; explore file system and directory structures.	
CO5	Experiment with different disk management schemes and realize the concepts of Operating System with case studies	
Class	COMPUTER SCIENCE & ENGINEERING	
Semester	IV	
Course Name	Microcontroller And Embedded Systems	
Course Code	18CS44	
At the end of this course, the student will be able to:		
Course Outcome #	Course Outcome	
CO1	Apply ARM processor architecture concept to the assembly language programming	
CO2	Apply ARM processor programming concept to solve complex problem	
CO3	Illustrate the Applicability of the Embedded system	
CO4	Illustrate the Design process of Embedded system	
CO5	Comprehend the real time operating system used for the Embedded system	
Class	COMPUTER SCIENCE & ENGINEERING	
Semester	IV	
Course Name	Object Oriented Concepts	
Course Code	18CS45	
At the end of this course, the student will be able to	:	
Course Outcome #	Course Outcome	
CO1	Learn fundamental features of object oriented language and programming in	

	C++.	
CO2	Learn how to set up JDK environment to create, debug and run simple Java programs.	
CO3	Create and handle run-time errors using Exception handling mechanism, create and work with packages and interfaces.	
CO4	Create multi-threading programs and event handling mechanisms.	
CO5	Introduce event driven Graphical User Interface (GUI) programming using Applets.	
Class	COMPUTER SCIENCE & ENGINEERING	
Semester	IV	
Course Name	Data Communication	
Course Code	18CS46	
At the end of this course, the student will be able to:		
Course Outcome #	Course Outcome	
CO1	Identify the different types of network topologies and protocols.	
CO2	Construct the different line coding schemes, Transmission modes.	
CO3	Apply different error detection and correction methods for digital data and construct the different switching circuits, link addressing.	
CO4	Distinguish different data link protocols and select suitable media access control protocol for data transmission.	
CO5	Identify the architecture of wired and wireless Local Area Networks (LANs)	
Class	COMPUTER SCIENCE & ENGINEERING	
Semester	IV	
Course Name	Design And Analysis Of Algorithm Laboratory	
Course Code	18CSL47	
At the end of this course, the student will be able to	2	
Course Outcome #	Course Outcome	

CO1	Experiment with object oriented concepts of JAVA programming language.
CO2	Construct the JAVA program by using the approach of Divide and Conquer such as Merge Sort, Quick Sort.
CO3	Make use of Greedy method to solve knapsack and minimum cost spanning tree using JAVA programming.
CO4	Apply Dynamic Programming techniques to solve All pair's shortest path (Floyd's algorithm) and Travelling sales person (TSP) problem using JAVA programming.
CO5	Choose the Backtracking techniques to solve Sum of subset problem and Hamiltonian cycles using JAVA programming.
Class	COMPUTER SCIENCE & ENGINEERING
Semester	IV
Course Name	Microcontroller And Embedded Systems Laboratory
Course Code	18CSL48
At the end of this course, the student will be able to	:
Course Outcome #	Course Outcome
CO1	Demonstrate different instructions of ARM7/TDMI/LPC2148 using Keil µvision-4 tool/compiler.
CO2	Apply the knowledge of assembly language programming to solve problems using ARM7/TDMI/LPC2148 instruction set.
CO3	Illustrate various ports, configuration registers of 32 bit microcontroller ARM7/TDMI/LPC2148.
CO4	Illustrate various input/output devices to interface with ARM7/TDMI/LPC2148 evaluation board.
CO5	Demonstrate interfacing of various hardware devices using embedded C and evaluation board ARM7/TDMI/LPC2148.
Class	COMPUTER SCIENCE & ENGINEERING

Semester	III/IV	
Course Name	Consitution of India Professional ethics and Human Rights	
Course Code	18CPH49	
At the end of this course, the student will be able to):	
Course Outcome #	Course Outcome	
CO1	Have constitutional knowledge and legal literacy.	
CO2	Understand Engineering and Professional ethics and responsibilities of Engineers.	
CO3	Understand the the cybercrimes and cyber laws for cyber safety measures.	
5TH SEMESTER		
Class	COMPUTER SCIENCE & ENGINEERING	
Semester	V	
Course Name	Management And Entrepreneurship For It Industry	
Course Code	18CS51	
At the end of this course, the student will be able to:		
Course Outcome #	Course Outcome	
CO1	Outline the functional areas of management, evolution of management theories and classifying planning, organizing and staffing	
CO2	Make use of directing and controlling principles in management also identifying the motivational theories and developing leadership styles	
CO3	Utilize the entrepreneurial types, roles and its characteristics in the Indian business and also identify business opportunities in terms of market, technical, financial and social feasibility	
CO4	Examine the need of the project. Dissect the significance and content formulation of project report. Classify Enterprise Resource Planning and Supply Chain Management	

CO5	Classify the characteristics, steps and policies in establishing micro and small enterprises. Examine the case studies, different intuitional support and importance of IPR
Class	COMPUTER SCIENCE & ENGINEERING
Semester	V
Course Name	COMPUTER NETWORKS AND SECURITY
Course Code	18CS52
At the end of this course, the student will be able to	D:
Course Outcome #	Course Outcome
CO1	Explain principles of application layer protocols
CO2	Recognize transport layer services and infer UDP and TCP protocols
CO3	Classify routers, IP and Routing Algorithms in network layer
CO4	Apply the Principles of network security and encryption
CO5	Describe Multimedia Networking protocols their usage in watching multimedia video communication
Class	COMPUTER SCIENCE & ENGINEERING
Semester	V
Course Name	Database Management System
Course Code	18CS53
At the end of this course, the student will be able to):
Course Outcome #	Course Outcome
CO1	Identify the different relational database management systems and it concepts.
CO2	Design entity-relationship diagrams to represent simple database application scenarios. Convert entity-relationship diagrams into relational tables.
CO3	Design and implement a database schema for a given problem-domain

CO4	Apply the concepts of Normalization and design database which possess no anomalies
CO5	Make use of Transaction processing concepts to handle concurrency control, recovery and security.
Class	COMPUTER SCIENCE & ENGINEERING
Semester	V
Course Name	Automata Theory And Computability
Course Code	18CS54
At the end of this course, the student will be able to):
Course Outcome #	Course Outcome
CO1	Understand the basic concepts and Apply them in solving formal languages, automata and grammar types, as well as the use of formal languages and reduction in normal forms
CO2	Construct Finite-State Machines-Deterministic Finite-State Automata, Nondeterministic Finite-State Automata.
CO3	Apply rigorously formal mathematical methods to prove properties of languages, grammars and automata.
CO4	Construct push down automata and Turing machines performing tasks of moderate complexity.
CO5	Understand the concepts and Solve Undecidability and Post's Correspondence problem
Class	COMPUTER SCIENCE & ENGINEERING
Semester	V
Course Name	Application Development Using Python
Course Code	18CS55
At the end of this course, the student will be able to):
Course Outcome #	Course Outcome

CO1	Make use of Python syntax and semantics to work on control statements and functions
CO2	Utilize the concepts of Strings and File Systems
CO3	Build Python programs using core data structures like Lists, Dictionaries and use Regular Expressions in python.
CO4	Make use of the concepts of Object-Oriented Programming as used in Python.
CO5	Construct exemplary applications related to Network Programming, Web Services and Databases in Python.
Class	COMPUTER SCIENCE & ENGINEERING
Semester	V
Course Name	Unix Programming
Course Code	18CS56
At the end of this course, the student will be able to:	
Course Outcome #	Course Outcome
CO1	Identify the UNIX features, architecture, structure and organization of UNIX file system.
CO2	Construct the regular expression for grep commands and implement shell programs.
CO3	Develop system programs using different categories of API's.
CO4	Build Interprocess communication using various techniques.
CO5	Utilize POSIX API for implementing signals.
Class	COMPUTER SCIENCE & ENGINEERING
Semester	V
Course Name	Computer Network Laboratory
Course Code	18CSL57
At the end of this course, the student will be able	

Course Outcome #	Course Outcome
CO1	Utilize socket program using TCP & UDP
CO2	Develop security algorithm to provide network security
CO3	Make use of CRC to develop the code for Data link layer protocol
CO4	Develop the performances of Routing protocol
CO5	Build Wired and Wireless network using network simulator
Class	COMPUTER SCIENCE & ENGINEERING
Semester	V
Course Name	DBMS Laboratory With Mini Project
Course Code	18CSL58
At the end of this course, the student will be able	
to:	
Course Outcome #	Course Outcome
CO1	Construct tables with different data types and constraints.
CO2	Experiment with SQL DML/DDL commands querying a table once it is populated
CO3	Implement a database using trigger and stored procedure.
CO4	18CSL58.CO4: Develop the queries and views for the given database
CO5	Demonstrate solutions for real world problems using the above learnt concepts.
6TH SEMESTER	
Class	COMPUTER SCIENCE & ENGINEERING
Semester	VI
Course Name	System Software and Compilers
Course Code	18CS61
At the end of this course, the student will be able to):
Course Outcome #	Course Outcome

CO1	Identify the functions of System Software such as Assemblers and loaders
CO2	Make use of the Lexical analysis phase of the compiler to generate tokens
CO3	Utilize different parsers to parse the given input string
CO4	Build Lex and YACC programs
CO5	Construct the syntax directed translation, intermediate code and target code for any given input code
Class	COMPUTER SCIENCE & ENGINEERING
Semester	VI
Course Name	Computer Graphics and Visualization
Course Code	18CS62
At the end of this course, the student will be able to):
Course Outcome #	Course Outcome
CO1	Design and implement algorithms for 2D graphics primitives and attributes.
CO2	Construct Geometric transformations on both 2D and 3D objects.
CO3	Apply concepts of clipping and visible surface detection in 2D and 3D viewing, and Illumination Models.
CO4	Design suitable hardware and software for developing graphics packages using OpenGL
CO5	Interview the representation of curves, surfaces, Color and Illumination models.
Class	COMPUTER SCIENCE & ENGINEERING
Semester	VI
Course Name	Web Technology and Its Applications
Course Code	18CS63
At the end of this course, the student will be able to):
Course Outcome #	Course Outcome
CO1	Adapt HTML and CSS syntax and semantics to build web pages.

