

COMPUTER ORGANIZATION (18CS34) MODULE-1

Deepa .S.R, Associate Professor, Dept of CSE, KSIT 1

MODULE– 1

Basic Structure of Computers &

Machine Instructions and Programs

1. BASIC OPERATIONAL CONCEPTS

The program to be executed is stored in memory. Instructions are accessed from memory to the

processor one by one and executed.

STEPS FOR INSTRUCTION EXECUTION

Consider the following instruction

Ex: 1 Add LOCA, R0

This instruction is in the form of the following instruction format

OpcodeSource, Destination

Where Add is the operation code, LOCA is the Memory operand and R0 is Register operand

This instruction adds the contents of memory location LOCA with the contents of Register R0

and the result is stored in R0 Register.

The symbolic representation of this instruction is

[LOCA] + [R0] → R0

The contents of memory location LOCA and Register R0 before and after the execution of this

instruction is as follows

Before instruction execution After instruction execution

LOCA = 23H LOCA = 23H

R0 = 22H R0 = 45H

The steps for instruction execution are as follows

1. Fetch the instruction from memory into the IR (instruction register in CPU).

2. Decode the instruction

3. Access the Memory Operand

4. Access the Register Operand

5. Perform the operation according to the Operation Code.

6. Store the result into the Destination Memory location or Destination Register.

Ex:2 Add R1, R2, R3

This instruction is in the form of the following instruction format

Opcode, Source-1, Source-2, Destination

COMPUTER ORGANIZATION (18CS34) MODULE-1

Deepa .S.R, Associate Professor, Dept of CSE, KSIT 2

Where R1 is Source Operand-1, R2 is the Source Operand-2 and R3 is the Destination. This

instruction adds the contents of Register R1 with the contents of R2 and the result is placed in

R3 Register.

The symbolic representation of this instruction is

[R1] + [R2] → R3

The contents of Registers R1,R2,R3 before and after the execution of this instruction is as

follows.

Before instruction execution After instruction execution

R1 = 24H R1 = 24H

R2 = 34H R2 = 34H

R3 = 38H R3 = 58H

The steps for instruction execution is as follows

1. Fetch the instruction from memory into the IR.

2. Decode the instruction

3. Access the First Register Operand R1

4. Access the Second Register Operand R2

5. Perform the operation according to the Operation Code.

6. Store the result into the Destination Register R3.

CONNECTION BETWEEN MEMORY AND PROCESSOR

The connection between Memory and Processor is as shown in the figure.

The Processor consists of different types of registers.

1. MAR (Memory Address Register)

2. MDR (Memory Data Register)

3. Control Unit

4. PC (Program Counter)

5. General Purpose Registers

6. IR (Instruction Register)

7. ALU (Arithmetic and Logic Unit)

COMPUTER ORGANIZATION (18CS34) MODULE-1

Deepa .S.R, Associate Professor, Dept of CSE, KSIT 3

The functions of these registers are as follows

MAR

▪ It establishes communication between Memory and Processor

▪ It stores the address of the Memory Location as shown in the figure.

MAR
Memory

MDR

▪ It also establishes communication between Memory and the Processor.

▪ It stores the contents of the memory location (data or operand), written into or read from

memory as shown in the figure.

MDR
Memory

CONTROL UNIT

▪ It controls the data transfer operations between memory and the processor.

▪ It controls the data transfer operations between I/O and processor.

▪ It generates control signals for Memory and I/O devices.

5000 23h

5001 43h

5002 78h

5003 65h

23h 5000

43h 5001

78h 5002

65h 5003

23h

5000h

COMPUTER ORGANIZATION (18CS34) MODULE-1

Deepa .S.R, Associate Professor, Dept of CSE, KSIT 4

PC (PROGRAM COUNTER)

• It is a special purpose register used to hold the address of the next instruction to be

executed.

• The contents of PC are incremented by 1 or 2 or 4, during the execution of current

instruction.

• The contents of PC are incremented by 1 for 8 bit CPU, 2 for 16 bit CPU and for 4 for 32

bit CPU.

GENERAL PURPOSE REGISTER / REGISTER ARRAY

The structure of register file is as shown in the figure

▪

It consists of set of registers.

▪ A register is defined as group of flip flops. Each flip flop is designed to store 1 bit of

data.

▪ It is a storage element.

▪ It is used to store the data temporarily during the execution of the program(eg: result).

▪ It can be used as a pointer to Memory.

▪ The Register size depends on the processing speed of the CPU

▪ EX: Register size = 8 bits for 8 bit CPU

IR (INSTRUCTION REGISTER

It holds the instruction to be executed. It notifies the control unit, which generates timing

signals that controls various operations in the execution of that instruction.

ALU (ARITHMETIC and LOGIC UNIT)

▪ It performs arithmetic and logical operations on given data.

Steps for reading the instruction.

PC contents are transferred to MAR and read signal is sent to memory by control unit.

The data from memory location is read and sent to MDR.

The content of MDR is moved to IR.

[PC] → MAR Memory → MDR → IR

CU (read signal)

R0

R1

R2

.

Rn-1

COMPUTER ORGANIZATION (18CS34) MODULE-1

Deepa .S.R, Associate Professor, Dept of CSE, KSIT 5

2. BUS STRUCTURE
Bus is defined as set of parallel wires used for data communication. Each wire carries 1 bit of

data. There are 3 of buses, namely

1. Address bus

2. Data bus and

3. Control bus1.

1. Addressbus :

▪ It is unidirectional.

▪ The processor (CPU) sends the address of an I/O device or Memory device by means of

this bus.

2. Data bus

▪ It is a bidirectional bus.

▪ The CPU sends data from Memory to CPU and vice versa as well as from I/O to CPU

and vice versa by means of this bus.

3. Control bus:

▪ This bus carries control signals for Memory and I/O devices. It generates control signals

for Memory namely MEMRD and MEMWR and control signals for I/O devices namely IORD

and IOWR.

▪ It also generates special control signal to differentiate between Memory and I/O device.

This control signal is called as M/IO.

▪ M/IO = 1 for Memory operations and M/IO = 0 for I/O operations

The structure of single bus organization is as shown in the figure.

▪ The I/O devices, Memory and CPU are connected to this bus is as shown in the figure.

▪ It establishes communication between two devices.

Features of Single bus organization are

➢ Less Expensive

➢ Flexible to connect I/O devices.

➢ Poor performance due to single bus.

There is a variation in the devices connected to this bus in terms of speed of operation.

Few devices like keyboard, are very slow. So to provide the synchronization between two

COMPUTER ORGANIZATION (18CS34) MODULE-1

Deepa .S.R, Associate Professor, Dept of CSE, KSIT 6

devices, a buffer register is attached to each device. It holds the data temporarily during the data

transfer between two devices.

3. PERFORMANCE

▪ The performance of a Computer System is based on hardware design of the processor

and the instruction set of the processors.

▪ To obtain high performance of computer system it is necessary to reduce the execution

time of the processor.

▪ Execution time:It is defined as total time requiredexecuting one complete program.

▪ The processing time of a program includes time taken to red inputs, display outputs,

system services, execution time etc.

▪ The performance of the processor is inversely proportional to execution time of the

processor.

▪ More performance = Less Execution time.

▪ Less Performance = More Execution time.

The Performance of the Computer System is based on the following factors

1. Cache Memory

2. Processor clock

3. Basic Performance Equation

4. Pipelining and Super Scalar operation

5. Instruction set

6. Compiler

CACHE MEMORY:It is defined as a fast access memory located in between CPU and

Memory. It is part of the processor as shown in the fig

The processor needs more time to read the data and instructions from main memory

because main memory is away from the processor as shown in the figure. Hence it slowdown the

performance of the system.

The processor needs less time to read the data and instructions from Cache Memory

because it is part of the processor. Hence it improves the performance of the system.

COMPUTER ORGANIZATION (18CS34) MODULE-1

Deepa .S.R, Associate Professor, Dept of CSE, KSIT 7

PROCESSOR CLOCK:The processor circuits are controlled by timing signals called as Clock.It

defines constant time intervals and are called as Clock Cycles. To execute one instruction there

are 3 basic steps namely

1. Fetch

2. Decode

3. Execute.

The processor uses one clock cycle to perform one operation as shown in the figure

Clock Cycle → T1 T2 T3

Instruction → Fetch Decode Execute

The performance of the processor depends on the length of the clock cycle. To obtain

high performance reduce the length of the clock cycle.Let ‘ P ’ be the number of clock cycles

generated by the Processor and ‘ R ‘ be the Clock rate .

The Clock rate is inverselyproportional to the number of clock cycles.

i.e R = 1/P.

Cycles/second is measured in Hertz (Hz). Eg: 500MHz, 1.25GHz.

Two ways to increase the clock rate –

➢ Improve the IC technology by making the logical circuit work faster, so that the time

taken for the basic steps reduces.

➢ Reduce the clock period, P.

BASIC PERFORMANCE EQUATION

Let ‘ T ‘ be total time required to execute the program.

Let ‘N ‘ be the number of instructions contained in the program.

Let ‘ S ‘ be the average number of stepsrequired to one instruction.

Let ‘ R’ be number of clock cycles per second generated by the processor to execute one

program.

Processor Execution Time is given by

T = N * S / R

This equation is called as Basic Performance Equation.

For the programmer the value of T is important. To obtain high performance it is necessary to

reduce the values of N &S and increase the value of R

Performance of a computer can also be measured by using benchmark programs.

SPEC (System Performance Evaluation Corporation) is an organization, that measures

performance of computer using SPEC rating.

𝑆𝑃𝐸𝐶 =
𝑅𝑢𝑛𝑛𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑟

𝑅𝑢𝑛𝑛𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑟 𝑢𝑛𝑑𝑒𝑟 𝑡𝑒𝑠𝑡

COMPUTER ORGANIZATION (18CS34) MODULE-1

Deepa .S.R, Associate Professor, Dept of CSE, KSIT 8

DIFFERENCES MULTIPROCESSOR AND MULTICOMPUTER

MULTIPROCESSOR MULTICOMPUTER

1. It is a process of interconnection of two

or more processors by means of system

bus.

It is a process of interconnection of two or

more computers by means of system bus.

2. The diagrammatic representation of

multiprocessor is as shown in the figure

The diagrammatic representation of

multicomputer is as shown in the figure

3. It uses common memory to hold the data

and instructions.

It has its own memory to store data and

instructions.

4. Complexity in hardware design. Not much complexity in hardware design.

5. Difficult to program for multiprocessor

system.

Easy to program for multiprocessor system

4. MEMORY LOCATIONS AND ADDRESSES

1. Memory is a storage device. It is used to store character operands, data operands and

instructions.

2. It consists of number of semiconductor cells and each cell holds 1 bit of information.A

group of 8 bits is called as byte and a group of 16 or 32 or 64 bits is called as word.

World length = 16 for 16 bit CPU and World length = 32 for 32 bit CPU. Word length is defined

as number of bits in a word.

• Memory is organized interms of bytes or words.

• The organization of memory for 32 bit processor is as shown in the fig.

COMPUTER ORGANIZATION (18CS34) MODULE-1

Deepa .S.R, Associate Professor, Dept of CSE, KSIT 9

The contents of memory location can be accessed for read and write operation. The memory is

accessed either by specifying address of the memory location or by name of the memory

location.

• Address space : It is defined as number of bytes accessible to CPU and it depends on the

number of address lines.

5. BYTE ADDRESSABILITY
Each byte of the memory are addressed, this addressing used in most computers are called byte

addressability. Hence Byte Addressability is the process of assignment of address to successive

bytes of the memory. The successive bytes have the addresses 1, 2, 3, 4………….2n-1. The

memory is accessed in words.

In a 32 bit machine, each word is 32 bit and the successive addresses are 0,4,8,12,… and

so on.

Address 32 – bit word

0000 0th byte 1st byte 2nd byte 3rd byte

0004 4th byte 5th byte 6th byte 7th byte

0008 8th byte 9th byte 10th byte 11th byte

0012 12th byte 13th byte 14th byte 15th byte

….. ….. ….. ….. …..

n-3 n-3th byte n-2th byte n-1th byte nth byte

BIG ENDIAN and LITTLE ENDIAN ASSIGNMENT

Two ways in which byte addresses can be assigned in a word.