CO2	Construct and visually format tables and forms using HTML and CSS
CO3	Develop Client-Side Scripts using JavaScript and Server-Side Scripts using PHP to generate and display the contents dynamically.
CO4	Appraise the principles of object oriented development using PHP with CSS, html
CO5	Inspect JavaScript frameworks like jQuery and Backbone which facilitates developer to focus on core features
Class	COMPUTER SCIENCE & ENGINEERING
Semester	VI
Course Name	System Modelling and Simulations
Course Code	18CS645
At the end of this course, the student will be able to	:
Course Outcome #	Course Outcome
CO1	Identify the System components and apply analytical modeling methods to simulate the activities of systems- Queuing, inventory & reliability.
CO2	Make use of the characteristics of a Discrete system and Event scheduling time advance algorithm to model the Single Queuing Simulation in Java. Identify useful statistical models, discrete and continuous distributions.
CO3	Model the behaviour of M/G/1 queue behaviour with measures of performance of queuing systems, Random number and variate generation, Tests for random numbers.
CO4	Identify the steps in Input Modelling by choosing parameters, Solve Goodness of fit tests problems.
CO5	Apply effective verification, calibration and validation of methods, Plan Optimization through Simulation.
Class	COMPLITER SCIENCE & ENGINEERING
Semester	VI

Course Name	Supply Chain Management
Course Code	18CS653
At the end of this course, the student will be able to	
Course Outcome #	Course Outcome
CO1	
CO2	
CO3	
CO4	
CO5	
Class	COMPUTER SCIENCE & ENGINEERING
Semester	VI
Course Name	System Software and Compiler Design Laboratory
Course Code	18CSL66
At the end of this course, the student will be able to):
Course Outcome #	Course Outcome
CO1	Utilize LEX and YACC to execute programs to recognize valid arithmetic expression, evaluation of expression, to recognize strings
CO2	Construct LL(1) parser for given grammar
CO3	Make use of triples to generate machine code
CO4	Develop programs for CPU Scheduling, deadlock detection, page replacement policies
CO5	Choose LEX and YACC to eliminate comment lines and recognize valid identifiers
Class	COMPUTER SCIENCE & ENGINEERING
Semester	VI
Course Name	Computer Graphics & Visualization Laboratory
Course Code	18CSL67

At the end of this course, the student will be able to:	
Course Outcome #	Course Outcome
CO1	Develop programs using OpenGL Graphics Primitives and attributes.
CO2	Design and implement algorithms for Geometric transformations on 2D objects and 3D objects
CO3	Make use of line drawing and clipping algorithms using OpenGL functions.
CO4	Construct programs using double buffers for spinning the objects and viewing API to demonstrate lighting and shading concepts.
CO5	Experiment with various OpenGL APIs to develop applications.
7TH SEMESTER	
Class	COMPUTER SCIENCE & ENGINEERING
Semester	VII
Course Name	Web Technology And Its Applications
Course Code	17CS71
At the end of this course, the student will be able to:	
Course Outcome #	Course Outcome
CO1	Adapt HTML and CSS syntax and semantics to build web pages.
CO2	Construct and visually format tables and forms using HTML and CSS
CO3	Develop Client-Side Scripts using JavaScript and Server-Side Scripts using PHP to generate and display the contents dynamically.
CO4	Appraise the principles of object oriented development using PHP with CSS, html
CO5	Inspect JavaScript frameworks like jQuery and Backbone which facilitates developer to focus on core features
Class	COMPUTER SCIENCE & ENGINEERING
Semester	VII
Course Name	Advanced Computer Architectures

Course Code	17CS72	
At the end of this course, the student will be able to):	
Course Outcome #	Course Outcome	
CO1	Identify the different parallelism models, network topologies and performance of parallel architecture.	
CO2	Utilize various processor technologies and supporting memory hierarchy in context of parallelism	
CO3	Make use of the hardware components and Pipelining superscalar technique to improve performance.	
CO4	Choose the suitable synchronization mechanism, computer organization and parallel processing architectures.	
CO5	Build different parallel programming models and Instruction level Parallelism.	
Class	COMPUTER SCIENCE & ENGINEERING	
Semester	VII	
Course Name	Machine Learning	
Course Code	17CS73	
At the end of this course, the student will be able to:		
Course Outcome #	Course Outcome	
CO1	Identify the fundamental concepts of Machine learning and implement Find-S algorithm	
CO2	Make use of the fundamental concepts of Machine learning to learn decision tree representation for ID3 algorithm and Perceptrons	
CO3	Utilize the neural network, Bayes Classifier and EM algorithm to solve the problems in Machine Learning.	
CO4	Examine Candidate elimination algorithm, EM & K- Means algorithm and Instance based Learning for problems appear in Machine Learning	

CO5	Inspect Back propagation algorithm, Estimating Hypotheses, and Reinforcement learning
Class	COMPUTER SCIENCE & ENGINEERING
Semester	VII
Course Name	Information And Network Security
Course Code	17CS743
At the end of this course, the student will be able to	:
Course Outcome #	Course Outcome
CO1	Identify the various classic symmetric primitives of cryptography.
CO2	Design cryptographic hash functions for digital signatures.
CO3	Construct cryptographic protocols for authentication.
CO4	Determine the need for key management.
CO5	Utilize cryptographic primitives for various applications
Class	COMPUTER SCIENCE & ENGINEERING
Semester	VII
Course Name	Storage Area Networks
Course Code	17CS754
At the end of this course, the student will be able to	:
Course Outcome #	Course Outcome
CO1	Illustrate the concept of data center and data protection
CO2	Interpret storage networking technologies IP SAN and FC SAN
CO3	Develop BC technologies and Back up recovery and replication
CO4	Analyze cloud computing characteristics and technologies
CO5	Determine secure storage infrastructure and ILM
Semester	VII
Course Name	Machine Learning Lab
Course Code	17CSL76

At the end of this course, the student will be able to:		
Course Outcome #	Course Outcome	
CO1	Make use of relevant data sets in implementing concept learning algorithms	
CO2	Utilize Baye's theorem to classify real world data	
CO3	Make use of decision tree and K-nearest neighbour concept to predict the input data	
CO4	Examine artificial neural network using back propagation algorithm	
CO5	Evaluate regression algorithms for solving problems using machine learning.	
Class	COMPUTER SCIENCE & ENGINEERING	
Semester	VII	
Course Name	Web Technology Lab With Mini Project	
Course Code	17CSL77	
At the end of this course, the student will be able to:		
Course Outcome #	Course Outcome	
CO1	Apply the concepts of HTML and JavaScript to design and develop dynamic web pages with good aesthetic sense of designing and latest technical knowhow's.	
CO2	Make use of the concepts of HTML5, JavaScript and CSS to design and develop dynamic web pages.	
CO3	Identify the use of Web Application Terminologies, Internet Tools other web services using the concept of XML and CSS style sheets.	
CO4	Develop Client-Side Scripts using JavaScript and Server-Side Scripts using PHP to generate and display the contents dynamically.	
CO5	Inspect how to link and publish web sites using PHP, HTML5, CSS and SQL.	
Class	COMPUTER SCIENCE & ENGINEERING	
Semester	VII	
Course Name	Project Phase I + Seminar	

Course Code	17CSP78
At the end of this course, the student will be able to:	
Course Outcome #	Course Outcome
CO1	Identify prospective problems encountered in the societal world and define the problem statement accordingly
CO2	Analyze the problem statement by carrying out literature survey
CO3	Plan to accomplish the project by working individual and also as a team
CO4	Develop effective ideas to portray the proposed project with their communication skill
CO4	Identify basic requirements, cost for the proposed project
8TH SEMESTER	
Class	COMPUTER SCIENCE & ENGINEERING
Semester	VIII
Course Name	Internet of Things And Applications
Course Code	17CS81
At the end of this course, the student will be able to	:
Course Outcome #	Course Outcome
CO1	Illustrate the impact and challenges posed by IoT networks leading to new architectural models.
CO2	Identify the deployment of smart objects and the technologies required to connect them to the network.
CO3	Choose the role of IoT protocols for efficient network communication.
CO4	Identify different sensor technologies for sensing real world entities and identify the applications of IoT in Industry.
CO5	Develop the need for Data Analytics and Security in IoT.
Class	COMPUTER SCIENCE & ENGINEERING
Semester	VIII
Course Name	Big Data Analytics

Course Code	17CS82
At the end of this course, the student will be able to	·:
Course Outcome #	Course Outcome
CO1	Identify the Applications of Business Intelligence, Data Warehousing, Data Mining and Data Visualization.
CO2	Apply the different Data Mining Techniques such Decision Trees, Regression, Artificial Neural Networks, Cluster Analysis and Association Rule.
CO3	Identify the Applications of Text and Web Mining and also Utilize the Machine learning Techniques such as Naïve-Bayes Analysis and Support Vector Machines
CO4	Make use of the basic concepts of Hadoop Distributed File system and Map Reduce programming.
CO5	Utilize the Essential Hadoop Tools and Hadoop administration procedures.
	COMPLETED SCIENCE & ENCINEEDING
Class	COMPUTER SCIENCE & ENGINEERING
Semester Course Nome	VIII System Modeling and Simulation
Course Name	System Modeling and Simulation
At the and of this course, the student will be shie to	1/CS834
At the end of this course, the student will be able to	Course Outcome
	Libertific the Contemporate and angle angle include the data
CO1	simulate the activities of systems- Queuing, inventory & reliability.
CO2	Make use of the characteristics of a Discrete system and Event scheduling time advance algorithm to model the Single Queuing Simulation in Java. Identify useful statistical models, discrete and continuous distributions.
CO3	Model the behaviour of M/G/1 queue behaviour with measures of performance of queuing systems, Random number and variate generation, Tests for random numbers.

CO4	Identify the steps in Input Modelling by choosing parameters, Solve Goodness of fit tests problems.
CO5	Apply effective verification, calibration and validation of methods, Plan Optimization through Simulation.
Class	COMPUTER SCIENCE & ENGINEERING
Semester	VIII
Course Name	Internship / Professional Practice
Course Code	17CS84
At the end of this course, the student will be able to	:
Course Outcome #	Course Outcome
CO1	Identify, write down and carry out performance objective related to the internship task assigned
CO2	Develop effective management of personal behaviour and ethics.
CO3	Evaluate interest and abilities in their field of study
CO4	Develop communication inter personal and other critical skills in job internal process.
CO5	Discover record of work experience, adopt to the work habits and develop attitude necessary for job success.
Class	COMPUTER SCIENCE & ENGINEERING
Semester	VIII
Course Name	Project Work Phase II
Course Code	17CSP85
At the end of this course, the student will be able to	:
Course Outcome #	Course Outcome
CO1	Design of the system as per proposed specifications.

CO2	Develop and implement the system as per proposed design methodology.	
CO3	Compare the findings of proposed system with competing systems using appropriate technology	
CO4	Create appropriate technical documentation going in-hand with discipline	
CO5	Build team work and communication skills.	
Class	COMPUTER SCIENCE & ENGINEERING	
Semester	VIII	
Course Name	Seminar	
Course Code	17CSS86	
At the end of this course, the student will be able to):	
Course Outcome #	Course Outcome	
CO1	Identify the recent trends and technologies in the area of Computer Science & Engineering and inculcation of discipline, etiquette.	
CO2	Construct the problem statement after performing the literature survey using various resources and interpret the gained knowledge	
CO3	Develop skills in presentation and discussion of research topics in an open forum	
CO4	Apply thinking capabilities to defend the queries through gained knowledge.	
CO5	Develop skills to prepare the technical report.	
	PG Courses	
1st SEMESTER		
Class	COMPUTER SCIENCE & ENGINEERING	
Semester	Ι	
Course Name	Mathematical Foundations af Computer Science	
Course Code	20SCS11	
At the end of this course, the student will be able to:		

Course Outcome #	Course Outcome
CO1	Understand the numerical methods to solve and find the roots of the equations.
CO2	Apply the technique of singular value decomposition for data compression, least square approximation in solving inconsistent linear systems
CO3	Understand vector spaces and related topics arising in magnification and rotation of images.
CO4	Utilize the statistical tools in multi variable distributions.
CO5	Use probability formulations for new predictions with discrete and continuous RV's
Class	COMPUTER SCIENCE & ENGINEERING
Semester	Ι
Course Name	Artificial Intelligence and Machine Learning
Course Code	20SCS12
At the end of this course, the student will be able to):
Course Outcome #	Course Outcome
CO1	Define Artificial intelligence and identify problems for AI.
CO2	Characterize the search techniques to solve problems and recognize the scope of classical search techniques
CO3	Define knowledge and its role in AI. Demonstrate the use of Logic in solving AI problems
CO4	Demonstrate handling of uncertain knowledge and reasoning in probability theory
CO5	Understanding of Learning methods
Class	COMPUTER SCIENCE & ENGINEERING
Semester	Ι
Course Name	Advances In Data Base Management

Course Code	20SCS13
At the end of this course, the student will be able to:	
Course Outcome #	Course Outcome
CO1	Select the appropriate high-performance database like parallel and distributed database
CO2	Infer and represent the real-world data using object-oriented database
CO3	Interpret rule set in the database to implement data warehousing of mining
CO4	Discover database for recent applications database for better interoperability
CO5	Design database for recent applications database for better interoperability
Class	COMPUTER SCIENCE & ENGINEERING
Semester	Ι
Course Name	Advanced Algorithms
Course Code	20SCS14
At the end of this course, the student will be able to:	
Course Outcome #	Course Outcome
CO1	Design and apply iterative algorithms.
CO2	Design and apply recursive algorithms.
CO3	Design and implement optimization algorithms in specific applications.
CO4	Design appropriate shared objects and concurrent objects for applications.
CO5	Design appropriate concurrent objects for applications.
Class	COMPUTER SCIENCE & ENGINEERING
Semester	Ι
Course Name	Internet Of Things and Applications
Course Code	20SCS15
At the end of this course, the student will be able to:	
Course Outcome #	Course Outcome
CO1	Develop schemes for the applications of IOT in real time scenarios

CO2	Manage the Internet resources
CO3	Model the Internet of things to business
CO4	Understand the practical knowledge through different case studies
CO5	Understand data sets received through IoT devices and tools used for analysis
Class	COMPUTER SCIENCE & ENGINEERING
Semester	Ι
Course Name	Algorithms And Database Management System Laboratory
Course Code	20SCSL16
At the end of this course, the student will be able to):
Course Outcome #	Course Outcome
CO1	Compare and pick out the right type of software testing process for any given real-world problem
CO2	Carry out the software testing process in efficient way and Establish a quality environment as specified in standards for developing quality software
CO3	Model and represent the real-world data using object-oriented database
CO4	Embed the rules set in the database to implement various features of ADBMS
CO5	Choose, design and implement recent applications database for better interoperability
Class	COMPUTER SCIENCE & ENGINEERING
Semester	Ι
Course Name	Research Methodology And IPR
Course Code	20RMI17
At the end of this course, the student will be able to:	
Course Outcome #	Course Outcome
CO1	Discuss research methodology and the technique of defining a research problem
CO2	Explain the functions of the literature review in research, carrying out a literature search, developing theoretical and conceptual frameworks and

	writing a review.
CO3	Explain various research designs, sampling designs, measurement and scaling techniques and also different methods of data collections.
CO4	Explain several parametric tests of hypotheses, Chi-square test, art of interpretation and writing research reports
CO5	Discuss various forms of the intellectual property, its relevance and business impact in the changing global business environment and leading International Instruments concerning IPR
2nd SEMESTER	
Class	COMPUTER SCIENCE & ENGINEERING
Semester	П
Course Name	Data Science
Course Code	20SCS21
At the end of this course, the student will be able to:	
Course Outcome #	Course Outcome
CO1	Define data science and its fundamentals
CO2	Demonstrate the process in data science
CO3	Explain machine learning algorithms necessary for data sciences
CO4	Illustrate the process of feature selection and analysis of data analysis algorithms
CO5	Visualize the data and follow of ethics
Class	COMPUTER SCIENCE & ENGINEERING
Semester	П
Course Name	Semantic Web and Social Networks
Course Code	20SCS22
At the end of this course, the student will be able to	D:
Course Outcome #	Course Outcome

CO1	Demonstrate the semantic web technologies like RDF Ontology and others
CO2	Learn the various semantic web applications
CO3	Identify the architectures in building social networks
CO4	Identify the and challenges in building social networks
CO5	Analyse the performance of social networks using electronic sources
Class	COMPUTER SCIENCE & ENGINEERING
Semester	Π
Course Name	Block Chain Technology
Course Code	20SCS23
At the end of this course, the student will be able to):
Course Outcome #	Course Outcome
CO1	Understand the types, benefits and limitation of blockchain.
CO2	Explore the blockchain decentralization and cryptography concepts.
CO3	Enumerate the Bitcoin features and its alternative options.
CO4	Describe and deploy the smart contracts
CO5	Summarize the blockchain features outside of currencies.
Class	COMPUTER SCIENCE & ENGINEERING
Semester	П
Course Name	Cloud Computing
Course Code	20SCS243
At the end of this course, the student will be able to:	
Course Outcome #	Course Outcome
CO1	Compare the strengths and limitations of cloud computing
CO2	Identify the architecture, infrastructure and delivery models of cloud computing
CO3	Apply suitable virtualization concept.

CO4	Choose the appropriate cloud player and Address the core issues of cloud computing such as security, privacy and interoperability
CO5	Design Cloud Services Set a private cloud
Class	COMPUTER SCIENCE & ENGINEERING
Semester	п
Course Name	Object Oriented Design
Course Code	20SCS252
At the end of this course, the student will be able to	:
Course Outcome #	Course Outcome
CO1	Identify the heuristics of the object-oriented programming
CO2	Explain the fundamentals of OOP
CO3	Examine fine object-oriented relations
CO4	Explain the role of Physical Object-Oriented Design
CO5	Make use of Heuristics in The Use of Heuristics in Object-Oriented Design
Class	COMPUTER SCIENCE & ENGINEERING
Semester	п
Course Name	Data Science Laboratory
Course Code	20SCSL26
At the end of this course, the student will be able to	:
Course Outcome #	Course Outcome
CO1	Understand the usage of datasets
CO2	Demonstration of data visualization methods
CO3	Understanding and implementation of logistic regression algorithm
CO4	Understanding and implementation of decision tree algorithm
CO5	Understanding and implementation of clustering algorithm
Class	COMPUTER SCIENCE & ENGINEERING

Semester	П
Course Name	Technical Seminar
Course Code	20SCS27
At the end of this course, the student will be able to	:
Course Outcome #	Course Outcome
CO1	Identify the recent trends and technologies in the area of Computer Science & Engineering and inculcation of discipline, etiquette.
CO2	Construct the problem statement after performing the literature survey using various resources and interpret the gained knowledge
CO3	Develop skills in presentation and discussion of research topics in an open forum
CO4	Apply thinking capabilities to defend the queries through gained knowledge.
CO5	Develop skills to prepare the technical report.
3rd SEMESTER	
Class	COMPUTER SCIENCE & ENGINEERING
Semester	III
Course Name	Machine Learning Techniques
Course Code	18SCS31
At the end of this course, the student will be able to:	
Course Outcome #	Course Outcome
CO1	Choose the learning techniques with this basic knowledge.
CO2	Apply effectively neural networks and genetic algorithms for appropriate applications.
CO3	Apply effectively genetic algorithms for appropriate applications.
CO4	Apply bayesian techniques and derive effectively learning rules.
CO5	Choose and differentiate reinforcement and analytical learning techniques
Class	COMPUTER SCIENCE & ENGINEERING

Semester	ш	
Course Name	Information And Network Security	
Course Code	18SCS322	
At the end of this course, the student will be able to):	
Course Outcome #	Course Outcome	
CO1	Analyze the vulnerabilities in any computing system and hence be able to design a security solution.	
CO2	Able to design a security solution.	
CO3	Identify the security issues in the network and resolve it.	
CO4	Resolve the security issues in network using suitable protocols.	
CO5	Evaluate security mechanisms using rigorous approaches, including theoretical	
Class	COMPUTER SCIENCE & ENGINEERING	
Semester	III	
Course Name	Software Project Planning & Management	
Course Code	18SCS332	
At the end of this course, the student will be able to:		
Course Outcome #	Course Outcome	
CO1	Evaluate a project to develop the scope of work, provide accurate cost estimates and to plan the various activities	
CO2	Apply risk management analysis techniques that identify the factors that put a project at risk and to quantify the likely effect of risk on project timescales	
CO3	Identify the resources required for a project and to produce a work plan and resource schedule and Monitor the progress of a project and to assess the risk of slippage, revising targets counteract drift	
CO4	Use appropriate metrics to management the software development outcome	
CO5	Develop research methods and techniques appropriate to defining, planning and carrying out a research project within your chosen specialist area within the management of software projects.	
Class	COMPUTER SCIENCE & ENGINEERING	
---	---	--
Semester	ш	
Course Name	Evaluation Of Project Phase -1	
Course Code	18SCS34	
At the end of this course, the student will be able to):	
Course Outcome #	Course Outcome	
CO1	Identify prospective problems encountered in the societal world and define the problem statement accordingly	
CO2	Analyze the problem statement by carrying out literature survey	
CO3	Plan to accomplish the project by working individual and also as a team	
CO4	Develop effective ideas to portray the proposed project with their communication skill	
CO5	Identify basic requirements, cost for the proposed project	
Class	COMPUTER SCIENCE & ENGINEERING	
Semester	III	
Course Name	Internship	
Course Code	18SCSI35	
At the end of this course, the student will be able to:		
Course Outcome #	Course Outcome	
CO1	Identify, write down and carry out performance objective related to the internship task assigned	
CO2	Develop effective management of personal behaviour and ethics.	
CO3	Evaluate interest and abilities in their field of study	
CO4	Develop communication inter personal and other critical skills in job internal process.	
CO5	Discover record of work experience, adopt to the work habits and develop attitude necessary for job success.	

K. S. Institute of Technology DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE OUTCOMES- 2020-21 YEAR

Course code 18MAT11	Course: CALCULUS AND LINEAR ALGEBRA
18MAT11.1	Make use of matrix theory for solving system of linear equations and compute Eigen values and Eigen vectors required for matrix diagonalization process.
18MAT11.2	Establish the notation of partial differentiation to calculate rates of change of multivariate functions and solve problems related to composite functions and Jacobians.
18MAT11.3	Apply the knowledge of calculus to solve problems related to polar curves and its applications in determining the bending of a curve.
18MAT11.4	Solve first order linear/nonlinear differential equations analytically using standard methods.
18MAT11.5	Utilize the concept of change of order of integration and variables to evaluate multiple integrals and their usage in computing the area and volumes.
Course code 18CHE12	Course: ENGINEERING CHEMISTRY
18CHE12.1	Make use of Electrochemical energy systems, battery by using the principles of electrochemistry and study its applications.
18CHE12.2	Identify the concepts of corrosion & apply their knowledge for protection of metals from using different method.

18CHE12.3	Solve energy crisis, knocking in IC engine and emission of toxic pollutants using	
	alternate energy sources (Solar energy, biodiesel and power alconol).	
18CHE12.4	Build the knowledge of electrochemical cells, battery and fuel cells by using the	
	Litilize of severe treatment deselination of see water and over viewing of synthesis	
18CHE12.5	properties and applications of panomaterials	
Course code 18PCD13	Course: C PROGRAMMING FOR PROBLEM SOLVING	
18PCD13.1	structure of C program and demonstrate simple C programs	
18PCD13.2	Build the C programs by utilizing the concepts of branching, looping statements.	
18PCD13.3	Construct the C programs by using arrays, strings, functions, illustrate the terms involved in functions and develop modular programs using functions.	
18PCD13.4	Make use of structures, file concepts, develop and implement C programs.	
18PCD13.5	Construct the C programs for pointer concepts. Outline the basics of data structures.	
	Course: BASIC ELECTRONICS	
Course code 18ELN14	Course: BASIC ELECTRONICS	
Course code 18ELN14 18ELN14.1	Course: BASIC ELECTRONICS Identify and understand the characteristics and operation of Semiconductor Devices	
Course code 18ELN14 18ELN14.1 18ELN14.2	Course: BASIC ELECTRONICS Identify and understand the characteristics and operation of Semiconductor Devices Design electronic circuits for different applications	
Course code 18ELN14 18ELN14.1 18ELN14.2 18ELN14.3 18ELN14.3	Course: BASIC ELECTRONICS Identify and understand the characteristics and operation of Semiconductor Devices Design electronic circuits for different applications Design analog circuits using operational amplifiers	
Course code 18ELN14 18ELN14.1 18ELN14.2 18ELN14.3 18ELN14.4	Course: BASIC ELECTRONICS Identify and understand the characteristics and operation of Semiconductor Devices Design electronic circuits for different applications Design analog circuits using operational amplifiers Design Combinational and Sequential circuits using digital electronic fundamentals	
Course code 18ELN14 18ELN14.1 18ELN14.2 18ELN14.3 18ELN14.3 18ELN14.4 18ELN14.5	Course: BASIC ELECTRONICS Identify and understand the characteristics and operation of Semiconductor Devices Design electronic circuits for different applications Design analog circuits using operational amplifiers Design Combinational and Sequential circuits using digital electronic fundamentals Illustrate the principles of communication system	
Course code 18ELN14 18ELN14.1 18ELN14.2 18ELN14.3 18ELN14.4 18ELN14.5 Course code 18ME15	Course: BASIC ELECTRONICS Identify and understand the characteristics and operation of Semiconductor Devices Design electronic circuits for different applications Design analog circuits using operational amplifiers Design Combinational and Sequential circuits using digital electronic fundamentals Illustrate the principles of communication system Course: ELEMENTS OF MECHANICAL ENGINEERING	
Course code 18ELN14 18ELN14.1 18ELN14.2 18ELN14.2 18ELN14.3 18ELN14.4 18ELN14.4 18ELN14.5 Course code 18ME15.1 18ME15.1	Course: BASIC ELECTRONICSIdentify and understand the characteristics and operation of Semiconductor DevicesDesign electronic circuits for different applicationsDesign analog circuits using operational amplifiersDesign Combinational and Sequential circuits using digital electronic fundamentalsIllustrate the principles of communication systemCourse: ELEMENTS OF MECHANICAL ENGINEERINGDemonstrate different types of sources of energy; environmental issues like global warming, Ozone depletion, Basic concepts of thermodynamics and steam.	