Or

Two ways in which a word is stored in memory.

1. Big endian

2. Little endian

COMPUTER ORGANIZATION (18CS34) MODULE-1

Deepa .S.R, Associate Professor, Dept of CSE, KSIT 10

BIG ENDIAN ASSIGNMENT

In this technique lower byte of data is assigned to higher address of the memory and

higher byte of data is assigned to lower address of the memory.

The structure of memory to represent 32 bit number for big endian assignment is as shown in the

above figure.

LITTLE ENDIAN ASSIGNMENT

In this technique lower byte of data is assigned to lower address of the memory and higher byte

of data is assigned to higher address of the memory.

The structure of memory to represent 32 bit number for little endian assignment is as shown in

the fig.

COMPUTER ORGANIZATION (18CS34) MODULE-1

Deepa .S.R, Associate Professor, Dept of CSE, KSIT 11

5000 34H

5002 65H

5004 86H

5006 93H

5008 45H

5000 34H

5008 65H

5016 86H

5024 93H

5032 45H

Eg – store a word “JOHNSENA” in memory starting from word 1000, using Big Endian

and Little endian.

Bigendian -

1000 J O H N

1004 S E N A

Little endian -

1000 N H O J

1004 A N E S

WORD ALLIGNMENT

16 bit

Word size

64 bit

32 bit

The structure of memory for 16 bit CPU, 32 bit CPU and 64 bit CPU are as shown in the figures

1,2 and 3 respectively

For 16 bit CPU For 32 bit CPU For 64 bit CPU

It is process of assignment of addresses of two successive words and this address is the number

of bytes in the word is called as Word alignment.

ACCESSING CHARACTERS AND NUMBERS

The character occupies 1 byte of memory and hence byte address for memory.

The numbers occupies 2 bytes of memory and hence word address for numbers.

6. MEMORY OPERATION
Both program instructions and operands are in memory. To execute each instruction has

to be read from memory and after execution the results must be written to memory.

There are two types of memory operations namely 1. Memory read and 2. Memory write

5000 34H

5004 65H

5008 86H

5012 93H

5016 45H

COMPUTER ORGANIZATION (18CS34) MODULE-1

Deepa .S.R, Associate Professor, Dept of CSE, KSIT 12

32 bits

32 bits

Memory read operation [Load/ Read / Fetch]

Memory write operation [Store/ write]

1. MEMORY READ OPERATION:

✓ It is the process of transferring of 1 word of data from memory into Accumulator (GPR).

✓ It is also called as Memory fetch operation.

✓ The Memory read operation can be implemented by means of LOAD instruction.

✓ The LOAD instruction transfers 1 word of data(1 word = 32 bits) from Memory into the

Accumulator as shown in the fig.

Accumulator

Steps for Memory Read Operation

Memory

5000

5004

5008

5012

5016

5020

32 bits

(1) The processor loads MAR(Memory Address Register)with the address of the memory

location.

(2) The Control unit of processor issues memory read control signal to enable the memory

component for read operation.

(3) The processor reads the data from memory into the Accumulator by means of bi-directional

data bus.

[MAR] → Memory → Accumulator

MEMORY WRITE OPERATION

• It is the process of transferring the 1 word of data from Accumulator into the Memory.

• The Memory write operation can be implemented by means of STORE instruction.

The STORE instruction transfers 1 word of data from Accumulator into the Memory

location as shown in the fig.

Accumulator

5000

5004

5008

5012

5016

5020

COMPUTER ORGANIZATION (18CS34) MODULE-1

Deepa .S.R, Associate Professor, Dept of CSE, KSIT 13

32 bits

Steps for Memory Write Operation

• The processor loads MAR with the address of the Memory location.

• The Control Unit issues the Memory Write control signal.

• The processor transfers 1 word of data from the Accumulator into the Memory location

by means of bi-directional data bus.

7. COMPUTER OPERATIONS (OR) INSTRUCTIONS

AND INSTRUCTION EXECUTION
The Computer is designed to perform 4 types of operations, namely

• Data transfer operations

• ALU Operations

• Program sequencing and control.

• I/O Operations.

1. Data Transfer Operations

a) Data transfer between two registers.

Format: Opcode Source1 , Destination

representation of this instruction is R1 → R2.

Ex : MOV R1 , R2 : R1 and R2 are the registers.

Where MOV is the operation code, R1 is the source operand and R2 is the destination operand.

This instruction transfers the contents of R1 to R2.

EX: Before the execution of MOV R1The processor uses MOV instruction to perform data

transfer operation between two registers

The mathematical

,R2, the contents of R1 and R2 are as follows R1 = 34h and R2 = 65h

After the execution of MOV R1, R2, the contents of R1 and R2 are as follows

R1 = 34H and R2 = 34H

b) Data transfer from memory to register

The processor uses LOAD instruction to perform data transfer operation from memory to

register.The mathematical representation of this instruction is

[LOCA] → ACC.Where ACC is the Accumulator.

Format :opcode operand

Ex: LOAD LOCA

For this instruction Memory Location is the source and Accumulator is the destination.

c) Data transfer from Accumulator register to memory

The processor uses STORE instruction to perform data transfer operation from

Accumulator register to memory location.The mathematical representation of this instruction is

[ACC]→LOCA. Where, ACC is the Accumulator.

Format:opcode operand

COMPUTER ORGANIZATION (18CS34) MODULE-1

Deepa .S.R, Associate Professor, Dept of CSE, KSIT 14

Ex: STORE LOCA

For this instruction accumulator is the source and memory location is the destination.

2. ALU Operations

The instructions are designed to perform arithmeticoperations such as Addition, Subtraction,

Multiplication and Division as well as logical operations such as AND, OR and NOT operations.

Ex1: ADD R0, R1

The mathematical representation of this instruction is as follows:

R1← [R0] + [R1]; Adds the content of R0 with the content of R1 and result is placed in R1.

Ex2: SUB R0, R1

The mathematical representation of this instruction is as follows:

R1← [R0] - [R1] ; Subtracts the content of R0 from the content of R1 and result is placed

in R1.

EX3: AND R0, R1 ; It Logically multiplies the content of R0 with the content of R1 and result is

stored in R1. (R1= R0AND R1)

Ex4: NOT R0 ; It performs the function of complementation.

a) Input Operation: It is a process of transferring one WORD of data from DATA

IN register to processor register.

Ex: MOV DATAIN, R0

The mathematical representation of this instruction is as follows,

R0← [DATAIN]

1. I/O Operations: The instructions are designed to perform INPUT and OUTPUT

operations. The processor uses MOV instruction to perform I/O operations.

The input Device consists of one temporary register called as DATAIN register and output

register consists of one temporary register called as DATAOUT register.

a) Output Operation: It is a process of transferring one WORD of data from

processor register to DATAOUT register.

Ex: MOV R0, DATAOUT

The mathematical representation of this instruction is as follows,

[R0]→ DATAOUT

REGISTER TRANSFER NOTATION

• There are 3 locations to store the operands during the execution of the program namely 1.

Register 2. Memory location 3. I/O Port. Location is the storage space used to store the

data.

• The instructions are designed to transfer data from one location to another location.

Consider the first statement to transfer data from one location to another location

• “ Transfer the contents of Memory location whose symbolic name is given by AMOUNT into

processor register R0.”

• The mathematical representation of this statement is given by

R0 ← [AMOUNT]

Consider the second statement to add data between two registers

• “Add the contents of R0 with the contents of R1 and result is stored in R2”

COMPUTER ORGANIZATION (18CS34) MODULE-1

Deepa .S.R, Associate Professor, Dept of CSE, KSIT 15

• The mathematical representation of this statement is given by

R2 ←[R0] + [R1].

Such a notation is called as “Register Transfer Notation”.

It uses two symbols

1. A pair of square brackets [] to indicate the contents of Memory location and

2. ← to indicate the data transfer operation.

ASSEMBLY LANGUAGE NOTATION

Consider the first statement to transfer data from one location to another location

• “ Transfer the contents of Memory location whose symbolic name is given by

AMOUNT into processor register R0.”

• The assembly language notation of this statement is given by

MOV AMOUNT, R0

Opcode Source Destination

This instruction transfers 1 word of data from Memory location whose symbolic name is given

by AMOUNT into the processor register R0.

• The mathematical representation of this statement is given by

R0 ← [AMOUNT]

Consider the second statement to add data between two registers

• “Add the contents of R0 with the contents of R1 and result is stored in R2”

• The assembly language notation of this statement is given by

 ADD R0 , R1, R2

Opcode source1, Source2, Destination

This instruction adds the contents of R0 with the contents of R1 and result is stored in R2.

• The mathematical representation of this statement is given by

R2 ←[R0] + [R1].

Such a notations are called as “Assembly Language Notations”

BASIC INSTRUCTION TYPES

There are 3 types basic instructions namely

1. Three address instruction format

2. Two address instruction format

3. One address instruction format

Consider the arithmetic expression Z = A + B, Where A,B,Z are the Memory locations.

Steps for evaluation

1. Access the first memory operand whose symbolic name is given by A.

2. Access the second memory operand whose symbolic name is given by B.

3. Perform the addition operation between two memory operands.

4. Store the result into the 3rd memory location Z.

5. The mathematical representation is Z ←[A] + [B].

COMPUTER ORGANIZATION (18CS34) MODULE-1

Deepa .S.R, Associate Professor, Dept of CSE, KSIT 16

a) Three address instruction format : Its format is as follows

opcode Source-1 Source-2 destination

Destination ← [source-1] + [source-2]

Ex: ADD A, B, Z

Z ← [A] + [B]

a) Two address instruction format : Its format is as follows

opcode Source destination

Destination ← [source] + [destination]

The sequence of two address m/c instructions to evaluate the arithmetic expression

Z ← A + B are as follows

ADD R0, R1

MOV A, R0

MOV B, R1

MOV R1, Z

b) One address instruction format : Its format is as follows

opcode operand

Ex1: LOAD B

This instruction copies the contents of memory location whose symbolic name is given

by ‘B’ into the Accumulator as shown in the figure.

The mathematical representation of this instruction is as follows

ACC ← [B]

AccumulatorMemory

Ex2: STORE B

This instruction copies the contents of Accumulator into memory location whose

symbolic name is given by ‘B’ as shown in the figure. The mathematical representation is as

follows

B ← [ACC].

Accumulator

Ex3: ADD B

Memory

COMPUTER ORGANIZATION (18CS34) MODULE-1

Deepa .S.R, Associate Professor, Dept of CSE, KSIT 17

• This instruction adds the contents of Accumulator with the contents of Memory

location ‘B’ and result is stored in Accumulator.

• The mathematical representation of this instruction is as follows

ACC ←[ACC]+ [B]

STRIGHT LINE SEQUENCING AND INSTRUCTION EXECUTION

Consider the arithmetic expression

C = A+B , Where A,B,C are the memory operands.

The mathematical representation of this instruction is

C = [A] + [B].

The sequence of instructions using two address instruction format are as follows

MOV A, R0

ADD B, R0

MOV R0, C

Such a program is called as 3 instruction program.

NOTE: The size of each instruction is 32 bits.

• The 3 instruction program is stored in the successive memory locations of the

processor is as shown in the fig.

• The system bus consists of uni-directional address bus,bi-directional data bus and control

bus

“It is the process of accessing the 1st instruction from memory whose address is stored in

program counter into Instruction Register (IR) by means of bi-directional data bus and at the

COMPUTER ORGANIZATION (18CS34) MODULE-1

Deepa .S.R, Associate Professor, Dept of CSE, KSIT 18

same time after instruction access the contents of PC are incremented by 4 in order to access the

next instruction. Such a process is called as “Straight Line Sequencing”.

INSTRUCTION EXECUTION

There are 4 steps for instruction execution

1 Fetch the instruction from memory into the Instruction Register (IR) whose

address is stored in PC.

IR ← [[PC]]

2 Decode the instruction.

3 Perform the operation according to the opcode of an instruction

4 Load the result into the destination.

5 During this process, Increment the contents of PC to point to next instruction (In

32 bit machine increment by 4 address)

PC ← [PC] + 4.