	Turbines and pumps; types of IC engines, Refrigeration and air conditioning and its working principle.
18ME15.3	Explain the Properties, composition and application of engineering metals; Joining processes, belt drive and gear drives; Machining process like Lathe and milling process; Advanced machining processes like CNC and Robots.
18ME15.4	Calculate the internal energy, entropy and enthalpy of thermodynamic system; thermodynamic properties of steam; the efficiency, power and other related working parameters of IC engines.
18ME15.5	Derive the length of the belt in open and cross belt drive and solve the related problems of Belt drive and gear drives.
Course code 18CHEL16	Course: ENGINEERING CHEMISTRY LAB
18CHEL16.1	Estimate the amount of analytic present in the solution using the principles of electro analytical techniques (pH Meter, Condutometer, Potentiometer, Flame Photometry and Photoelectric Colorimeter)
18CHEL16.2	Determine the viscosity coefficient of liquid using Ostwald's Viscometer
18CHEL16.3	Estimate the amount of Cao in cement and Total Hardness of water by complex metric Titration
18CHEL16.4	Estimate the content of copper in brass by Iodometric Titration
18CHEL16.5	Estimate the amount of iron in hematite ore and COD in waste water by Redox Titration & Estimate the % of chlorine in bleaching powder by Iodometric Titration.
Course code 18CPL17	Course: C PROGRAMMING LAB
18CPL17.1	Estimate the amount of analytic present in the solution using the principles of electro analytical techniques (pH Meter, Conduto meter, Potentiometer, Flame Photometry and Colorimeter)

18CPL17.2	Determine the viscosity coefficient of liquid using Ostwald's Viscometer
18CPL17.3	Estimate the amount of Cao in cement and Total Hardness of water by complex metric Titration
18CPL17.4	Estimate the % of copper in brass by Io do metric Titration
18CPL17.5	Estimate the amount of iron in hematite ore and COD in waste water by Redox Titration & Estimation of alkalinity of water.

Course code 18MAT21	Course: ADVANCED CALCULUS AND NUMERICAL METHODS
18MAT21.1	Apply the knowledge of numerical methods in the modeling of various physical and engineering phenomena
18MAT21.2	Demonstrate various physical models through higher order differential equations and solve such linear ordinary differential equations.
18MAT21.3	Construct a variety of partial differential equations and solution by method of separation of variables.
18MAT21.4	Illustrate the applications of multivariate calculus to understand the solenoid and irrational vectors and also exhibit the inner dependence of line, surface and volume integrals.
18MAT21.5	Explain the application of infinite series and obtain series solutions of ordinary differential equations
Course code 18PHY22	Course: ENGINEERING PHYSICS
18PHY22.1	Obtain the knowledge of Quantum Mechanics; compute Eigen values, Eigen function, momentum of atomic and subatomic particles. Apprehend theoretical background of laser, construction and working of different types of lasers and its application in different fields.

18PHY22.2	Make use of different theoretical models to study the electrical and thermal properties of materials like conductors, semiconductors and dielectrics to understand its use in engineering applications.
18PHY22.3	Build the concept of shock waves; discover the role of shock waves in various fields. Understand the various types of oscillations and their implications.
18PHY22.4	Identify the elastic properties of materials; impart the knowledge to understand its engineering applications.
18PHY22.5	Establish the interrelation between time varying electric and magnetic field, transverse nature of electromagnetic waves and realize their role in optical fiber communication.
Course code 18ELE23	Course: BASIC ELECTRICAL ENGINEERING
18ELE23.1	Analyze the behaviour of electrical circuits with DC sources
18ELE23.2	analyze the behaviour of electrical circuits with single phase and three phase AC sources.
18ELE23.3	Analyze the operation of single phase transformers and the concepts of electrical wiring.

18ELE23.4	Analyze the performance characteristics of three phase AC Generators and motors.
18ELE23.5	Analyse the performance of DC generators and DC motors.
Course code 18CIV24	Course: ELEMENTS OF CIVIL ENGINEERING & MECHANICS
18CIV24.1	Outline the Role of Civil Engineer in different fields of civil engineering & Infrastructure development of the country and explain free body diagrams, types of force systems and its theorems.
18CIV24.2	Explain the Newton's law of motion, Kinetics, Kinematics, projectiles, Trusses, Wedge and ladder friction
18CIV24.3	Solve for resultant force in the system and also for friction in bodiesviz; Wedge and ladder friction
18CIV24.4	Make use of centroid to analyze geometrical figures and solve for support reactions for various beams
18CIV24.5	Solve for moment of inertia and identify the parameter required for Kinematics, Kinetics & Projectiles
Course code 18EGDL25	Course: ENGINEERING GRAPHICS

18EGDL25.1	Explain t he standards and conventions followed in preparation of Engineering Drawings
18EGDL25.2	Demonstrate projections of Points, Lines and Plane surfaces on Horizontal and Vertical Planes
18EGDL25.3	Construct the orthographic view of Solids at different positions
18EGDL25.4	Develop the lateral surface of various solids
18EGDL25.5	Build isometric projections which will be helpful in representing the objects in three dimensional appearances
Course code 18PHYL26	Course: ENGG PHYSICS LAB
18PHYL26.1	Analysis the concepts of quantum mechanics to verify the Stefan's law and understand Fermi energy in metals.
18PHYL26.2	Examine the chateristics of Zener diode, photo diode, transistor by utilizing the concepts of semiconductors physics.
18PHYL26.3	Discover the ability to use various passive electrical components,

	determine Dielectric constant and electrical resonance.
18PHYL26.4	Analyse the concepts of diffraction and interference of light by using diffraction grating and Newton's ring.
18PHYL26.5	Inspect the modulus of elasticity for various rigid bodies by setting up torsional pendulum and uniform bending.
Course code 18ELEL27	Course: BASIC ELECTRICAL ENGINEERING LAB
18ELEL27.1	Analyse the effect of open circuit and short circuit in DC circuits using KCL, KVL.
18ELEL27.2	Compare the power factor for different types of lamps
18ELEL27.3	Measure the parameters of choke coil and earth resistance
18ELEL27.4	Measure current and the power consumed in three phase load.
18ELEL27.5	Examine the truth table for two-way and three-way control of lamps.

Course	Course: TRANSFORM CALCULUS, FOURIER SERIES AND NUMERICAL
code 18MAT31	TECHNIQUES
18MAT31.1	Solve first and second order ordinary differential equations arising in engineering

	problems using single step and multistep numerical methods.
18MAT31.2	Use Laplace transform and inverse Laplace transform in solving differential/ integral equation arising in network analysis, control systems and other fields of engineering.
18MAT31.3	Demonstrate F ourier series to study the behaviour of periodic functions and their applications in system communications, digital signal processing and field theory.
18MAT31.4	Determinet heexternalsof functionals using calculus of variations and solve problems arising in dynamics of rigid bodies and vibrational analysis.
18MAT31.5	Make use of Fourier transform and Z-transform to illustrate discrete/continuous function arising in wave and heat propagation, signals and systems.
Course code 18EC32	Course: NETWORK THEORY
18EC32.1	Analyze ac and dc electrical networks.
18EC32.2	Simplify electrical circuits using network theorems.
18EC32.3	Apply laplace transforms and transient analysis to find response of RLC circuits.

18EC32.4	Analyze and inter relate two port network parameters.
18EC32.5	Determine the various parameters of Series and Parallel resonance circuits.
Course code 18EC33	Course: ELECTRONIC DEVICES
18EC33.1	Apply the principles of semiconductor physics to electronic devices.
18EC33.2	Identify the characteristics of semiconductor and Optoelectronic devices.
18EC33.3	Analyze the BJTs and FETs circuits using mathematical model.
18EC33.4	Identify the operation of FET and its frequency limitation.
18EC33.5	Identify the fabrication process of semiconductor devices and CMOS process integration.
Course code 18EC34	Course: DIGITAL SYSTEM DESIGN
18EC34.1	Simplify switching equations using K-map and QuineMc-Cluskey techniques.
18EC34.2	Design combinational logic circuits.

18EC34.3	Design sequential logic circuits.
18EC34.4	Analyze sequential logic circuits using Mealy and Moore Finite state machine
18EC34.5	Design complex digital circuits for various applications.
Course code 18EC35	Course: COMPUTER ORGANIZATION AND ARCHITECTURE
18EC35.1	Categorize the operations of major subsystems of computer
18EC35.2	Analyze different types of semiconductor memories and secondary memories.
18EC35.3	Analyze ALU and control unit operations.
18EC35.4	Analyze the performance in terms of speed and technolgy.
18EC35.5	Apply the concepts of hardwired control and microprogrammed control.
Course code 18EC36	Course: POWER ELECTRONICS AND INSTRUMENTATION

18EC36.1	Analyse the SCR characteristics, turn-on and turn-off mechanisms.
18EC36.2	Analyse the power electronic converters and controllers.
18EC36.3	Identify the measurement errors and characteristics of the instruments.
18EC36.4	Determine the unknown value of AC Bridges.
18EC36.5	Analyse operations of digital measuring instruments, Transducers and PLCs.
Course code 18ECL37	Course: ELECTRONIC DEVICES AND INSTRUMENTATION LAB
18ECL37.1	Design and test rectifiers, clipping circuits, clamping circuits and voltage regulators.
18ECL37.2	Calculate the parameters from the characteristics of power diodes and rectifier circuits using power diodes.
18ECL37.3	Analyse the characteristics of photodiode, LDR and Temperature sensors.
18ECL37.4	Analyse the bridge circuits.
18ECL37.5	Analyse characteristics and implement circuits using transistors like BJT,MOSFET,UJT and Regulated power supply through simulation software.
Course code 18ECL38	Course: DIGITAL SYSTEM DESIGN LAB
18ECL38.1	Design the test the working of combinational circuits I.

18ECL38.2	Analyse the working of adders and code converter using multiplexer and decoder
18ECL38.3	Design the flip flop circuits and verify its working using universal gates.
18ECL38.4	Design synchronous counters and asynchronous counters.
18ECL38.5	Analyze the working of serial adder and multiplier using tool.

Course code 18MAT41	Course: COMPLEX ANALYSIS, PROBABILITY AND STATISTICAL METHODS
18MAT41.1	Use the concepts of analytic function and complex potentials to solve the problems arising in electromagnetic field theory.
18MAT41.2	Apply discrete and continuous probability distributions in analyzing the probability models arising in engineering field.
18MAT41.3	Fit a suitable curve for given data and analyze the relationship between two variables using statistical methods.
18MAT41.4	Utilize conformal transformation and complex integral arising in fluid flow visualization and image processing.

18MAT41.5	Apply the knowledge of joint probability distributions attempting engineering problems for feasible random events and also Understand the concepts of sampling theory and apply it to related real life problems.
Course code 18EC42	Course: ANALOG CIRCUITS
18EC42.1	Analysethe characteristics of BJT and MOSFET.
18EC42.2	Analyze the high frequency model of MOSFET and Frequency response of CS amplifier.
18EC42.3	Derive the expression for input and output resistance for different types of feedback amplifiers and classify different types of feedback amplifiers and classify different types of power amplifiers.
18EC42.4	Demonstrate the working of AC amplifier ,DC amplifier and its applications.
18EC42.5	Demonstrate the working of DAC, ADC, filter circuits and 555 timer.
Course code 18EC43	Course: CONTROL SYSTEMS
18EC43.1	Develop the mathematical model of mechanical / electrical systems and obtain its transfer function using block reduction method /Signal flow graph method

18EC43.2	Ability to relate transient performance parameters (overshoot, rise time, peak time and settling time) for the given system and to evaluate steady state error.
18EC43.3	Identify various stability criteria and Determine the stability of a system in the time domain using Routh-Hurwitz criterion and Root-locus technique.
18EC43.4	Determine the stability of a system in the frequency domain using Nyquist and bode plots
18EC43.5	Develop a control system model in continuous and discrete time using state variable techniques
Course code 18EC44	Course: ENGINEERING STATISTICS and LINEAR ALGEBRA
18EC44.1	Identify Random Variables to extract quantitative statistical parameters and apply the same for special distributions.
18EC44.2	Analyze statistical representations and Eigen values of some special matrices and demonstrate the same using MATLAB.
18EC44.3	Analyze the concept of multiple Random variables to extract quantitative statistical parameters.
18EC44.4	Analyze Random events in typical communication events to extract

	quantitative statistical parameters.
18EC44.5	Analyze vectors and vector spaces using suitable transformations and basis function sets.

Course code 18EC45	Course: SIGNALS AND SYSTEMS
18EC45.1	Apply the basic operations on signals and classify elementary signals.
18EC45.2	Identify the various systems and analyze the concepts of convolution sum & integral on signals and
18EC45.3	Identify the system properties and represent periodic continuous/discrete signals in time and frequency domain using Fourier series.
18EC45.4	Make use of the properties of Fourier Transform on aperiodic signals to represent the signals in frequency domain.
18EC45.5	Make use of Z-transforms, inverse Z-transforms and transfer functions to analyze the complex LTI systems.
Course code 18EC46	Course: MICROCONTROLLER
18EC46.1	Distinguish the role of functional units in the architecture of 8051 microcontroller

18EC46.2	Identify various instructions of 8051 Microcontroller
18EC46.3	Build solutions using assembly level language and high level language
18EC46.4	Make use of timers/counters, serial port and interrupts to generate delay and perform serial communication
18EC46.5	Design interfacing of peripherals to 8051 Microcontroller
Course code 18ECL47	Course: MICROCONTROLLER LAB
18ECL47.1	Develop Assembly level program for transferring data and to perform arithmetic operations like addition, multiplication etc
18ECL47.2	Develop Assembly level program to act as a counter using subroutine
18ECL47.3	Make use of timers for generating the delay and serial communication ports for transferring the data serially
18ECL47.4	Examine the use of interrupts in controlling the switches connected to

	the ports
18ECL47.5	Test for the working of interface like ADC ,stepper motor, LCD etc
Course code 18ECL48	Course: ANALOG CIRCUITS LAB
18ECL48.1	Design and test the setup of BJT and FET amplifiers and study its frequency response.
18ECL48.2	Design and test oscillators by calculating its frequency of oscillations.
18ECL48.3	Design and analyze the applications of Op-Amps for DACs, Filters, Schmitt Trigger, and adder, Integrator and differentiator circuits.
18ECL48.4	Analyze and test the Multivibrators using 555 Timer.
18ECL48.5	Analyze and implement the circuits of Oscillators, Filters, Rectifiers and Multivibrators using BJTs, ICs 741 and 555 through simulation software.

Course	Course: TECHNOLOGICAL INNOVATION MANAGEMENT AND
code 18ES51	ENTREPRENEURSHIP
18ES51.1	Explain various management functions, planning and different ways of

	decision making.
18ES51.2	Demonstrate characteristics of organising staffing and directing.
18ES51.3	Explain the functions of Managers, Entrepreneurs and their social responsibilities.
18ES51.4	Survey the Institutional support by various state and central government agencies
18ES51.5	Apply the knowledge of Project Formulation and Evaluation Techniques
Course code 18EC52	Course: DIGITAL SIGNAL PROCESSING
18EC52.1	Construct the frequency domain sampling and reconstruction of discrete time signals.
18EC52.2	Make use of the properties and develop efficient algorithms for the computation of DFT.
18EC52.3	Construct FIR and IIR filters in different structural forms.
18EC52.4	Utilize the procedures to design IIR filters from the analog filters using impulse invariance and bilinear transformation.
18EC52.5	Make use of the characteristics of DSP processors and implement FIR and

	IIR filters.
Course code 18EC53	Course: PRINCIPLES OF COMMUNICATION SYSTEMS
18EC53.1	Apply the time and frequency domain knowledge for the generation and demodulation of amplitude modulated signals.
18EC53.2	Identify the performance of different generation and detection methodologies of AM, FM and multiplexing.
18EC53.3	Examine analog signals in time domain as random processes and identify the types of basic Noise
18EC53.4	Demonstrate multiplexing and demultiplexing along with reconstruction of digital signals at the transmitter and the receiver respectively.
18EC53.5	Distinguish the characteristics of pulse modulation techniques
Course code 18EC54	Course: INFORMATION THEORY AND CODING
18EC54.1	Apply the concept of dependent and independent source to measure the parameters of information source.
18EC54.2	Construct the code word using source coding algorithms.
18EC54.3	Model the continuous and discrete communication channels using input, output and joint probabilities.
18EC54.4	Inspect the channel coding algorithms for error detection and correction.

18EC54.5	Design the encoding and decoding circuits for different channel coding techniques.
Course code 18EC55	Course: ELECTROMAGNETIC WAVES
18EC55.1	Interpret the problems on electric fields due to point, linear, volume charges by applying conventional methods or by Gauss law.
18EC55.2	Analyze potential and energy with respect to point charge and capacitance using Laplace equation.
18EC55.3	Solve for magnetic field, force, and potential energy of magnetic materials.
18EC55.4	Apply Maxwell's equation for time varying fields, EM waves in free space and conductors.
18EC55.5	Make use of Poynting theorem to find power associated with EM waves.
Course code 18EC56	Course: VERILOG HDL
18EC56.1	Write Verilog programs in gate, dataflow (RTL), behavioral and switch modeling levels of Abstraction & simple programs in VHDL in different styles.

18EC56.2	Design and verify the functionality of digital circuit/system using test benches.
18EC56.3	Identify the suitable abstraction level for a particular digital design.
18EC56.4	Write the programs effectively using verilogtasks, functions and directives.
18EC56.5	Perform timing and delay simulation and interpret the various constructs in logic synthesis.
Course	Course: DICITAL SIGNAL PROCESSING LAB
code 18ECL57	Course: DIGITAL SIGNAL I ROCESSING LAD
code 18ECL57 18ECL57.1	Apply sampling theorem and effective reconstruction of signal.
code 18ECL57 18ECL57.1 18ECL57.2	Apply sampling theorem and effective reconstruction of signal. Compute the DFT for a discrete signal and verification of its properties using MATLAB.
code 18ECL57 18ECL57.1 18ECL57.2 18ECL57.3	Apply sampling theorem and effective reconstruction of signal. Compute the DFT for a discrete signal and verification of its properties using MATLAB. Solve difference equations and perform different operations on discrete time signals
code 18ECL57 18ECL57.1 18ECL57.2 18ECL57.3 18ECL57.4	Apply sampling theorem and effective reconstruction of signal. Compute the DFT for a discrete signal and verification of its properties using MATLAB. Solve difference equations and perform different operations on discrete time signals Design IIR and FIR filters for the given specifications.
code 18ECL57 18ECL57.1 18ECL57.2 18ECL57.3 18ECL57.4 18ECL57.5	Apply sampling theorem and effective reconstruction of signal. Compute the DFT for a discrete signal and verification of its properties using MATLAB. Solve difference equations and perform different operations on discrete time signals Design IIR and FIR filters for the given specifications. Implement DSP computations on TMS processor and verify the result

code 18ECL58	
18ECL58.1	Develop and write the Verilog programs to simulate combinational circuits in different styles
18ECL58.2	Develop and write the Verilog programs to simulate sequential circuits like flip flops and counters in Behavioral description.
18ECL58.3	Develop, and Synthesize Combinational and Sequential circuits on programmable ICs
18ECL58.4	Develop and Interface the hardware to the FPGA chips through I/O ports.
18ECL58.5	Develop and write test benches for performance analysis of digital designs in Hardware Descriptive Languages

Course code 18EC61	Course: DIGITAL COMMUNICATION
18EC61.1	Develop the concepts of Band pass sampling to well specified signals and channels.
18EC61.2	Utilize the performance parameters and transfer rates for low pass and bandpass symbol under ideal and corrupted non band limited channels.
18EC61.3	Identify valid symbol processing and performance parameters at the receiver

	under ideal and corrupted bandlimited channels.
18EC61.4	Identify the bandpass signals when subjected to corruption and distortion during transmission over a bandlimited channel.
18EC61.5	Identify the need for data security using spread spectrum technique and error rate calculation.
Course code 18EC62	Course: EMBEDDED SYSTEMS
18EC62.1	Construct the architectural features and instructions of 32 bit microcontroller ARM Cortex M3.
18EC62.2	Make use of the knowledge gained for Programming ARM Cortex M3 for different applications.
18EC62.3	Identify the basic hardware components and their selection method based on the characteristics and attributes of an embedded system.
18EC62.4	Develop the hardware/software co-design and firmware design using ARM Cortex M3.Instruction set.
18EC62.5	Establish the need of real time operating system for embedded system applications

Course code 18EC63	Course: MICROWAVE AND ANTENNA
18EC63.1	Identify the working of reflex Klstron by studying the mode curves and also understand transmission lines structures along with its line equations using smith charts to calculate the reflection coefficient ,SWR,input and load impedance.
18EC63.2	Solve for microwave network parameters using S-matrix and also study passive microwave devices like connectors ,Adapters attenuators ,Tees and phase shifters .
18EC63.3	Identify the different types of strip lines and understandthe antenna basics to find various parameters like antenna gain, directivity.
18EC63.4	Classify the point source of n-isotropic antennas and electric dipole.
18EC63.5	Identify loop,horn antenna and the helical antenna by making use of the design considerations.
Course code 18ECL66	Course: EMBEDDED Controller LAB

18ECL66.1	Understand the instruction set of 32 bit microcontroller ARM Cortex M3, and the software tool required for programming in Assembly and C language.
18ECL66.2	Develop assembly language programs using ARM Cortex M3 for different applications
18ECL66.3	Develop C language programs to interface external devices and I/O with ARM Cortex M3.
18ECL66.4	Develop C language programs for embedded system applications.
18ECL66.5	Develop C language programs which makes use of library functions for embedded system applications.
Course code 18ECL67	Course: COMMUNICATION LAB
18ECL67.1	Make use of the characteristics and response of microwave devices
18ECL67.2	Utilize the characteristics of micros trip antennas and measurement of

	its parameters.
18ECL67.3	Construct the analog and digital modulation schemes with the display of waveforms and computation of performance parameters
18ECL67.4	Make use of the sampling and multiplexing concepts and reconstruct.
18ECL67.5	Model different digital communication concepts using simulation
Course code 18ECM68	Course: MINI PROJECT
18ECM68.1	Identify the Problem statement and technology used. through Literature review in specific area of interest.
18ECM68.2	Formulate specific Objectives and methodology arriveat the block diagram using hardware required for the project.
18ECM68.3	Develop leadership qualities through effective team work & perform functionaliverifivation of the project

18ECM68.4	Develop technical writing , presentation, teamwork and communication skills
18ECM68.5	Design the project as per the specification.