6 The next instruction is fetched, from the address pointed by PC.

BRANCHING

Suppose a list of ‘N’ numbers have to be added. Instead of adding one after the other, the

add statement can be put in a loop. The loop is a straight-line of instructions executed as many

times as needed.

The ‘N’ value is copied to R1 and R1 is decremented by 1 each time in loop. In the loop find the

value of next elemet and add it with Ro.

COMPUTER ORGANIZATION (18CS34) MODULE-1

Deepa .S.R, Associate Professor, Dept of CSE, KSIT 19

In conditional branch instruction, the loop continues by coming out of sequence only if

the condition is true. Here the PC value is set to ‘LLOP’ if the condition is true.

Branch > 0 LOOP // if >0 go to LOOP

The PC value is set to LOOP, if the previous statement value is >0 ie. after decrementing R1

value is greater than 0.

If R1 value is not greater than 0, the PC value is incremented in a mormal sequential way and

the next instruction is executed.

CONDITION CODE BITS

• The processor consists of series of flip-flops to store the status information after ALU

operation.

• It keeps track of the results of various operations, for subsequent usage.

• The series of flip-flip-flops used to store the status and control information of the

processor is called as “Condition Code Register”. It defines 4 flags. The format of condition

code register is as follows.

C V Z N

1 N (NEGATIVE) Flag:

It is designed to differentiate between positive and negative result.

It is set 1 if the result is negative, and set to 0 if result is positive.

2 Z (ZERO) Flag:

It is set to 1 when the result of an ALU operation is found to zero, otherwise it is cleared.

3 V (OVER FLOW) Flag:

In case of 2s Complement number system n-bit number is capable of representing a

range of numbers and is given by -2n-1 to +2n-1. . The Over-Flow flag is set to 1 if the

result is found to be out of this range.

4 C (CARRY) Flag :

This flag is set to 1 if there is a carry from addition or borrow from subtraction,

otherwise it is cleared.

8. Addressing Modes

The various formats of representing operand in an instruction or location of an operand is called

as “Addressing Mode”. The different types of Addressing Modes are

a) Register Addressing

b) Direct Addressing

c) Immediate Addressing

d) Indirect Addressing

COMPUTER ORGANIZATION (18CS34) MODULE-1

Deepa .S.R, Associate Professor, Dept of CSE, KSIT 20

e) Index Addressing

f) Relative Addressing

g) Auto Increment Addressing

h) Auto Decrement Addressing

a. REGISTER ADDRESSING:

In this mode operands are stored in the registers of CPU. The name of the register is directly

specified in the instruction.

Ex: MOVE R1,R2Where R1 and R2 are the Source and Destination registers respectively. This

instruction transfers 32 bits of data from R1

register into R2 register. This instruction does not

refer memory for operands. The operands are

directly available in the registers.

b. DIRECT ADDRESSING

It is also called as Absolute Addressing Mode. In this addressing mode operands are stored in

the memory locations. The name of the memory location is directly specified in the instruction.

Ex: MOVE LOCA, R1 : Where LOCA is the memory location and R1 is the Register.

This instruction transfers 32 bits of data from memory location X into the General Purpose

Register R1.

c. IMMEDIATE ADDRESSING

In this Addressing Mode operands are directly specified in the instruction. The source field is

used to represent the operands. The operands are represented by # (hash) sign.

Ex: MOVE #23, R0

COMPUTER ORGANIZATION (18CS34) MODULE-1

Deepa .S.R, Associate Professor, Dept of CSE, KSIT 21

d. INDIRECT ADDRESSING

In this Addressing Mode effective address of an operand is stored in the memory location or

General Purpose Register.

The memory locations or GPRS are used as the memory pointers.

Memory pointer: It stores the address of the memory location.

There are two types Indirect Addressing

i) Indirect through GPRS

ii) Indirect through memory location

i) Indirect Addressing Mode through GPRS.

In this Addressing Mode the effective address of an operand is stored in the one of the General

Purpose Register of the CPU.

Ex: ADD (R1), R0 ; Where R1 and R0 are GPRs.

This instruction adds the data from the memory location whose address is stored in R1 with the

contents of R0 Register and the result is stored in R0 register as shown in the fig.

The diagrammatic representation of this addressing mode is as shown in the fig.

COMPUTER ORGANIZATION (18CS34) MODULE-1

Deepa .S.R, Associate Professor, Dept of CSE, KSIT 22

ii) Indirect Addressing Mode through Memory Location.

In this Addressing Mode, effective address of an operand is stored in the memory location.

Ex: ADD (X), R0

This instruction adds the data from the memory location whose address is stored in ‘X’

memory location with the contents of R0 and result is stored in R0 register.

The diagrammatic representation of this addressing mode is as shown in the fig.

e. INDEX ADDRESSING MODE

In this addressing mode, the effective address of an operand is computed by adding constant

value with the contents of Index Register and any one of the General Purpose Register namely

R0 to Rn-1 can be used as the Index Register. The constant value is directly specified in the

instruction.

The symbolic representations of this mode are as follows

1. X (Ri) where X is the Constant value and Rj is the GPR.

It can be represented as

EA of an operand = X + (Ri)

2. (Ri , RJ) Where Ri andRjare the General Purpose Registers used to store

addresses of an operand and constant value respectively. It can be represented as

The EA of an operand is given by

EA = (Ri) + (Rj)

3. X (Ri, Rj) Where X is the constant value and RI and RJ are the General Purpose

Registers used to store the addresses of the operands.It can be represented as

The EA of an operand is given by

COMPUTER ORGANIZATION (18CS34) MODULE-1

Deepa .S.R, Associate Professor, Dept of CSE, KSIT 23

EA = (Ri) + (Rj) + X

There are two types of Index Addressing Modes

i) Offset is given as constant.

ii) Offset is in Index Register.

Note : Offset : It is the difference between the starting effective address of the memory

location and the effective address of the operand fetched from memory.

i) Offset is given as constant

Ex: ADD 20(R1), R2

The EA of an operand is given by

EA = 20 + [R1]

This instruction adds the contents of memory location whose EA is the sum of contents of R1

with 20 and with the contents of R2 and result is placed in R2 register. The diagrammatic

representation of this mode is as shown in the fig.

ii) Offset is in Index Register

Ex: ADD 1000(R1) , R2 R1 holds the offset address of an operand.

The EA of an operand is given by

EA = 1000 + [R1]

This instruction adds the data from the memory location whose address is given by [1000 +

[R1] with the contents of R2 and result is placed in R2 register.

COMPUTER ORGANIZATION (18CS34) MODULE-1

Deepa .S.R, Associate Professor, Dept of CSE, KSIT 24

The diagrammatic representation of this mode is as shown in the fig.

f. RELATIVE ADDRESSING MODE:

In this Addressing Mode EA of an operand is computed by the Index Addressing Mode. This

Addressing Mode uses PC (Program Counter)to store the EA of the next instruction instead of

GPR.

The symbolic representation of this mode is X (PC).Where X is the offset value and PC is the

Program Counter to store the address of the next instruction to be executed.

It can be represented as

EA of an operand = X + (PC).

This Addressing Mode is useful to calculate the EA of the target memory location.

COMPUTER ORGANIZATION (18CS34) MODULE-1

Deepa .S.R, Associate Professor, Dept of CSE, KSIT 25

g. AUTO INCREMENT ADDRESSING MODE

In this Addressing Mode , EA of an operand is stored in the one of the GPRs of the CPU. This

Addressing Mode increment the contents of memory register by 4 memory locations after

operand access.

The symbolic representation is

(RI)+ Where Ri is the one of the GPR.

Ex: MOVE (R1)+ , R2

This instruction transfer’s data from the memory location whose address is stored in R1 into R3

register and then it increments the contents of R1 by 4 memory locations.

h. AUTO DECREMENT ADDRESSING MODE

In this Addressing Mode , EA of an operand is stored in the one of the GPRs of the CPU. This

Addressing Mode decrements the contents of memory register by 4 memory locations and then

transfers the data to destination.

The symbolic representation is

-(RI) Where Ri is the one of the GPR.

Ex: MOVE - (R1) , R2

This instruction first decrements the contents of R1 by 4 memory locations and then transfer’s

data of that location to destination register.

COMPUTER ORGANIZATION (18CS34) MODULE-1

Deepa .S.R, Associate Professor, Dept of CSE, KSIT 26

9. ASSEMBLY LANGUAGE

• The Assembly language uses Symbolic names to represent opcodes,memory locations

and registers.

• The Assembler converts Assembly language programs into machine level language

programs.

• The Assembly language is called as “Source program” and m/c language program is

called as“Object program”.

• The Assembler converts source program into object program.

• A set of symbolic names and set of rules for their use forms a programming language
and is called as “Assembly Language”.

Ex: MOV, ADD, LOAD → Opcodes.

X, Y, AMOUNT → Memory locations.

Where R0 to R7 are the registers.

• The examples for Assembly Language instructions are as follows

MOV R0, R1 ; Register Addressing.

MOV #23, R0 ; Immediate Addressing.

9.1 DIRECTIVES

There are two types of instructions namely i) Processor Instructions and ii) Assembler

Instructions.

• The Processor instructions are converted into m/c instructions by means of Assembler.

Hence Assembler generates m/c code for processor instructions.

• The Assembler instructions are not converted into m/c instructions and hence Assembler

does not generate the m/c code for Assembler instructions

“ A set of commands given to Assembler while converting source program into object

program is called as Assembler Directive”.

TYPES OF ASSEMBLER DIRECTIVES

1. RESERVE

COMPUTER ORGANIZATION (18CS34) MODULE-1

Deepa .S.R, Associate Professor, Dept of CSE, KSIT 27

This directive is used to allocate a block of memory. This block of memory is used

only for data.

the fig.

X RESERVE 400

This directive reserves 400 bytes of memory whose symbolic name is X as shown in

X

X+1

.

.

0

399

2. EQU directive

This directive is used to assign numerical values to symbolic names during the execution

of the assembly language program.

The following code describes the use of EQU directive.

X EQU 32

MOVE #23, R0

MOVE X, R1

ADD R0, R1

3. DATA WORD

This directive is used to allocate 4 bytes of memory.

Y DATAWORD 23456789

The memory representation of this directive is as shown in the fig.

Y
23

Y+1

Y+2
45 4 bytes

Y+3

400 bytes

COMPUTER ORGANIZATION (18CS34) MODULE-1

Deepa .S.R, Associate Professor, Dept of CSE, KSIT

28

67

89

4. ORIGIN DIRECTIVE

This directive converts source program into object program. The object program is

loaded into memory for execution by means of loader. The Origin directive is used to

assign the successive addresses for sequence of instructions or operands.

5. END DIRECTIVE

This Directive is used to terminate the Assembly level language program. The Assembler

ignores the execution of instructions after the execution of this directive.

9.2 NUMBER REPRESENTATION

There are 3 types of numbers namely

a. Decimal Numbers (0 to 9)

b. Binary Numbers (0 or 1)

c. Hexadecimal Numbers (0 to 9 and A to F)

The 32 bit processor is capable of performing ALU operations on three types of operands

namely decimal, binary and hexadecimal

The representation of all these operands is as follows

For decimal MOVE #23, R0

For binary MOVE #% 01100011, R2

For hexadecimal MOVE #$24, R4

10. BASIC INPUT AND OUTPUT OPERATIONS

The simple arrangement of connecting i/p and o/p devices into the processor is as shown in the

fig

The Processor performs two operations with respect to i/o device namely

COMPUTER ORGANIZATION (18CS34) MODULE-1

Deepa .S.R, Associate Professor, Dept of CSE, KSIT

29

i) Input operation and

ii)Output operation

i)Input operation: It is the process of reading the data or instructions from the input device.

The I/O subsystem consists of block of instructions to perform i/p operation.

Output operation: It is the process of writing the data or instructions into the output device.

The I/O subsystem consists of block of instructions to perform o/p operation

Consider a problem of transferring 1 byte of data from i/p device to o/p device. The i/p device

transfers few characters/sec. The data transfer rate of i/p device is expressed in terms of

few characters/sec. Similarly o/p device transfers thousands of characters to o/p device

for display.The processor is capable of executing millions of instructions per second.

From the above analysis it is clear that the processing and transfer speed varies in

different devices. So the devices must be synchronized.

To provide the synchronization between Processor, i/p device and o/p device it is necessary to

follow the several steps are as follows

Steps to provide synchronization between Processor and i/p device

1. When a character is pressed on the keyboard, the ASCII value of a character is stored in

DATAIN register and hence SIN flag is set to 1.

2. When SIN = 1, the processor reads the ASCII value of a character from DATAIN register

into the Processor register.

3. After reading, the SIN flag is reset to 0.

COMPUTER ORGANIZATION (18CS34) MODULE-1

Deepa .S.R, Associate Professor, Dept of CSE, KSIT

30

WRITEWAIT if SOUT = 0

Branch to WRITEWAIT //No data to read

Output data from R1 to DATAIN //Data is read

Steps to provide synchronization between Processor and O/p device

1. When the o/p device is ready to display the character ,the Processor transfers the

character code from the processor register into the DATAOUT register.

2. The SOUT flag is set to 0 when DATAOUT register holds the character code.

3. The SOUT flag is cleared when the character code is transferred to o/p device

The i/p operation can be implemented as follows

Let R0 be the Processor register and DATAIN be the internal register of the i/p device.

MOVE DATAIN, R0

The o/p operation can be implemented as follows

Let R0 be the Processor register and DATAOUT be the internal register of the O/p device.

MOVE R0, DATAOUT

11. STACKS AND QUEUES

STACK - A stack is a Data Structure, in which the accessing is restricted at only one end

of the stack. It is similar to a bottle, in which elements can be added and removed from

the same end. The end of the stack, from which elements can be added or removed is

called the top of the stack and the other end is called the bottom of the stack.

It works on the principle of LIFO (Last In First Out), the last item placed on the stack is

the first to be removed. The term ‘push’ and ‘pop’ are used to describe the placing a new

item on stack and removing the top item from the stack.

Assume that the first element is placed in the location BOTTOM, and whennew elements

are pushed to the stack, they are placed in successive lower addresses.

READWAIT if SIN = 0

Branch to READWAIT //No data to read

Input data from DATAIN to R1 //Data is read

COMPUTER ORGANIZATION (18CS34) MODULE-1

Deepa .S.R, Associate Professor, Dept of CSE, KSIT

31

A processor register is used to keep

track of the address of the element that is

at the top of stack at any time. This register

is called Stack Pointer (SP).

In the above figure, the SP pointer is currently pointing to the topmost value -28. To add

a new element, the SP will decrement its value by 1 address, so as to point at next

location and add the new value.

PUSH Operation – Subtract #4, SP

MOV NEWITEM, (SP)

The subtract instruction subtracts the SP value by 4, now SP points to the next lower address. The

MOV instruction moves the new element to the address location stored in SP.

POP Operation - MOV (SP), ITEM

ADD #4, SP

The MOV instruction moves the element at the location pointed by SP to ITEM and the

SP pointer is moved to the next higher address, so that it points to the new top element.

SP → 100

-28

SP - -> 96

SP → 100

BOTTOM

-28

:

:

:

:

43

COMPUTER ORGANIZATION (18CS34) MODULE-1

Deepa .S.R, Associate Professor, Dept of CSE, KSIT

32

SP - ->104

BOTTOM

17

:

:

:

:

43

QUEUE – A queue is a Data Structure that works on the principal of FIFO (First In First

Out)ie., data that are stored first are retrieved first on FIFO basis.

The elements are added at one end (IN) and retrieved from other end (OUT). In stack, one end is

fixed where as in queue both ends are pointed by pointers and both end changes its location. One

end is used to add items and other end is used to delete items.

12. SUBROUTINE

Subfunctions in a program necessary to perform a particular subtask is called a

subroutine.

Eg: Subroutine to sort a list of numbers,

Subroutine to add the given numbers etc.

In a program, the subroutines an be called from different locations and different

functions. When a program branches to a subroutine, then it is calling the subroutine.

The instruction that perform this branch operation is called call instruction.

Whenever the subroutine is called, the execution starts from the starts from the starting

address of subroutine. After its execution, the execution of calling function is resumed

from the location where it called the subroutine. Hence the content of PC is stored before

moving to the subroutine.

The way in which a computer calls and returns from a subroutine is called subroutine

linkage method. The return address is stored in link register. After the execution of

subroutine, the return instruction returns to the calling program by using the link register.

COMPUTER ORGANIZATION (18CS34) MODULE-1

Deepa .S.R, Associate Professor, Dept of CSE, KSIT

33

The Call instruction is a special
branch instruction –

• It stores the content of PC in link register

• Stores the specified subroutine address in PC and branch to that address.

The Return instruction of subroutine is a special branch instruction –

• It branches to the address contained in link register.

13. ADDITIONAL INSTRUCTIONS

There are 3 types

a. Logical instructions – NOT, AND , OR

b. Shift instructions – Logical Shift Left, Logical Shift Right, Arithmetic Shift right

c. Rotate instructions – Rotate Left with carry, Rotate Left without carry,

Rotate Right with carry, Rotate Right without carry.

a. Logical instructions

The processors are designed to perform logical operations such as AND,OR and NOT

operations.

i) NOT instruction

COMPUTER ORGANIZATION (18CS34) MODULE-1

Deepa .S.R, Associate Professor, Dept of CSE, KSIT

34

Format: opcode destination

The opcode specifies operation to be performed and destination specifies the operand. The

operand can be register operand or memory operand.

Ex 1: NOT R0

It performs the function of complementation. It is the process of converting binary bit 0 into

binary bit 1 and vice versa.

The illustration of this instruction is as follows.

Before instruction execution After instruction execution

R0 = 10101100 R0 = 01010011.

ii) AND instruction

It performs the function of logical AND operation.

Format: opcode source, destination

Ex:1 AND R3, R0

This instruction logically ANDs the contents of R3 with the contents of RO and result is stored

in R0 register.

iii) OR instruction

It performs the function of logical OR operation.

Format: opcode source, destination

Ex: 1 OR R3, R0

This instruction logically ORS the contents of R3 with the contents of RO and result is stored in

R0 register.

b. Shift instructions

The shift instructions are designed to shift the contents of processor register or memory

location to left or right according to the number of bits specified in the count.

There are 2 types of shift instructions.

1. Logical Shift Left.

2. Logical Shift Right.

3. Arithmetic Shift Right

1. Logical Shift Left

Format: opcode count, destination

COMPUTER ORGANIZATION (18CS34) MODULE-1

Deepa .S.R, Associate Professor, Dept of CSE, KSIT

35

The opcode indicates operation to be performed. The count can be either immediate

operand or the contents of processor register. The destination can be either register

operand or memory operand.

Ex: LshiftL #2, R0

This instruction shifts the contents of register R0 to left through carry by 2 bits. The

count value directly specified in the instruction as an immediate operand.

The contents of R0 before and after the execution of this instruction are as shown in the

fig. The shifted positions are filled with zeros from right side as shown in the fig.

 .

2. Logical Shift Right

Format: opcode count, destination

The opcode indicates operation to be performed. The count can be either immediate operand or

the contents of processor register. The destination can be either register operand or memory

operand.

Ex: LshiftR #2, R0

This instruction shifts the contents of register R0 to right through carry by 2 bits. The count

value directly specified in the instruction as an immediate operand.

The contents of R0 before and after the execution of this instruction are as shown in the fig. The

shifted positions are filled with zeros from left side as shown in the fig.

COMPUTER ORGANIZATION (18CS34) MODULE-1

Deepa .S.R, Associate Professor, Dept of CSE, KSIT

36

3. Arithmetic Shift Right

Format: opcode count, destination

The opcode indicates operation to be performed. The count can be either immediate operand or

the contents of processor register. The destination can be either register operand or memory

operand

Ex: AShiftR #2, R0

This instruction is designed to preserve the sign bit. This instruction shifts the contents of

register or memory location to right through carry, by number of bits specified in the count.

After each shift it copies leftmost bit to Most Significant Bit. The contents of R0 before and

after the execution of this instruction are as shown in the fig.

c.Rotate instructions

The Rotate instructions are designed to rotate the contents of register or memory location

to left or right according to the number of bits specified in the count.

There are 4 types of Rotate instructions.

1. Rotate left without carry

2. Rotate left with carry

3. Rotate right without carry

4. Rotate right with carry

1. Rotate left without carry

Format: opcode count, destination

The opcode indicates operation to be performed. The count can be either

immediate operand or the contents of processor register. The destination can be either

register operand or memory operand.

Ex: RotateL #2, R0

COMPUTER ORGANIZATION (18CS34) MODULE-1

Deepa .S.R, Associate Professor, Dept of CSE, KSIT

37

This instruction rotates the contents of register R0 to left without carry by 2 bits

as shown in the fig.The Most Significant Bits are transferred to Least Significant Bits are

as shown in the fig.The contents of register R0 before and after the execution of this

instruction is as shown in the fig.

2. Rotate left with carry

Format: opcode count, destination

The opcode indicates operation to be performed. The count can be either

immediate operand or the contents of processor register. The destination can be either

register operand or memory operand.

Ex: RotateLC #2, R0

This instruction rotates the contents of register R0 to left with carry by 2 bits as

shown in the fig.The Most Significant Bits are transferred to carry and then

transferred to Least Significant Bits are as shown in the fig.The contents of register R0

before and after the execution of this instruction is as shown in the fig.

3. Rotate right without carry

Format: opcode count, destination

COMPUTER ORGANIZATION (18CS34) MODULE-1

Deepa .S.R, Associate Professor, Dept of CSE, KSIT

38

The opcode indicates operation to be performed. The count can be either

immediate operand or the contents of processor register. The destination can be either

register operand or memory operand.

Ex: RotateR #2, R0

This instruction rotates the contents of register R0 to right without carry by 2 bits

as shown in the fig.The Least Significant Bits are transferred to Most Significant

Bits are as shown in the fig.The contents of register R0 before and after the execution of

this instruction is as shown in the fig.

4. Rotate right with carry

Format: opcode count, destination

The opcode indicates operation to be performed. The count can be either immediate operand or the

contents of processor register. The destination can be either register operand or memory operandEx:

RotateRC #2, R0

This instruction rotates the contents of register R0 to right with carry by 2 bits

as shown in the fig.The Least Significant Bits are transferred to carry and then

transferred to Most Significant Bits are as shown in the fig.The contents of register R0

before and after the execution of this instruction is as shown in the fig.

COMPUTER ORGANIZATION (18CS34) MODULE-1

Deepa .S.R, Associate Professor, Dept of CSE, KSIT

39

14. ENCODING OF MACHINE INSTRUCTIONS.

A list of instructions is called as program. To execute a program in processor instructions must

be encoded into a compact binary form. Such encoded instructions are called as Machine

instructions. The instructions that use symbolic names are called as “Assembly Language “.The

Assembler converts Assembly Language instructions into Machine Language instructions.

Consider few instructions to perform several operations such as add, sub, multiply, shift, branch.

These instructions may use operands of different size such as 32 bit , 8 bit or 16 bit. The type of

operation to be performed and type of operand may be specified by encoded binary pattern and

is called as “ opcode “.

There are 3 types of instruction formats.

a) One word instruction format.

b) Two word instruction format.

c) Three operand instruction format

a) One word instruction format

The one word instruction format is as shown in the fig

Ex:1 ADD R0, R1

This instruction is an example for Register Addressing mode.

COMPUTER ORGANIZATION (18CS34) MODULE-1

Deepa .S.R, Associate Professor, Dept of CSE, KSIT

40

This instruction transfers 32 bit data from R0 to R1. Where R0 is the Source Register and R1 is

the Destination Register. The encoding of this instruction according to the above instruction

format is as follows.

8 bits → opcode

4 bits → Source Register.

3 bits → Source Register addressing mode.

4 bits → Destination Register.

3 bits → Destination Register addressing mode.

10 bits → Index value or immediate operand.

Ex:2 MOVE 24(R0), R5

This instruction is an example for Register Indirect Addressing mode.

This instruction transfers 32 bit data from Memory to Register. The effective address of the

operand is stored in the Register R0.

The EA of an operand is given by

EA = [R0] + 24.

The encoding of this instruction according to the above instruction format is as follows.