Course code 17EC71	Course: MICROWAVE AND ANTENNA
17EC71.1	Apply Smith charts to find solutions to transmission line problems.
17EC71.2	Analyze passive microwave devices using S-parameters
17EC71.3	Evaluate various parameters and characteristics of the microwave strip lines and devices.
17EC71.4	Estimate radiation patterns and performance parameters of n-isotropic antennas
17EC71.5	Recommend various antenna configurations based on application

Course	Course: DIGITAL IMAGE PROCESSING
code 17EC72	

17EC72.1	Identify the basic concepts and processes in digital image formation and processing.
17EC72.2	Utilize mathematical operations in the spatial domain to enhance images.
17EC72.3	Model image restoration techniques and morphological operations.
17EC72.4	Examine subband coding and wavelet transforms in image enhancement and multi-resolution.
17EC72.5	Distinguish analysis techniques to achieve image segmentation.
Course code 17EC73	Course: POWER ELECTRONICS
17EC73.1	Identify the characteristics of different power devices and its applications.
17EC73.2	Design the thyristor and transistor circuits with different triggering methods and commutation techniques.
17EC73.3	Analyze the performance of power electronic converters.
17EC73.4	Analyze the performance of power electronic controllers.
17EC73.5	Identify the behaviour of inverters and different protection devices.
Course code 17ECL76	Course: ADVANCED DIGITAL COMMUNICATION LAB
17ECL76.1	Demonstrate the characteristics and response of microwave devices
17ECL76.2	Illustrate the characteristics of micros trip antennas and measurement of its parameters.
17ECL76.3	Design the digital modulation schemes with the display of waveforms and computation of performance parameters

17ECL76.4	Determine the characteristics of Optical Fibre Communication and calculate the parameters associated with it.
17ECL76.5	Model different digital communication concepts using simulation
Course code 17ECL77	Course: VLSI LAB
17ECL77.1	Model basic digital circuits, simulate and synthesize using EDA Tool.
17ECL77.2	Make use of logic gates to realize shift registers and adders to meet desired parameters.
17ECL77.3	Construct and generate layout structure for basic CMOS circuits like inverter, common source amplifier and differential amplifier.
17ECL77.4	Experiment with the basic amplifiers to design higher level circuits like operational amplifier and analog/digital converters to meet desired parameters.
17ECL77.5	Inspect concepts of DC Analysis, AC Analysis and Transient Analysis in analog circuits.
Course code 17ECP78	Course: PROJECT WORK PAHSE I
17ECP78.1	Carry out Literature survey in their specific area of interest.
17ECP78.2	Identify the Problem statement and technology used.
17ECP78.3	Formulate specific Objectives and methodology.
17ECP78.4	Develop technical writing and presentation skills.

17ECP78.5	Develop leadership qualities through effective team work.

Course code 17EC81	Course: WIRELESS CELLULAR AND LTE 4G BROADBAND
17EC81.1	Make use of the system architecture and the functional standard specified in LTE 4G.
17EC81.2	Identify the role of the layer of LTE radio interface protocols and EPS Data convergence protocols to set up, reconfigure and release data and voice from users.
17EC81.3	Establish the UTRAN and EPS handling processes from set up to release including mobility management for a variety of data call scenarios.
17EC81.4	Identify the difference between uplink , down link and the physical layer procedures that provide the services to upper layers.
17EC81.5	Evaluate the Performance of resource management and packet data processing and transport algorithms.
Course code 17EC82	Course: FIBER OPTIC NETWORKS
17EC82.1	Make use of the concepts of optical fibre explain the working of optical fibre with different modes of light propagation.
17EC82.2	Utilize the concepts of transmission characteristics to obtain the losses in optical fiber communication.
17EC82.3	Identify the constructional features and the characteristics of optical sources, detectors and receivers.
17EC82.4	Analyze the construction and working principle of optical

	connectors, multiplexers and optical amplifiers.
17EC82.5	Examine the networking aspects of optical fiber and describe various standards associated with it.
Course code 17EC835	Course: NETWORK AND CYBER SECURITY
17EC835.1	AnalyseWeb security concerns and Transport Layer Security Protocols
17EC835.2	Analyse various security concerns in Email and understand the functionality of PGP and S/MIME
17EC835.3	Analysevarious security concerns in Internet Protocol and Associations including Internet Key Exchange
17EC835.4	Analysecyber network security concepts such as antipattern problems and associated solutions
17EC835.5	Apply concept of cyber security framework in computer system administration
Course code 17EC84	Course: INTERNSHIP
17EC84.1	Examine the knowledge and skills acquired in the classroom to a professional context
17EC84.2	Apply the methods for solving the complex problems
17EC84.3	Develop the organizational skills
17EC84.4	Develop the ability to write the report
17EC84.5	Develop the skills for communication and team working
Course code 17ECP85	Course: PROJECT WORK PHASE II

17ECP85.1	Build the block diagram using hardware required for the project.
17ECP85.2	Develop the software required for the project.
17ECP85.3	Test for functionality of the project
17ECP85.4	Develop team work and communication skills
17ECP85.5	Design the project as per the specifications
Course code 15ECS86	Course: SEMINAR
17ECS86.1	Survey the new technologies, methods, hardware and software tools associated with Electronics & Communication Engineering
17ECS86.2	Compare and explain the solutions for problems associated with engineering, society and environment
17ECS86.3	Analyze the technical details in depth.
17ECS86.4	Develop the ability to document the study.
17ECS86.5	Develop communication skills.

Course code 18MAT11	Course: CALCULUS AND LINEAR ALGEBRA
18MAT11.1	Make use of matrix theory for solving system of linear equations and compute Eigen values and Eigen vectors required for matrix diagonalization process.
18MAT11.2	Establish the notation of partial differentiation to calculate rates of change of multivariate functions and solve problems related to composite functions and Jacobians.
18MAT11.3	Apply the knowledge of calculus to solve problems related to polar curves and its applications in determining the bending of a curve.
18MAT11.4	Solve first order linear/nonlinear differential equations analytically using standard methods.
18MAT11.5	Utilize the concept of change of order of integration and variables to evaluate multiple integrals and their usage in computing the area and volumes.
Course code 18CHE12	Course: ENGINEERING CHEMISTRY
18CHE12.1	Make use of Electrochemical energy systems, battery by using the principles of electrochemistry and study its applications.
18CHE12.2	Identify the concepts of corrosion & apply their knowledge for protection of metals from using different method.
18CHE12.3	Solve energy crisis, knocking in IC engine and emission of toxic pollutants using alternate energy sources (Solar energy, biodiesel and power alcohol).
18CHE12.4	Build the knowledge of electrochemical cells, battery and fuel cells by using the principles of electrochemistry and study its applications.
18CHE12.5	Utilize of sewage treatment, desalination of sea water and over viewing of synthesis, properties and applications of nanomaterials.
Course code 18PCD13	Course: C PROGRAMMING FOR PROBLEM SOLVING
18PCD13.1	Identify basic data types, operators, I/O statements, pseudocode, algorithm and

	structure of C program and demonstrate simple C programs
18PCD13.2	Build the C programs by utilizing the concepts of branching, looping statements.
18PCD13.3	Construct the C programs by using arrays, strings, functions, illustrate the terms involved in functions and develop modular programs using functions.
18PCD13.4	Make use of structures, file concepts, develop and implement C programs.
18PCD13.5	Construct the C programs for pointer concepts. Outline the basics of data structures.
Course code 18ELN14	Course: BASIC ELECTRONICS
18ELN14.1	Identify and understand the characteristics and operation of Semiconductor Devices
18ELN14.2	Design electronic circuits for different applications
18ELN14.3	Design analog circuits using operational amplifiers
18ELN14.4	Design Combinational and Sequential circuits using digital electronic fundamentals
18ELN14.5	Illustrate the principles of communication system
Course code 18ME15	Course: ELEMENTS OF MECHANICAL ENGINEERING
18ME15.1	Demonstrate different types of sources of energy; environmental issues like global warming, Ozone depletion, Basic concepts of thermodynamics and steam.
18ME15.2	Illustrate the Boilers and its accessories; principle of operation of different types Turbines and pumps; types of IC engines, Refrigeration and air conditioning and its working principle.
18ME15.3	Explain the Properties, composition and application of engineering metals; Joining processes, belt drive and gear drives; Machining process like Lathe and milling process; Advanced machining processes like CNC and Robots.
18ME15.4	Calculate the internal energy, entropy and enthalpy of thermodynamic system;
	thermodynamic properties of steam; the efficiency, power and other related working parameters of IC engines.
-------------------------	---
18ME15.5	Derive the length of the belt in open and cross belt drive and solve the related problems of Belt drive and gear drives.
Course code 18CHEL16	Course: ENGINEERING CHEMISTRY LAB
18CHEL16.1	Estimate the amount of analytic present in the solution using the principles of electro analytical techniques (pH Meter, Condutometer, Potentiometer, Flame Photometry and Photoelectric Colorimeter)
18CHEL16.2	Determine the viscosity coefficient of liquid using Ostwald's Viscometer
18CHEL16.3	Estimate the amount of Cao in cement and Total Hardness of water by complex metric Titration
18CHEL16.4	Estimate the content of copper in brass by Iodometric Titration
18CHEL16.5	Estimate the amount of iron in hematite ore and COD in waste water by Redox Titration & Estimate the % of chlorine in bleaching powder by Iodometric Titration.
Course code 18CPL17	Course: C PROGRAMMING LAB
18CPL17.1	Estimate the amount of analytic present in the solution using the principles of electro analytical techniques (pH Meter, Conduto meter, Potentiometer, Flame Photometry and Colorimeter)
18CPL17.2	Determine the viscosity coefficient of liquid using Ostwald's Viscometer
18CPL17.3	Estimate the amount of Cao in cement and Total Hardness of water by complex metric Titration
18CPL17.4	Estimate the % of copper in brass by Io do metric Titration
18CPL17.5	Estimate the amount of iron in hematite ore and COD in waste water by Redox

	Titration & Estimation of alkalinity of water.
--	--

Course code 18MAT21	Course: ADVANCED CALCULUS AND NUMERICAL METHODS
18MAT21.1	Apply the knowledge of numerical methods in the modeling of various physical and engineering phenomena
18MAT21.2	Demonstrate various physical models through higher order differential equations and solve such linear ordinary differential equations.
18MAT21.3	Construct a variety of partial differential equations and solution by method of separation of variables.
18MAT21.4	Illustrate the applications of multivariate calculus to understand the solenoid and irrational vectors and also exhibit the inner dependence of line, surface and volume integrals.
18MAT21.5	Explain the application of infinite series and obtain series solutions of ordinary differential equations
Course code 18PHY22	Course: ENGINEERING PHYSICS
18PHY22.1	Obtain the knowledge of Quantum Mechanics; compute Eigen values, Eigen function, momentum of atomic and subatomic particles. Apprehend theoretical background of laser, construction and working of different types of lasers and its application in different fields.
18PHY22.2	Make use of different theoretical models to study the electrical and thermal properties of materials like conductors, semiconductors and dielectrics to understand its use in engineering applications.
18PHY22.3	Build the concept of shock wayes: discover the role of shock wayes in

	implications.
18PHY22.4	Identify the elastic properties of materials; impart the knowledge to understand its engineering applications.
18PHY22.5	Establish the interrelation between time varying electric and magnetic field, transverse nature of electromagnetic waves and realize their role in optical fiber communication.
Course code 18ELE23	Course: BASIC ELECTRICAL ENGINEERING
18ELE23.1	Analyze the behaviour of electrical circuits with DC sources
18ELE23.2	analyze the behaviour of electrical circuits with single phase and three phase AC sources.
18ELE23.3	Analyze the operation of single phase transformers and the concepts of electrical wiring.
18ELE23.4	Analyze the performance characteristics of three phase AC Generators and motors.
18ELE23.5	Analyse the performance of DC generators and DC motors.