8 bits → opcode

4 bits → Source Register.

3 bits → Source Register addressing mode.

4 bits → Destination Register.

3 bits → Destination Register addressing mode.

10 bits → Index value or immediate operand.

b) Two word instruction format

The two instruction format is as shown in the fig.

Ex :1 MOVE R2, LOCA

COMPUTER ORGANIZATION (18CS34) MODULE-1

Deepa .S.R, Associate Professor, Dept of CSE, KSIT

41

This instruction is an example for Direct Addressing Mode.

This instruction transfers 32 bit data from Register R2 to Memory location whose symbolic

name is given by LOCA.

The encoding of this instruction according to above instruction format is as follows

• This instruction format consists of 2 words.

• The 1st word is used to specify the opcode, Source register, Addressing Mode for

Source,DestinationRegister,Addressing Mode for Destination and index value or

immediate operand as follows

8 bits → opcode

4 bits → Source Register.

3 bits → Source Register addressing mode.

4 bits → Destination Memory location.

3 bits → Destination Memory location addressing mode.

10 bits → Index value or immediate operand.

• The 2nd word is used to specify the 32 bit Memory address or 32 bit operand.

c) Three operand instruction format

The three operand instruction format is as shown in the fig.

This instruction is an example for Three operand Register Addressing Mode.

Ex: ADD R1, R2, R3

This instruction adds the contents of Register R1 with the contents of R2 and result is placed in

R3 Register.

The mathematical representation of this is as follows

[R1] + [R2] → [R3].

COMPUTER ORGANIZATION (18CS34) MODULE-2

Deepa .S.R, Associate Professor, Dept of CSE, KSIT

1

MODULE 2
INPUT/OUTPUT ORGANIZATION

ACCESSING I/O-DEVICES
A single bus-structure can be used for connecting I/O-devices to a computer. The simple arrangement

of connecting set of I/O devices to memory and processor by means of system bus is as shown in the

figure. Such a arrangement is called as Single Bus Organization.

 The single bus organization consists of

o Memory

o Processor
o System bus
o I/O device

 The system bus consists of 3 types of buses:

o Address bus (Unidirectional)
o Data bus (Bidirectional)

COMPUTER ORGANIZATION (18CS34) MODULE-2

Deepa .S.R, Associate Professor, Dept of CSE, KSIT

2

o Control bus (Bidirectional)

 The system bus enables all the devices connected to it to involve in the data transfer operation.

 The system bus establishes data communication between I/O device and processor.

 Each I/O device is assigned a unique set of address.

 When processor places an address on address-lines, the intended-device responds to the

command.

 The processor requests either a read or write-operation.

 The requested-data are transferred over the data-lines

Steps for input operation:

 The address bus of system bus holds the address of the input device.

 The control unit of CPU generates IORD Control signal.

 When this control signal is activated the processor reads the data from the input device

(DATAIN) into the CPU register.

Steps for output operation:

 The address bus of system bus holds the address of the output device.

 The control unit of CPU generates IOWR control signal.

 When this control signal is enabled CPU transfers the data from processor register to output

device(DATAOUT)

There are 2 schemes available to connect I/O devices to CPU

1.Memory mapped I/O:

 In this technique both memory and I/O devices can share the common memory to store the

instruction as well as the operands.

 Memory related instructions are used for data transfer between I/O and processor.

COMPUTER ORGANIZATION (18CS34) MODULE-2

Deepa .S.R, Associate Professor, Dept of CSE, KSIT

3

 In case of memory mapped I/O input operation can be implemented as,

MOVE DATAIN , R0

Source destination

This instruction sends the contents of location DATAIN to register R0.

 Similarly output can be implemented as,

MOVE R0, DATAOUT

Source destination

2. I/O Mapped I/O:

 In this technique CPU separates address space for memory and I/O devices.

 Hence two sets of instruction are used for data transfer.

 One set for memory operations and another set for I/O operations.

 The I/O operation can be implemented as,

IN AL, DX

This instruction reads one byte of data from the I/P register whose address is strore in DX

register into AL register.

 The O/P operation can be implemented as,
OUT DX, AL

This instruction transfer the contents of AL register into the O/P register (DATA OUT) whose

address is stored in DX register.

COMPUTER ORGANIZATION (18CS34) MODULE-2

Deepa .S.R, Associate Professor, Dept of CSE, KSIT

4

I/O INTERFACE FOR AN INPUT DEVICE

The hardware arrangement of connecting I/P device to the system bus is as shown in the fig.

COMPUTER ORGANIZATION (18CS34) MODULE-2

Deepa .S.R, Associate Professor, Dept of CSE, KSIT

5

This hardware arrangement is called as I/O interface. The I/O interface consists of 3 functional devices
namely:

1) Address Decoder:

o Its function is to decode the address in-order to recognize the input device whose address is
available on the unidirectional address bus.

o The unidirectional address bus of system bus is connected to input of the address decoder as
shown in figure

2) Control Circuit:

o The control bus of system bus is connected to control circuit as shown in the fig.

o It controls the read write operations with respect to I/O device.

3) Status & Data register:

o It specifies type of operation (either read or write operation) to be performed on I/O device.

4) Data Register:
o It stores the data to be read from input device to or it holds the data to be written into output

device. There are 2 types:

DATAIN - Input-buffer associated with keyboard.

DATAOUT -Output data buffer of adisplay/printer.

COMPUTER ORGANIZATION (18CS34) MODULE-2

Deepa .S.R, Associate Professor, Dept of CSE, KSIT

6

Program Controlled I/O

 To explain the concept of program controlled I/O consider two operations namely input

operation and output operation.

a) Input operation:
 It is the process of transferring ASCII value of a character from DATA IN register

to CPU register.

b) Output operation:
 It is the process of transferring ASCII value of a character from CPU register to

DATA OUT register.

 Design 2 sets of instruction for input and output operations respectively,

 These 2 sets of instructions are stored in memory of the CPU. Now allow the CPU to execute

this program in-order to control the input and output operation.

 “It is the process of controlling the input and output operations by executing 2 sets of instruction,
one set for input operation and the next set for output operation.”

Interrupt

 It is an event which suspends the execution of one program and begins the execution of another
program.

 The arrival of interrupt causes the processor to transfer the execution control from main program

to sub program.

 To explain the concept of interrupt, consider the following two programs namely:

COMPUTER ORGANIZATION (18CS34) MODULE-2

Deepa .S.R, Associate Professor, Dept of CSE, KSIT

7

The following steps takes place when the interrupt related instruction is executed:

 It suspends the execution of current instruction i.

 Transfer the execution control to sub program from main program.

 Increments the content of PC by 4 memory location.

 It decrements SP by 4 memory locations.

 Pushes the contents of PC into the stack segment memory whose address is stored in SP.

 It loads PC with the address of the first instruction of the sub program.

The following steps takes place when return instruction is executed

 It transfers the execution control from sub program to main program.

 It retrieves the content of stack memory location whose address is stored in SP into the PC.

 After retrieving the return address from stack memory location into the PC it increments the

Content of SP by 4 memory location.

Interrupt Latency is a delay between

→ time an interrupt-request is received and

→ start of the execution of the ISR.

• Generally, the long interrupt latency in unacceptable.

COMPUTER ORGANIZATION (18CS34) MODULE-2

Deepa .S.R, Associate Professor, Dept of CSE, KSIT

8

INTERRUPT HARDWARE
 The external device (I/O device) request the processor by activating one bus line and this bus line

is called as interrupt request line.

 The one end of this interrupt request line is connected to input power supply by means of pull up

register is as shown in the fig.

 The another end of interrupt request line is connected to INTR (Interrupt request) signal of

processor as shown in the fig.

 The I/O device is connected to interrupt request line by means of switch as shown in the fig.

 When all the switches are open the voltage drop on interrupt request line is equal to the VDD.

 This state is called as in-active state of the interrupt request line.

 The I/O device interrupts the processor by closing its switch.

 When switch is closed the voltage drop on the interrupt request line is found to be zero.

Therefore INTR=0 and INTR=1.

 The signal on the interrupt request line is logical OR of requests from the several I/O devices.

Therefore, INTR=INTR1 + INTR2 ++ INTRn

ENABLING AND DISABLING THE INTERRUPTS

• All computers fundamentally should be able to enable and disable interruptions as desired.

• The problem of infinite loop occurs due to successive interruptions of active INTR signals.

• There are 3 mechanisms to solve problem of infinite loop:

COMPUTER ORGANIZATION (18CS34) MODULE-2

Deepa .S.R, Associate Professor, Dept of CSE, KSIT

9

1) Processor should ignore the interrupts until execution of first instruction of the ISR.

2) Processor should automatically disable interrupts before starting the execution of the ISR.

3) Processor has a special INTR line for which the interrupt-handling circuit.

Interrupt-circuit responds only to leading edge of signal. Such line is called edge-

triggered.

• Sequence of events involved in handling an interrupt-request:

1) The device raises an interrupt-request.

2) The processor interrupts the program currently being executed.

3) Interrupts are disabled by changing the control bits in the processor status register (PS).

4) The device is informed that its request has been recognized.

In response, the device deactivates the interrupt-request signal.

5) The action requested by the interrupt is performed by the interrupt-service routine.

6) Interrupts are enabled and execution of the interrupted progra m is resumed.

HANDLING MULTIPLE DEVICES
While handling multiple devices, the issues concerned are:

 How can the processor recognize the device requesting an interrupt?

 How can the processor obtain the starting address of the appropriate ISR?

 Should a device be allowed to interrupt the processor while another interrupt is

being serviced?

 How should 2 or more simultaneous interrupt-requests be handled?

VECTORED INTERRUPT

• A device requesting an interrupt identifies itself by sending a special-code to processor over bus.

• Then, the processor starts executing the ISR.

• The special-code indicates starting-address of ISR.

• The special-code length ranges from 4 to 8 bits.

COMPUTER ORGANIZATION (18CS34) MODULE-2

Deepa .S.R, Associate Professor, Dept of CSE, KSIT

10

• The location pointed to by the interrupting-device is used to store the staring address to ISR.

• The staring address to ISR is called the interrupt vector.

• Processor

→ loads interrupt-vector into PC &

→ executes appropriate ISR.

• When processor is ready to receive interrupt-vector code, it activates INTA line.

• Then, I/O-device responds by sending its interrupt-vector code & turning off the INTR signal.

• The interrupt vector also includes a new value for the Processor Status Register

INTERRUPT NESTING
• A multiple-priority scheme is implemented by using separate INTR & INTA lines for each device

• Each INTR line is assigned a different priority-level as shown in Figure.

• Priority-level of processor is the priority of program that is currently being executed.

• Processor accepts interrupts only from devices that have higher-priority than its own.

• At the time of execution of ISR for some device, priority of processor is raised to that of the device.

• Thus, interrupts from devices at the same level of priority or lower are disabled.

Privileged Instruction

• Processor's priority is encoded in a few bits of PS word. (PS = Processor-Status).

• Encoded-bits can be changed by Privileged Instructions that write into PS.

• Privileged-instructions can be executed only while processor is running in Supervisor Mode .

COMPUTER ORGANIZATION (18CS34) MODULE-2

Deepa .S.R, Associate Professor, Dept of CSE, KSIT

11

• Processor is in supervisor-mode only when executing operating-system routines.

Privileged Exception

• User program cannot

→ accidently or intentionally change the priority of the processor &

→ disrupt the system-operation.

• An attempt to execute a privileged-instruction while in user-mode leads to a Privileged Exception.

SIMULTANEOUS REQUESTS

DAISY CHAIN

• The daisy chain with multiple priority levels is as shown in the figure.

 The interrupt request line INTR is common to all devices as shown in the fig.

 The interrupt acknowledge line is connected in a daisy fashion as shown in the figure.

 This signal propagates serially from one device to another device.

 The several devices raise an interrupt by activating INTR signal. In response to the signal, processor

transfers its device by activating INTA signal.

 This signal is received by device 1. The device-1 blocks the propagation of INTA signal to device-2,
when it needs processor service.

 The device-1 transfers the INTA signal to next device when it does not require the processor service.

 In daisy chain arrangement device-1 has the highest priority.

 Advantage: It requires fewer wires than the individual connections.

COMPUTER ORGANIZATION (18CS34) MODULE-2

Deepa .S.R, Associate Professor, Dept of CSE, KSIT

12

ARRANGEMENT OF PRIORITY GROUPS

• In this technique, devices are organizes in a group and each group is connected to the processor at a

different priority level.

• With in a group devices are connected in a daisy chain fashion as shown in the figure.

EXCEPTIONS

• Exception refers to any event that causes an interruption.

For ex: I/O interrupts.

• Types of Exception

1. Recovery from Errors

• These are techniques to ensure that all hardware components are operating properly.
For ex: Many computers include an ECC in memory which allows detection of

errors in stored-data. (ECC = Error Checking Code, ESR= Exception Service
Routine).

• If an error occurs, control-hardware
→ detects the errors &

→ informs processor by raising an interrupt.

COMPUTER ORGANIZATION (18CS34) MODULE-2

Deepa .S.R, Associate Professor, Dept of CSE, KSIT

13

• When exception processing is initiated (as a result of errors), processor.
→ suspends program being executed &

→ starts an ESR. This routine takes appropriate action to recover from the error.

2. Debugging

Debugger is used to find errors in a program and uses exceptions to provide 2 important facilities:

i) Trace & ii) Breakpoints

i) Trace
• When a processor is operating in trace-mode, an exception occurs after execution

of every instruction (using debugging-program as ESR).
• Debugging-program enables user to examine contents of registers, memory-locations and

so on.
• On return from debugging-program, next instruction in program being debugged is

executed, then debugging-program is activated again.
• The trace exception is disabled during the execution of the debugging-program.

ii) Breakpoints

• Here, the program being debugged is interrupted only at specific points selected by user.
• An instruction called Trap (or Software interrupt) is usually provided for this purpose.
• When program is executed & reaches breakpoint, the user can examine memory & register

contents.

3. Privilege Exception

• To protect OS from being corrupted by user-programs, Privileged Instructions

are executed only while processor is in supervisor-mode.

• For e.g.When processor runs in user-mode, it will not execute instruction that change

priority of processor.

• An attempt to execute privileged-instruction will produce a Privilege Exception.

• As a result, processor switches to supervisor-mode & begins to execute an appropriate

routine in OS.

Direct Memory Address (DMA)

 It is the process of transferring the block of data at high speed in between main memory and external

device (I/O devices) without continuous intervention of CPU is called as DMA.

 The DMA operation is performed by one control circuit and is part of the I/O interface.

COMPUTER ORGANIZATION (18CS34) MODULE-2

Deepa .S.R, Associate Professor, Dept of CSE, KSIT

14

 This control circuit is called DMA controller. Hence DMA transfer operation is performed by DMA
controller.

 To initiate Directed data transfer between main memory and external devices DMA controller needs
parameters from the CPU.

 These 3 Parameters are:

1)Starting address of the memory block.

2)No of words to be transferred.

3)Type of operation (Read or Write).
After receiving these 3 parameters from CPU, DMA controller establishes directed data transfer

operation between main memory and external devices without the involvement of CPU.

• Register of DMA Controller:

It consists of 3 type of register:

Starting address register:
The format of starting address register is as shown in the fig. It is used to store the starting address
of the memory block.

.

Word-Count register:
The format of word count register is as shown in fig. It is used to store the no of words to be transferred
from main memory to external devices and vice versa.

Status and Controller register:

The format of status and controller register is as shown in fig.

COMPUTER ORGANIZATION (18CS34) MODULE-2

Deepa .S.R, Associate Professor, Dept of CSE, KSIT

15

a) DONE bit:

 The DMA controller sets this bit to 1 when it completes the direct data transfer between main
memory and external devices.

 This information is informed to CPU by means of DONE bit.

b) R/W (Read or Write):

 This bit is used to differentiate between memory read or memory write operation.

 The R/W = 1 for read operation and

= 0 for write operation.
 When this bit is set to 1, DMA controller transfers the one block of data from external device

to main memory.

 When this bit is set to 0, DMA controller transfers the one block of data from main memory
to external device.

c) IE (Interrupt enable) bit:

 The DMA controller enables the interrupt enable bit after the completion of DMA operation

d)Interrupt request (IRQ):

 The DMA controller requests the CPU to transfer new block of data from source to
destination by activating this bit.

The computer with DMA controller is as shown in the fig.:

COMPUTER ORGANIZATION (18CS34) MODULE-2

Deepa .S.R, Associate Professor, Dept of CSE, KSIT

16

 The DMA controller connects two external devices namely disk 1 and disk 2 to system bus as

shown in the above fig.

 The DMA controller also interconnects high speed network devices to system bus as shown
in the above fig.

 Let us consider direct data transfer operation by means of DMA controller without the
involvement of CPU in between main memory and disk 1 as indicated by dotted lines (in the
fig.).

 To establish direct data transfer operation between main memory and disk 1. DMA controller
request the processor to obtain 3 parameters namely:

1)Starting address of the memory block.
2)No of words to be transferred.
3)Type of operation (Read or Write).

 After receiving these 3 parameters from processor, DMA controller directly transfers block of
data main memory and external devices (disk 1).

 This information is informed to CPU by setting respective bits in the status and controller
register of DMA controller.
These are 2 types of request with respect to system bus

1). CPU request.

COMPUTER ORGANIZATION (18CS34) MODULE-2

Deepa .S.R, Associate Professor, Dept of CSE, KSIT

17

2). DMA request.
Highest priority will be given to DMA request.

 Actually the CPU generates memory cycles to perform read and write operations.
The DMA controller steals memory cycles from the CPU to perform read and write

operations. This approach is called as “Cycle stealing”.

 An exclusive option will be given for DMA controller to transfer block of data from external
devices to main memory and from main memory to external devices. This technique is called as

“Burst mode of operation.”

BUS ARBITRATION
 Any device which initiates data transfer operation on bus at any instant of time is called as Bus-

Master.

 When the bus mastership is transferred from one device to another device, the next device is
ready to obtain the bus mastership.

 The bus-mastership is transferred from one device to another device based on the principle of
priority system. There are two types of bus-arbitration technique:

a)Centralized bus arbitration:

In this technique CPU acts as a bus-master or any control unit connected to bus can be acts as a bus

master.

The schematic diagram of centralized bus arbitration is as shown in the fig.:

The following steps are necessary to transfer the bus mastership from CPU to one of the DMA
controller:

COMPUTER ORGANIZATION (18CS34) MODULE-2

Deepa .S.R, Associate Professor, Dept of CSE, KSIT

18

 The DMA controller request the processor to obtain the bus mastership by activating BR (Bus
request) signal

 In response to this signal the CPU transfers the bus mastership to requested devices DMA
controller1 in the form of BG (Bus grant).

 When the bus mastership is obtained from CPU the DMA controller1 blocks the propagation of bus
grant signal from one device to another device.

 The BG signal is connected to DMA controller2 from DMA controller1 in as daisy fashion style is

as shown in the figure.

 When the DMA controller1 transfers the bus mastership to DMA controller2 by unblocking bus
grant signal.

 When the DMA controller1 receives the bus grant signal it enables BBSY signal. When BBSY

signal is set to 1 the set of devices connected to system bus doesn’t have any rights to obtain the bus
mastership from the CPU.

b)Distributed bus arbitration:

 In this technique 2 or more devices trying to access system bus at the same time may participate
in bus arbitration process.

 The schematic diagram of distributed bus arbitration is as shown in the figure:

COMPUTER ORGANIZATION (18CS34) MODULE-2

Deepa .S.R, Associate Professor, Dept of CSE, KSIT

19

 The external device requests the processor to obtain bus mastership by enabling start arbitration

signal.

 In this technique 4 bit code is assigned to each device to request the CPU in order to obtain bus
mastership.

 Two or more devices request the bus by placing 4 bit code over the system bus.

 The signals on the bus interpret the 4 bit code and produces winner as a result from the CPU.
 When the input to the one driver = 1, and input to the another driver = 0, on the same bus line,

this state is called as “Low level voltage state of bus”.

 Consider 2 devices namely A & B trying to access bus mastership at the same time.

Let assigned code for devices A & B are 5 (0101) & 6 (0110) respectively.

 The device A sends the pattern (0101) and device B sends its pattern (0110) to master. The
signals on the system bus interpret the 4 bit code for devices A & B produces device B as a
winner.

 The device B can obtain the bus mastership to initiate direct data transfer between external
devices and main memory.

COMPUTER ORGANIZATION (18CS34) MODULE-2

Deepa .S.R, Associate Professor, Dept of CSE, KSIT

20

BUSES
 The primary function of the bus is to inter connect 3 functional device namely CPU, memory and

I/O devices.

 It is defined as set of similar wires used to establish data transfer operation between CPU and

memory as well as CPU and I/O devices.

 It consists of 3 types:
a)Uni-directional address line.

b)Bi-directional data lines.
c)Control lines.

 The address bus of system bus is used to carry either the address of I/O device or the address of
memory.

 The bi-directional data bus is used to carry data to be returned into I/O device or read from I/O

device.

 The control bus of system bus is used to carry control signals as well as timing information. It is
designed to carry control signals as RD, WR, and R/W.

The R/W = 1 for read operation.

= 0 for write operation.
In addition to these 3 lines the bus consists of 2 special lines reserved for interrupts and bus
arbitration.

 There are 2 types of buses:

Synchronous bus
 In case of Synchronous bus all the devices derive the timing information from common bus line.

 A equally placed pulses on this common bus line are called as timing intervals or timing signals.

 Two or more timing intervals are called as ‘bus cycle’.
Timing Diagram for the Read-operation that shows a sequence of events during a read-

operation

• At time t0, the master (processor)

→ places the device-address on address-lines &

→ sends an appropriate command on control-lines as shown in Figure.

COMPUTER ORGANIZATION (18CS34) MODULE-2

Deepa .S.R, Associate Professor, Dept of CSE, KSIT

21

• The command will

→ indicate an input operation &

→ specify the length of the operand to be read.

• Information travels over bus at a speed determined by physical & electrical characteristics.

• Clock pulse width(t1-t0) must be longer than max. propagation-delay b/w devices connected to bus.

• The clock pulse width should be long to allow the devices to decode the address & control signals.

• The slaves take no action or place any data on the bus before t1.

• Information on bus is unreliable during the period t0 to t1 because signals are changing state.

• Slave places requested input-data on data-lines at time t1.

• At end of clock cycle (at time t2), master strobes (captures) data on data-lines into its input-buffer

• For data to be loaded correctly into a storage device, data must be available at input of that device

for a period greater than setup-time of device

COMPUTER ORGANIZATION (18CS34) MODULE-2

Deepa .S.R, Associate Professor, Dept of CSE, KSIT

22

A Detailed Timing Diagram for the Read-operation

• The Figure shows two views of the signal.

• One view shows the signal seen by the master & the other is seen by the salve.

• Master sends the address & command signals on the rising edge at the beginning of clock period

(t0).

• These signals do not actually appear on the bus until tam.
• Sometimes later, at tAS the signals reach the slave.

• The slave decodes the address.

• At t1, the slave sends the requested-data.

• At t2, the master loads the data into its input-buffer.

• Hence the period t2, tDM is the setup time for the masters input-buffer.

• The data must be continued to be valid after t2, for a period equal to the hold time of that buffers.

Disadvantages

• The device does not respond.

• The error will not be detected.

COMPUTER ORGANIZATION (18CS34) MODULE-2

Deepa .S.R, Associate Professor, Dept of CSE, KSIT

23

Multiple Cycle Transfer for Read-operation

• During, clock cycle-1, master sends address/command info the bus requesting a “read‟ operation.

• The slave receives & decodes address/command information.

• At the active edge of the clock i.e. the beginning of clock cycle-2, it makes access to

respond immediately.

• The data become ready & are placed in the bus at clock cycle-3.
• At the same times, the slave asserts a control signal called slave-ready.

• The master strobes the data to its input-buffer at the end of clock cycle-3.

• The bus transfer operation is now complete.

• And the master sends a new address to start a new transfer in clock cycle4.

• The slave-ready signal is an acknowledgement from the slave to the master.