Course code 18CIV24	Course: ELEMENTS OF CIVIL ENGINEERING & MECHANICS
18CIV24.1	Outline the Role of Civil Engineer in different fields of civil engineering & Infrastructure development of the country and explain free body diagrams, types of force systems and its theorems.
18CIV24.2	Explain the Newton's law of motion, Kinetics, Kinematics, projectiles, Trusses, Wedge and ladder friction
18CIV24.3	Solve for resultant force in the system and also for friction in bodiesviz; Wedge and ladder friction
18CIV24.4	Make use of centroid to analyze geometrical figures and solve for support reactions for various beams
18CIV24.5	Solve for moment of inertia and identify the parameter required for Kinematics, Kinetics & Projectiles
Course code 18EGDL25	Course: ENGINEERING GRAPHICS
18EGDL25.1	Explain t he standards and conventions followed in preparation of Engineering Drawings
18EGDL25.2	Demonstrate projections of Points, Lines and Plane surfaces on Horizontal and Vertical Planes

18EGDL25.3	Construct the orthographic view of Solids at different positions
18EGDL25.4	Develop the lateral surface of various solids
18EGDL25.5	Build isometric projections which will be helpful in representing the objects in three dimensional appearances
Course code 18PHYL26	Course: ENGG PHYSICS LAB
18PHYL26.1	Analysis the concepts of quantum mechanics to verify the Stefan's law and understand Fermi energy in metals.
18PHYL26.2	Examine the chateristics of Zener diode, photo diode, transistor by utilizing the concepts of semiconductors physics.
18PHYL26.3	Discover the ability to use various passive electrical components, determine Dielectric constant and electrical resonance.
18PHYL26.4	Analyse the concepts of diffraction and interference of light by using diffraction grating and Newton's ring.
18PHYL26.5	Inspect the modulus of elasticity for various rigid bodies by setting up torsional pendulum and uniform bending.
Course	Course: BASIC ELECTRICAL ENGINEERING LAB

code 18ELEL27	
18ELEL27.1	Analyse the effect of open circuit and short circuit in DC circuits using KCL, KVL.
18ELEL27.2	Compare the power factor for different types of lamps
18ELEL27.3	Measure the parameters of choke coil and earth resistance
18ELEL27.4	Measure current and the power consumed in three phase load.
18ELEL27.5	Examine the truth table for two-way and three-way control of lamps.

	Engineering Mathematics III (18ME31)	
CO1	Make use of Fourier series to analyze wave forms of periodic functions	
CO2	Make use of Fourier transforms and Z - transforms to analyze wave forms of non periodic functions	
CO3	Identify statistical methods to find correlation and regression lines, also numerical methods to solve transcendental equations.	
CO4	Utilize Numerical techniques for various finite difference technique problems	
CO5	Construct Greens, divergence and Stokes theorems for various engineering applications. Solve the problems on signals and systems, heat conduction, and control; engineering by using various numerical techniques.	

	Mechanics of Materials (18ME32)
CO1	Understand the basic concepts of material properties, stress, strain and their relation, principle plains & stresses, cylinders
CO2	Explain shear force & bending moment diagram of beams with stresses, theory of failure, shaft subjected to torsional loads, the concepts of columns, strain energy subjected different loading,

CO3	Calculate the stress & Deformation of bars subjected to different point loads(Uniform, stepped, Tapered), principle & shear stresses, longitudinal & circumferential stresses
CO4	Construct SFD & BMD of beams subjected to different types of loading and can solve for stresses, theories of failures, dimensions of shaft with torsional loading
CO5	Choose the structures involving Columns and Struts subjected to buckling and compressive load &Determine the strain energy subjected to different loading

	Basic Thermodynamics (18ME33)	
CO1	Explain fundamentals of thermodynamics and evaluate energy interactions across the boundary of thermodynamic systems.	
CO2	Evaluate the feasibility of cyclic and non-cyclic processes using 2nd law of thermodynamics	
CO3	Apply the knowledge of entropy, reversibility and irreversibility to solve numerical problems and apply 1st law of thermodynamics to closed and open systems and determine quantity of energy transfers and change in properties	
CO4	Interpret the behaviour of pure substances and its application in practical problems.	
CO5	Recognize differences between ideal and real gases and evaluate thermodynamic properties of ideal and real gas mixtures using various relations.	

	Material Science (18ME34)	
CO1	Interpret the basic concepts of crystal structure, concepts of diffusion, mechanical behavior of materials and various modes of failure.	
CO2	Classify solid solutions, interpret equilibrium phase diagrams of ferrous and nonferrous alloys and mechanism of solidification.	
CO3	Relate suitable heat-treatment process to achieve desired properties of metals and alloys	
CO4	Interpret the properties and applications of various materials like ceramics, plastics and Smart materials.	
CO5	Identify various composite materials and their processing as well as applications.	

METAL CUTTING AND FORMING (18ME35A)	
CO1	Identify the importance of cutting tool materials their Nomenclature and role of cutting fluids in maintaining the desired surface finish of jobs. Develop the knowledge on mechanics of machining process for Turning
CO2	Develop the knowledge on mechanics of machining process for Milling, Drilling and Milling process
CO3	Apply mechanics of machining process to evaluate machining time

CO4	Understand the concept of different metal forming processes
CO5	Understand the concept of design of sheet metal dies for simple sheet metal components

	Computer Aided Machine Drawing (18ME36)		
CO1	Develop the sectional views of the solids and Draw the orthographic views of the machine components by using CAD software.		
CO2	Build the 2D views and 3D drawings of simple machine parts/ Threaded fasteners/ Riveted joints.		
CO3	Construct the views of machine elements including keys, Couplings and joints.		
CO4	Inspect Limits, Fits, Tolerances and level of surface finish of machine elements.		
CO5	Create 2D and 3D models by standard CAD software with manufacturing considerations.		

Material Testing Lab (18ME37A)	
CO1	Understand& acquire experimentation skills in the field of material testing.
CO2	Understanding of the mechanical properties of materials by performing experiments.
CO3	Apply the knowledge to analyze a material failure and determine the failure inducing agent/s.
CO4	Apply the knowledge of testing methods in related areas.
CO5	Evaluate how to improve structure/behaviour of materials for various industrial applications.

Workshop ans Machine shop Practice (18ME38A)	
CO1	Perform turning, facing, knurling, thread cutting, tapering, eccentric turning and allied operations
CO2	Perform keyways / slots, grooves etc using shaper
CO3	Perform gear tooth cutting using milling machine.
CO4	Understand the formation of cutting tool parameters of single point cutting tool using bench grinder / tool and cutter grinder
CO5	Understand Surface Milling/Slot Milling.

Engineering Mathematics IV (18MAT41)	
CO1	Apply Numerical methods to obtain the solution of fist order and first degree differential equations.

CO2	Make use of probability theory on discrete and continuous random variables to obtain the solution of problems on different distributions and joint probability distribution.
CO3	Identify the problems on sampling distribution and on markov chains in attempting the engineering problems for feasible random events.
CO4	Utilize the Bessel's and Legendre functions for the problems arising in engineering fields.
CO5	Construct the analytic functions. Calculate residues and poles of complex potentials in flow problems. Solve the problems on electromagnetic theory hydrodynamics, heat conduction, optimization of digital circuits, coding theory and stability analysis of the systems

Applied Thermodynamics (18ME42)	
CO1	Identify the basic thermodynamic cycles like Otto, Diesel, Dual and brayton cycles applied in IC engine and gas turbine applications
CO2	Apply thermodynamic cycles like rankine cycle, for steam power plants to evaluate their performance
CO3	Identify the suitable combustion parameters for complete combustion for given air fuel ratio which enhances the combustion efficiency
CO4	Evaluate the performance of refrigeration systems based on various refrigeration cycles along with air conditioning systems.
CO5	Make use of inlet properties of air or steam to study the behaviour of reciprocating compressors and steam nozzles

	FLUID MECHANICS (18ME43)	
CO1	Identify the need of the fluid properties used for the analysis of fluid behavior.	
CO2	Utilize the knowledge of kinematics and dynamics while addressing problems of fluid flow. Make use of the principles of bernoulli's theorem to derive an expression for discharge of different flow measuring devices	
CO3	Derive an expression for loss of head due to friction in pipes and also an equation of hagen poiseille's for laminar flow through pipe and parallel plates.	

CO4	Analyze the development of boundary layer due to the flow over a flat plate and further identify the difference between lift and drag forces for both compressible and incompressible fluid flow and also apply the dimensional analysis
CO5	Analyze the development of boundary layer due to the flow over a flat plate and further identify the difference between lift and drag forces for both compressible and incompressible fluid flow and also identify the applications of CFD.

KINEMATICS OF MACHINES (18ME44)	
CO1	Understanding the basic terminology of planar mechanisms and their motion study.
CO2	Construct velocity and acceleration diagrams for planar mechanisms by Graphical method
CO3	Apply complex algebra method for velocity and acceleration analysis for planar mechanisms
CO4	Analyze the transmission of power by application of various gears and gear trains.
CO5	Model displacement diagrams for followers with various types of motions and Cam profile drawing for various followers

	MECHANICAL MEASUREMENTS AND METROLOGY (18ME46B)	
CO1	Outline the features of metrology, standards of measurement for linear and angular measurement, system of limits, fits and tolerances and functioning of comparators.	
CO2	Solve the numericals on limits of size, fits and tolerances, gauges and their design and calibration of End Bars using slip gauges.	
CO3	Interpret the nomenclature and measuring methods of screw threads and gears.	
CO4	Illustrate the basic concepts of measurement systems, transducers, intermediate modifying devices and terminating devices.	
CO5	Summarize the measurement of force, torque, pressure, strain and temperature using certain measuring devices.	

	MECHANICAL MEASUREMENTS AND METROLOGY LAB (18ME47B)	
CO1	Explain calibration of pressure gauge, thermocouple, LVDT, load cell and micrometer	
CO2	Find angle using Sine Center/ Sine Bar/ Bevel Protractor, alignment using Autocollimator/ Roller set.	
CO3	Obtain measurements using Optical Projector/Tool maker microscope, Optical flats.	
CO4	Determine cutting tool forces using Lathe/Drill tool dynamometer.	

1	
CO5	Find Screw thread parameters using 2-Wire or 3-Wire method, gear tooth profile using gear tooth
	vernier/Gear tooth micrometer.

	FOUNDRY, FORGING AND WELDING LAB (18MEL48B)	
CO1	Analyze and optimize foundry sand, core sand to a particular application.	
CO2	Build moulds with or without patterns.	
CO3	Understand casting of ferrous and non ferrous objects.	
CO4	Develop skills in making forging models manually and also with the use of power hammers.	

Finite Element Method (18ME61)	
CO1	Identify the basic procedures implemented in FEM along with reduction of execution time and memory requirements for given engineering problem
CO2	Construct the basic algorithms or numerical procedures to solve simple bar and truss problems subjected to axial loading
CO3	Make use of finite element matrix to solve lateral and torsional loaded members confined to regular shapes
CO4	Construct the fundamental numerical procedures required to solve thermal and fluid flow problems confined to simple loading conditions
CO5	Establish a relation between mass and stiffness matrix to solve dynamic problems along with axisymmetric ring elements

	DESIGN OF MACHINE ELEMENTS II (18ME62)	
CO1	Discuss the different types of springs and its corresponding stress induced in them.	
CO2	Design spur and helical gears using beam strength or Lewis equation and also analysis gear teeth to dynamic and wear loads.	
CO3	Design of bevel and worm gears, the significance of formative number of teeth, efficiency of the worm gears.	
CO4	Design of different types of clutches like single and multi plate clutches. Self locking and heat generated in different types of brakes.	