COMPUTER ORGANIZATION (18CS34) MODULE-2

Deepa .S.R, Associate Professor, Dept of CSE, KSIT

24

ASYNCHRONOUS BUS

• This method uses handshake-signals between master and slave for coordinating data-transfers.

• There are 2 control-lines:

1) Master-Ready (MR) is used to indicate that master is ready for a transaction.

2) Slave-Ready (SR) is used to indicate that slave is ready for a transaction.

The Read Operation proceeds as follows:

• At t0, master places address/command information on bus.

• At t1, master sets MR-signal to 1 to inform all devices that the address/command-info is ready.

 MR-signal =1 causes all devices on the bus to decode the address.

 The delay t1 – t0 is intended to allow for any skew that may occurs on the bus.

COMPUTER ORGANIZATION (18CS34) MODULE-2

Deepa .S.R, Associate Professor, Dept of CSE, KSIT

25

 Skew occurs when 2 signals transmitted from 1 source arrive at destination at different time

 Therefore, the delay t1 – t0 should be larger than the maximum poss ible bus skew.

• At t2, slave

→ performs required input-operation &

→ sets SR signal to 1 to inform all devices that it is ready (Figure 7.6).

• At t3, SR signal arrives at master indicating that the input-data are available on bus.

• At t4, master removes address/command information from bus.

• At t5, when the device-interface receives the 1-to-0 transition of MR signal, it removes

data and SR signal from the bus. This completes the input transfer.

INTERFACE CIRCUITS

• An I/O Interface consists of the circuitry required to connect an I/O device to a computer-bus.

• On one side of the interface, we have bus signals.

• On the other side, we have a data path with its associated controls to transfer data between

the interface and the I/O device known as port.

• Two types are:

1. Parallel Port transfers data in the form of a number of bits (8 or 16)

simultaneously to or from the device.

2. Serial Port transmits and receives data one bit at a time.

• Communication with the bus is the same for both formats.

• The conversion from the parallel to the serial format, and vice versa, takes place inside the

interface- circuit.

• In parallel-port, the connection between the device and the computer uses

→ a multiple-pin connector and

→ a cable with as many wires.

• This arrangement is suitable for devices that are physically close to the computer.

• In serial port, it is much more convenient and cost-effective where longer cables are needed.

Functions of I/O Interface

1) Provides a storage buffer for at least one word of data.

2) Contains status-flags that can be accessed by the processor to determine whether the

buffer is full or empty.

3) Contains address-decoding circuitry to determine when it is being

COMPUTER ORGANIZATION (18CS34) MODULE-2

Deepa .S.R, Associate Professor, Dept of CSE, KSIT

26

addressed by the processor.

4) Generates the appropriate timing signals required by the bus control scheme.

5) Performs any format conversion that may be necessary to transfer data between the

bus and the I/O device (such as parallel-serial conversion in the case of a serial port).

Parallel Port
The hardware components needed for connecting a keyboard to a processor.

• Keyboard is connected to a processor using a parallel-port.

• Processor uses

→ memory-mapped I/O and

→ asynchronous bus protocol.

• On the processor-side of the interface, we have:

→ Data-lines

→ Address-lines

→ Control or R/W line

→ Master-Ready signal and

→ Slave-Ready signal.

• The output of the encoder consists of

→ bits representing the encoded character and

→ one signal called valid, which indicates the key is pressed.

The information is sent to the interface-circuits

• Interface-circuits contain

1) Data register DATAIN &

2) Status-flag SIN.

• When a key is pressed, the Valid signal changes from 0 to1.

COMPUTER ORGANIZATION (18CS34) MODULE-2

Deepa .S.R, Associate Professor, Dept of CSE, KSIT

27

Then, SIN=1 , when ASCII code is loaded into DATAIN.

SIN = 0 , when processor reads the contents of the DATAIN.

• The interface-circuit is connected to the asynchronous bus.

• Data transfers on the bus are controlled using the handshake signals:

1) Master ready &

2) Slave ready.

The hardware components needed for connecting a Printer to a processor.

• Processor uses

→ memory-mapped I/O and

→ asynchronous bus protocol.

• On the processor-side of the interface, we have:

→ Data-lines

→ Address-lines

→ Control or R/W line

→ Master-Ready signal and

→ Slave-Ready signal.

The circuit of output interface,

– Slave-ready

– R/~W

– Master-ready

– Address decoder

COMPUTER ORGANIZATION (18CS34) MODULE-2

Deepa .S.R, Associate Professor, Dept of CSE, KSIT

28

– Handshake control

The input and output interfaces can be combined into a single interface.

The general purpose parallel interface circuit that can be configured in a variety of ways.

For increased flexibility, the circuit makes it possible for some lines to serve as inputs and some lines to

serve as outputs, under program control.

Serial Port

 A serial port is used to connect the processor to I/O devices that require transmission of data

one bit at a time.

 The key feature of an interface circuit for a serial port is that it is capable of communicating in a

bit-serial fashion on the device side and in a bit parallel fashion on the bus side

 The transformation between the parallel and serial formats is achieved with shift registers that

have parallel access capability.

STANDARD I/O INTERFACES
Consider a computer system using different interface standards. The three major standard I/O interfaces

discussed here are:

– PCI (Peripheral Component Interconnect)

– SCSI (Small Computer System Interface)

– USB (Universal Serial Bus)

• PCI defines an expansion bus on the motherboard.

• SCSI and USB are used for connecting additional devices both inside and outside the computer-box.

PCI (Peripheral Component Interconnect)
• PCI is developed as a low cost bus that is truly processor independent.

• PCI supports high speed disk, graphics and video devices.

• PCI has plug and play capability for connecting I/O devices.

• To connect new devices, the user simply connects the device interface board to the bus.

• Processor bus and Peripheral Component Interconnect (PCI) bus are interconnected by a circuit

called Bridge .

• The bridge translates the signals and protocols of one bus into another.

• The bridge-circuit introduces a small delay in data transfer between processor and the devices.

COMPUTER ORGANIZATION (18CS34) MODULE-2

Deepa .S.R, Associate Professor, Dept of CSE, KSIT

29

DATA TRANSFER IN PCI

• During read-operation,

 When the processor specifies an address, the memory responds by sending a

sequence of data-words from successive memory-locations.

• During write-operation,

 When the processor sends an address, a sequence of data-words is written into

successive memory-locations.

• PCI supports read and write-operation.

• A read/write-operation involving a single word is treated as a burst of length one.

• PCI has 3 address-spaces. They are

COMPUTER ORGANIZATION (18CS34) MODULE-2

Deepa .S.R, Associate Professor, Dept of CSE, KSIT

30

1) Memory address-space

2) I/O address-space &

3) Configuration address-space.

• I/O Address-space is intended for use with processor.

• Configuration space is intended to give PCI, its plug and play capability.

• PCI Bridge provides a separate physical connection to main-memory.

• The master maintains the address information on the bus until data-transfer is completed.

• At any time, only one device acts as Bus-Master.

• A master is called “initiator” which is either processor or DMA.

• The addressed-device that responds to read and write commands is called a Target.

• A complete transfer operation on the bus,

involving an address and burst of data is called

a transaction.

• Individual word transfers are called “phases’.

• Data transfer signals on PCI bus

COMPUTER ORGANIZATION (18CS34) MODULE-2

Deepa .S.R, Associate Professor, Dept of CSE, KSIT

31

Read Operation on PCI Bus

• During Clock cycle-1,

 The processor

→ asserts FRAME# to indicate the beginning of a transaction;

→ sends the address on AD lines and command on C/BE# Lines.

• During Clock cycle-2,

 The processor removes the address and disconnects its drives from AD lines.

 Selected target

→ enables its drivers on AD lines and

→ fetches the requested-data to be placed on bus.

 Selected target

→ asserts DEVSEL# and

→ maintains it in asserted state until the end of the transaction.

 C/BE# is

→ used to send a bus command and it is

→ used for different purpose during the rest of the transaction.

• During Clock cycle-3,

 The initiator asserts IRDY# to indicate that it is ready to receive data.

 If the target has data ready to send then it asserts TRDY#. In our eg, the target

sends 3 more words of data in clock cycle 4 to 6.

• During Clock cycle-5

 The indicator uses FRAME# to indicate the duration of the burst, since it read 4

words, the initiator negates FRAME# during clock cycle 5.

COMPUTER ORGANIZATION (18CS34) MODULE-2

Deepa .S.R, Associate Professor, Dept of CSE, KSIT

32

• During Clock cycle-7,

 After sending 4th word, the target

→ disconnects its drivers and

→ negates DEVSEL# during clock cycle 7.

DEVICE CONFIGURATION OF PCI

• The PCI has a configuration ROM that stores information about that device.

• The configuration ROM’s of all devices are accessible in the configuration address-space.

• The initialization software read these ROM’s whenever the system is powered up or reset.

• In each case, it determines whether the device is a printer, keyboard or disk controller.

• Devices are assigned address during initialization process.

• Each device has an input signal called IDSEL# (Initialization device select) which has 21

address- lines (AD11 to AD31).

• During configuration operation,

 The address is applied to AD input of the device and

 The corresponding AD line is set to 1 and all other lines

are set to 0. AD11 - AD31 ,Upper address-line

A0 - A10 , Lower address-line: Specify the type of the operation and to

access the content of device configuration ROM.

• The configuration software scans all 21 locations. PCI bus has interrupt-request lines.

• Each device may requests an address in the I/O space or memory space

SCSI Bus
• SCSI stands for Small Computer System Interface.

• SCSI refers to the standard bus which is defined by ANSI (American National Standard Institute).

• SCSI bus the several options. It may be,

Narrow bus It has 8 data-lines & transfers 1 byte at a

time.

Wide bus It has 16 data-lines & transfer 2 byte at a

time.

Single-Ended Transmission Each signal uses separate wire.

HVD (High Voltage Differential) It was 5v (TTL cells)

COMPUTER ORGANIZATION (18CS34) MODULE-2

Deepa .S.R, Associate Professor, Dept of CSE, KSIT

33

LVD (Low Voltage Differential) It uses 3.3v

• Because of these various options, SCSI connector may have 50, 68 or 80 pins.

• The data transfer rate ranges from 5MB/s to 160MB/s 320Mb/s, 640MB/s. The transfer rate

depends on,

1) Length of the cable

2) Number of devices connected.

• To achieve high transfer rate, the bus length should be 1.6m for SE signaling and 12m

for LVD signaling.

• The SCSI bus us connected to the processor-bus through the SCSI controller.

• The data are stored on a disk in blocks called sectors. Each sector contains several hundreds of

bytes. These data will not be stored in contiguous memory-location.

• SCSI protocol is designed to retrieve the data in the first sector or any other selected sectors.

• Using SCSI protocol, the burst of data are transferred at high speed.

• The controller connected to SCSI bus is of 2 types.

They are1) Initiator

2) Target

1) Initiator

• It has the ability to select a particular target & to send commands specifying

the operation to be performed.

• They are the controllers on the processor side.

2) Target

• The disk controller operates as a target.

• It carries out the commands it receive from the initiator.

• The initiator establishes a logical connection with the intended target.

Steps for Read-operation.

The processor sends a command to the SCSI controller, which causes the following sequence

of events to take place:

1) The SCSI controller contends for control of the bus (initiator).

2) When the initiator wins the arbitration-process, the initiator

→ selects the target controller and

→ hands over control of the bus to it.

3) The target starts an output operation. The initiator sends a command specifying the

required read- operation.

COMPUTER ORGANIZATION (18CS34) MODULE-2

Deepa .S.R, Associate Professor, Dept of CSE, KSIT

34

4) The target

→ sends a message to initiator indicating that it will temporarily suspend connection b/w

them.

→ then releases the bus.

5) The target controller sends a command to the disk drive to move the read head to the first

sector involved in the requested read-operation.

6. The target

→ transfers the contents of the data buffer to the initiator and

→ then suspends the connection again.

7) The target controller sends a command to the disk drive to perform another seek operation.

8) As the initiator controller receives the data, it stores them into the main-memory using

the DMA approach.

9) The SCSI controller sends an interrupt to the processor indicating that the data are now available.