CO5	Design of journal bearings using Petroff's equation and Mckee equation, concept of hydrodynamic theory of lubrications. Stress in curved beams.

	HEAT TRANSFER (18ME63)	
CO1	Identify the three modes of heat transfer and construct conduction heat transfer equations for composite bodies make use of both sizing and rating methods	
CO2	Construct the fins to enhance heat transfer from a surface and solve for unsteady heat conduction rate	
CO3	Select the type of correlation to be used suitably so as to experiment with convection heat transfer coefficient for various applications	
CO4	Utilize the methods, to find the exit temperature of fluid and size of heat exchangers, also identify the effect of cavitation and fouling due to boiling and condensation of fluid	
CO5	Analyze two-dimensional heat conduction equations and examine the radiation heat transfer rate from black bodies, real surfaces and thermal shield.	

NON TRADITIONAL MACHINING (18ME641)	
CO1	Explain the needs, advantages, limitations and applications of non-traditional machining process viz; USM, AJM, WJM, ECM, CHM, EDM, PAM, LBM, and EBM.
CO2	Compare the various traditional and non-traditional machining processes and Classify and select the various non-traditional machining processes based on nature of energy employed.
CO3	Explain the constructional features of USM, AJM, WJM, ECM, CHM, EDM, PAM, LBM, and EBM.
CO4	Explain the working principle of USM, AJM, WJM, ECM, CHM, EDM, PAM, LBM, and EBM.
CO5	Make use of process characteristics and parameters to analyze the performance of USM, AJM, WJM, ECM, CHM, EDM, PAM, LBM, and EBM.

COMPUTER AIDED MODELING AND ANALYSIS LAB (18MEL66)		
CO1	Understand the basic concepts of representation of engineering problems in to one dimensional modeling and analysis.	
CO2	Solve truss problems using one dimensional concept	

CO3	Solve bending moment and shear force representation for various loading cases. Solve rectangular plate with a circular hole problem under uni-axial loading.
CO4	Solve thermal problems using one dimensional and two dimensional FEA concepts
CO5	Solve Dynamic problems through one dimensional FEA concept.

HEAT TRANSFER LAB (18MEL67)	
CO1	Perform experiments to determine the thermal conductivity of a metal rod
CO2	Estimate the effective thermal resistance in composite slabs and efficiency in pin-fin
CO3	Conduct experiments to determine convective heat transfer coefficient for free and forced convection and correlate with theoretical values
CO4	Determine surface emissivity of a test plate and Steffan Boltzman Constant
CO5	Determine LMDT and Effectiveness in a Parallel Flow and Counter Flow Heat Exchangers & Estimate performance of a Vapour Compression Refrigeration.

	Energy Engineering (17ME71)		
CO1	Summarize the basic concepts of thermal energy systems and renewable energy sources and their utilization.		
CO2	Differentiate the Diesel and Hydel power plant		
CO3	Understand the basic concepts of solar radiation and the working of solar PV and thermal systems.		
CO4	Apply principles of energy conversion from alternate sources including wind, geothermal, ocean.		
CO5	Identify the concepts and applications of Bio mass energy and fuel cells, thermoelectric convertor and MHD generator, Identify methods of energy storage for specific applications.		

	Fluid Power System (17ME72)
CO1	Illustrate the basic principles of fluid transmission to explain various components of fluid power systems.
CO2	Interpret the various functionalities of hydraulic and pneumatic valves and basics of circuit design
CO3	Select suitable Pumps and actuators considering various functional parameters for each application
CO4	Build appropriate hydraulic & pneumatic circuit for a given application
CO5	Make use of Signal Processing Elements to solve the Multi- Cylinder and Electro- Pneumatic Control application

	CONTROL ENGINEERING (17ME73)
CO1	Explain concepts of loop systems and different types of controllers.
CO2	Construct mathematical models to understand transfer function of mechanical, electrical and hydraulic control systems with block diagrams and SFG.
CO3	Build the concept of transient and steady state system and solve frequency response analysis.
CO4	Solve Bode plots and Root locus plots for frequency response analysis.
CO5	Develop state equation of linear continuous data for controllability and observability.

	TRIBOLOGY (17ME742)
CO1	Understand fundamentals and applications of Tribology with Lubrication.
CO2	Explain the theories of Friction & Wear phenomenon in real time applications
CO3	Apply the concepts of Tribology for the performance analysis and design of components experiencing relative motion.
CO4	Analyze the requirements and design of hydrodynamic journal and plane slider bearings for a given application.
CO5	Summarize proper bearing materials and lubricants for a given tribological application & Apply the principles of surface engineering for different applications of Tribology.

	MECHATRONICS (17ME754)
CO1	Explain the concepts of Mechatronics, Transducers, Microprocessor and Microcontrollers.
CO2	Illustrate the architecture of the Microprocessor, Operation of PLC's and Mechanical, Electrical, Pneumatic and Hydraulic Actuation systems.
CO3	Interpret the working principle and application of sensors and Explain the different parts of Industrial Robot components & its functional requirements.
CO4	Outline the concept of ladder diagram and latching for the selection of a PLC.
CO5	Illustrate the working of different types of Pneumatic and Hydraulic actuators and control valves.

	DESIGN LAB (17MEL76)
CO1	To determine the natural frequency, logarithmic decrement, damping ratio and damping coefficient in a SDOF systems subjected to longitudinal and torsional vibrations.
CO2	To construct force and couple polygons to balance the rotating masses.
CO3	To utilize the principles of photo elasticity and determine the fringe constant and stress concentration of photo elastic materials subject to different loads.

CO4	To calculate equilibrium speed, sensitiveness, power and effort of Porter and Hartnell Governor.
CO5	To obtain Pressure distribution in Journal bearing and find the critical speed of a rotating shaft.

	CIM LAB (17MEL77)
CO1	Explain the concepts of Computer Integrated manufacturing and Classify NC,CNC and DNC systems.
CO2	Develop manual part programs to perform milling, drilling and turning operations in design, simulation and manufacturing.
CO3	Analyze the Simulation of Tool Path for different Machining operations of small components using CNC Lathe & CNC Milling Machine.
CO4	Identify the concepts of flexible manufacturing systems like Automatic storage and Retrieval system and utilize Robot programming language for simple operations such as pick and place, stacking objects using teach pendent and off line programming.
CO5	Apply the knowledge of pneumatics and hydraulics to demonstrate the related experiments

	PROJECT PHASE (17MEP78)
CO1	Interact with various industries and identify real world problem statement/identify problems in engineering and technology in selected field of interest
CO2	Synthesize and apply the mechanical knowledge of engineering to design and implement solution to open ended problems
CO3	Design and develop the concept with mechanical engnieering practices and standards
CO4	Use different tools for communication, design, implementation, testing and report writing
CO5	Analyzing professional issues, including ethical, legal, environmental and safety issues, related to project

	OPERATION RESEARCH (17ME81)
CO1	Understand the concepts of operations research modelling approaches.
CO2	Develop mathematical skills to analyse and solve network models arising from a wide range of applications.
CO3	Solve engineering and managerial situations as Transportation and Assignment problems.

CO4	Analyze and Solve problems of sequencing of production runs, use Game theory to identify the optimal strategies for players and solve problems on queuing theory
CO5	Analyze and solve engineering and managerial situations as LPP
L	

	ADDITIVE MANUFACTURING (17ME82)
CO1	Understand the different processes of Additive Manufacturing
CO2	Explain system drives and devices and actuators
CO3	Explain the additive manufacturing process by polymerization and powder metallurgy
CO4	Classify nonmaterial and its characterization techniques
CO5	list various NC, CNC machine programming and automation techniques

	Product Life Cycle Management (17ME835)	
CO1	Introduction to PLM, Need for PLM, opportunities and benefits of PLM, different views of PLM, components of PLM, phases of PLM, PLM feasibility study. PLM Strategies, strategy elements, its identification, selection and implementation. Product Data Management, implementation of PDM systems	
CO2	Engineering design, organization and decomposition in product design, product design process, methodical evolution in product design, concurrent engineering, design for 'X' and design central development model. Strategies for recovery at end of life, recycling, human factors in product design. Modelling and simulation in product	
CO3	New Product Development, Structuring new product development, building decision support system, Estimating market opportunities for new product, new product financial control, implementing new product development, market entry decision, launching and tracking new product program. Concept of redesign of product	
CO4	Technological change, methods of technology forecasting, relevance trees, morphological methods, flow diagram and combining forecast of technologies Integration of technological product innovation and product development in business processes within enterprises, methods and tools in the innovation process according to the situation, methods and tools in the innovation process according to the situation.	

CO5	Virtual product development tools for components, machines, and manufacturing plants: 3D CAD systems, digital mock-up, model building, model analysis, production (process) planning, and product data technology, Product structures: Variant management, product configuration, material master data, product description data, Data models, Life cycles of individual items, status of items.
-----	--

INTERNSHIP (17ME84)	
CO1	Take part in activities\Process happening in industry to familiarise the industry culture.
CO2	Involve in building the relationship between the industry and institute positively
CO3	Inspect the permitted departments in the industry to examine the advanced technology.
CO4	Analyze the complex engineering problems pertaining in that industry and suggest suitable solutions.
CO5	List the various activities involved in the industry and documents the same as per the university guidelines.

PROJECT PHASE II (17ME85)	
CO1	Interact with various industries and identify real world problem statement / identify problems in engineering and technology in selected field of interest.
CO2	Synthesize and apply the mechanical knowledge of engineering to design and implement solutions to open-ended problems
CO3	Design and Develop the concept with mechanical Engineering practices and standards.
CO4	Use different tools for communication, design, implementation, testing and report writing.
CO5	Analyzing professional issues, including ethical, legal, environmental and safety issues, related to project.

TECHNICAL SEMINAR (17MES86)

CO1	Survey the new technologies, methods, software tools associated with Mechanical Engineering
CO2	Compare and explain the solutions for problems associated with engineering, society and environment
CO3	Analyze the technical details in depth.
CO4	Develop the ability to document the study.
CO5	Develop communication skills.

DEPARTMENT OF TELECOMMUNICATION ENGINEERING

Digital Image Processing(17EC733)		
CO1	Identify the basic concepts and processes in digital image formation and processing.	
CO2	Utilize mathematical operations in the spatial domain to enhance images	
CO3	Model image restoration techniques and morphological operations	
CO4	Examine sub band coding and wavelet transforms imageenhancement and multi-resolution	
CO5	Distinguish analysis techniques to achieve image segmentation	

IoT and Wireless Sensor Network (17EC752)	
CO1	Explain the architecture of WSN and IOT
CO2	Identify the communication protocols which best suits in WSN &IOT
CO3	Design the software for IOT application
CO4	Evaluate the design principles for WSN &IOT.
CO5	Design the cloud computing and prototyping

Optical communication (17TE71)	
CO1	Choose different types of optical fibers, fiber materials, and apply basic optical laws with necessary mathematical equations.
CO2	Identify various losses and connectors used in optical fibers
CO3	Choose different optical sources and detectors used in fiber optic communication along with various noise sources
CO4	Apply the concept of WDM and discuss different types of active and passive optical components and optical amplifiers with their characteristics.
CO5	Identify different transmission modes and protocols, Optical switching networks and Long haul networks.

WIRELESS COMMUNICATIONS (17TE72)		
CO1	Develop the concepts of Propagation Mechanisms and Models in wireless channels	
CO2	Identify the concepts of Propagation Models in wireless channels And describe the fundamentals of Cellular Architecture	
CO3	Analyze the different Multiple Access Techniques	
CO4	Examine the overview of GSM system.	
CO5	Analyse the concept of IS-95 and CDMA 2000	