BUS SIGNALS OF SCSI

COMPUTER ORGANIZATION (18CS34) MODULE-2

Deepa .S.R, Associate Professor, Dept of CSE, KSIT

35

PHASES IN SCSI BUS

• The phases in SCSI bus operation are:

1) Arbitration

2) Selection

3) Information transfer

4) Reselection

1) Arbitration

• When the –BSY signal is in inactive state,

→ the bus will be free &

→ any controller can request the use of bus.

• SCSI uses distributed arbitration scheme because each controller may generate requests at the

same time.

• Each controller on the bus is assigned a fixed priority.

• When BSY becomes active, all controllers that are requesting the bus

→ examines the data-lines &

COMPUTER ORGANIZATION (18CS34) MODULE-2

Deepa .S.R, Associate Professor, Dept of CSE, KSIT

36

→ determine whether highest priority device is requesting bus at the same

time.

• The controller using the highest numbered line realizes that it has won the arbitration-process.

• At that time, all other controllers disconnect from the bus & wait for –BSY to become inactive

again.

2) Information Transfer

• The information transferred between two controllers may consist of

→ commands from the initiator to the target

→ status responses from the target to the initiator or

→ data-transferred to/from the I/0 device.

• Handshake signaling is used to control information transfers, with the target controller

taking the role of the bus-master.

3) Selection

• Here, Device

→ wins arbitration and

→ asserts –BSY and –DB6 signals.

• The Select Target Controller responds by asserting –BSY.

• This informs that the connection that it requested is established.

4) Reselection

• The connection between the two controllers has been reestablished, with the target in

COMPUTER ORGANIZATION (18CS34) MODULE-2

Deepa .S.R, Associate Professor, Dept of CSE, KSIT

37

control of the bus as required for data transfer to proceed.

Universal Serial Bus (USB)
• USB stands for Universal Serial Bus.

• USB supports 3 speed of operation. They are,

1) Low speed (1.5 Mbps)

2) Full speed (12 mbps) &

3) High speed (480 mbps).

• The USB has been designed to meet the key objectives. They are,

1) Provide a simple, low-cost and easy to use interconnection system.

This overcomes difficulties due to the limited number of I/O ports available on a

computer.

2) Accommodate a wide range of data transfer characteristics for

I/O devices. For e.g. telephone and Internet connections

3) Enhance user convenience through a “plug-and-play” mode of operation.
• Advantage: USB helps to add many devices to a computer system at any time without

opening the computer-box.

Port Limitation

 Normally, the system has a few limited ports.

 To add new ports, the user must open the computer-box to gain access to the

internal expansion bus & install a new interface card.

 The user may also need to know to configure the device & the s/w.

Plug & Play

 The main objective: USB provides a plug & play capability.

 The plug & play feature enhances the connection of new device at any time, while

the system is operation.

 The system should

→ Detect the existence of the new device automatically.

→ Identify the appropriate device driver s/w.

→ Establish the appropriate addresses.

→ Establish the logical connection for communication.

COMPUTER ORGANIZATION (18CS34) MODULE-2

Deepa .S.R, Associate Professor, Dept of CSE, KSIT

38

DEVICE CHARACTERISTICS OF USB

• The kinds of devices that may be connected to a computer cover a wide range of functionality.

• The speed, volume & timing constrains associated with data transfer to & from devices

varies significantly.

Eg: 1 Keyboard

 Since the event of pressing a key is not synchronized to any other event in a

computer system, the data generated by keyboard are called asynchronous.

The data generated from keyboard depends upon the speed of the human operator

which is about 100 bytes/sec.

Eg: 2 Microphone attached in a computer system internally/externally

 The sound picked up by the microphone produces an analog electric signal,

which must be converted into digital form before it can be handled by the computer.

 This is accomplished by sampling the analog signal periodically.

 The sampling process yields a continuous stream of digitized samples that arrive at

regular intervals, synchronized with the sampling clock. Such a stream is called

isochronous (i.e.) successive events are separated by equal period of time.

 If the sampling rate in „S‟ samples/sec then the maximum frequency captured by

sampling process is s/2.

 A standard rate for digital sound is 44.1 KHz.

USB architecture

 A serial transmission format has been chosen for the USB because a serial bus satisfies the low-

cost and flexibility requirements 

 Clock and data information are encoded together and transmitted as a single signal ‹ Hence, there

are no limitations on clock frequency or distance arising from data skew

 To accommodate a large number of devices that can be added or removed at any time, the USB

has the tree structure ‹

 Each node of the tree has a device called a hub, which acts as an intermediate control point
between the host and the I/O device ‹ At the root of the tree, a root hub connects the entire tree to

the host computer

 To accommodate a large number of devices that can be added or removed at any time, the USB

has the tree structure. Each node has a device called a hub. Root hub, functions, split bus
operations – high speed (HS) and Full/Low speed

COMPUTER ORGANIZATION (18CS34) MODULE-2

Deepa .S.R, Associate Professor, Dept of CSE, KSIT

39

 Tree structure of a USB is shown fig below

USB ADDRESSING

• Each device may be a hub or an I/O device.

• Each device on the USB is assigned a 7-bit address.

• This address

→ is local to the USB tree and

→ is not related in any way to the addresses used on the processor-bus.

• A hub may have any number of devices or other hubs connected to it, and addresses are

assigned arbitrarily.

• When a device is first connected to a hub, or when it is powered-on, it has the address 0.

• The hardware of the hub detects the device that has been connected, and it records this fact

as part of its own status information.

• Periodically, the host polls each hub to

→ collect status information and

→ learn about new devices that may have been added or disconnected.

• When the host is informed that a new device has been connected, it uses sequence of commands to

COMPUTER ORGANIZATION (18CS34) MODULE-2

Deepa .S.R, Associate Professor, Dept of CSE, KSIT

40

→ send a reset signal on the corresponding hub port.

→ read information from the device about its capabilities.

→ send configuration information to the device, and

→ assign the device a unique USB address.

• Once this sequence is completed, the device

→ begins normal operation and

→ responds only to the new address.

USB PROTOCOL

• All information transferred over the USB is organized in packets.

• A packet consists of one or more bytes of information.

• There are many types of packets that perform a variety of control functions.

• The information transferred on USB is divided into 2 broad categories: 1) Control and 2) Data.

• Control packets perform tasks such as

→ addressing a device to initiate data transfer.

→ acknowledging that data have been received correctly or

→ indicating an error.

• Data-packets carry information that is delivered to a device.

• A packet consists of one or more fields containing different kinds of information.

• The first field of any packet is called the Packet Identifier (PID) which identifies

type of that packet.

• They are transmitted twice.

1) The first time they are sent with their true values and

2) The second time with each bit complemented.

• The four PID bits identify one of 16 different packet types.

• Some control packets, such as ACK (Acknowledge), consist only of the PID byte.

• Control packets used for controlling data transfer operations are called Token Packets.

COMPUTER ORGANIZATION (18CS34) MODULE-2

Deepa .S.R, Associate Professor, Dept of CSE, KSIT

41

COMPUTER ORGANIZATION (18CS34) MODULE-3

BASIC CONCEPTS

MODULE 3

MEMORY SYSTEM

• Maximum size of memory that can be used in any computer is determined by addressing mode.
• If MAR is k-bits long then

 memory may contain upto 2K addressable-locations

• If MDR is n-bits long, then
→ n-bits of data are transferred between the memory and processor.

• The data-transfer takes place over the processor-bus (Figure 8.1).
• The processor-bus has

1) Address-Line
2) Data-line &
3) Control-Line (R/W‟, MFC – Memory Function Completed).

• The Control-Line is used for coordinating data-transfer.
• The processor reads the data from the memory by

→ loading the address of the required memory-location into MAR and
→ setting the R/W‟ line to 1.

• The memory responds by
→ placing the data from the addressed-location onto the data-lines and
→ confirms this action by asserting MFC signal.

• Upon receipt of MFC signal, the processor loads the data from the data-lines into MDR.
• The processor writes the data into the memory-location by

→ loading the address of this location into MAR &
→ setting the R/W‟ line to 0.

COMPUTER ORGANIZATION (18CS34) MODULE-3

• Memory Access Time: It is the time that elapses between
→ initiation of an operation &
→ completion of that operation.

• Memory Cycle Time: It is the minimum time delay that required between the initiation of the two
successive memory-operations.

RAM (Random Access Memory)

• In RAM, any location can be accessed for a Read/Write-operation in fixed amount of time,
Cache Memory
 It is a small, fast memory that is inserted between

→ larger slower main-memory and
→ processor.

 It holds the currently active segments of a program and their data.

Virtual Memory
 The address generated by the processor is referred to as a virtual/logical address .
 The virtual-address-space is mapped onto the physical-memory where data are actually
stored.
 The mapping-function is implemented by MMU. (MMU = memory management unit).
 Only the active portion of the address-space is mapped into locations in the physical-memory.
 The remaining virtual-addresses are mapped onto the bulk storage devices such as magnetic disk.
 As the active portion of the virtual-address-space changes during program execution, the

MMU
→ changes the mapping-function &
→ transfers the data between disk and memory.

 During every memory-cycle, MMU determines whether the addressed-page is in the memory. If
the page is in the memory.

Then, the proper word is accessed and execution proceeds.
Otherwise, a page containing desired word is transferred from disk to memory.

• Memory can be classified as follows:
1) RAM which can be further classified as follows:

i) Static RAM
ii) Dynamic RAM (DRAM) which can be further classified as synchronous & asynchronous
DRAM.

2) ROM which can be further classified as follows:
i) PROM
ii) EPROM
iii) EEPROM &
iv) Flash Memory which can be further classified as Flash Cards & Flash Drives.

Deepa .S.R, Associate Professor, Dept of CSE, KSIT Page 2

COMPUTER ORGANIZATION (18CS34) MODULE-3

SEMI CONDUCTOR RAM MEMORIES

INTERNAL ORGANIZATION OF MEMORY-CHIPS
• Memory-cells are organized in the form of array as shown in the figure.
• Each cell is capable of storing 1-bit of information.
• Each row of cells forms a memory-word.
• All cells of a row are connected to a common line called as Word-Line .
• The cells in each column are connected to Sense/Write circuit by 2-bit-lines.
• The Sense/Write circuits are connected to data-input or output lines of the chip.
• During a write-operation, the sense/write circuit

→ receive input information &
→ store input info in the cells of the selected word.

• The data-input and data-output of each Sense/Write circuit are connected to a single bidirectional
data-line.
• Data-line can be connected to a data-bus of the computer.
• Following 2 control lines are also used:

1) R/W’ specifies the required operation.
2) CS’ Chip Select input selects a given chip in the multi-chipmemory-system.

COMPUTER ORGANIZATION (18CS34) MODULE-3

STATIC RAM (OR MEMORY)

• Memories consist of circuits capable of retaining their state as long as power is applied are known.

• Two inverters are cross connected to form a latch as shown in the above Figure.
• The latch is connected to 2-bit-lines by transistors T1 and T2.

• The transistors act as switches that can be opened/closed under the control of the word-line.
• When the word-line is at ground level, the transistors are turned off and the latch retain its state.

Read Operation
• To read the state of the cell, the word-line is activated to close switches T1 and T2.
• If the cell is in state 1, the signal on bit-line b is high and the signal on the bit-line b‟ is low.
• Thus, b and b‟ are complement of each other.
• Sense/Write circuit

→ monitors the state of b & b‟ and
→ sets the output accordingly.

Write Operation
• The state of the cell is set by

→ placing the appropriate value on bit-line b and its complement on b‟ and
→ then activating the word-line. This forces the cell into the corresponding state.

• The required signal on the bit-lines is generated by Sense/Write circuit.

Deepa .S.R, Associate Professor, Dept of CSE, KSIT 4

COMPUTER ORGANIZATION (18CS34) MODULE-3

CMOS Cell

• Transistor pairs (T3, T5) and (T4, T6) form the inverters in the latch as shown in the Figure

• In state 1, the voltage at point X is high by having T5, T6 ON and T4, T5 are OFF.
• Thus, T1 and T2 returned ON (Closed), bit-line b and b‟ will have high and low signals respectively.
• Advantages:

1) It has low power consumption „.‟ the current flows in the cell only when the cell is active.
2) Static RA M‟s can be accessed quickly. It access time is few nanoseconds.

• Disadvantage: SRA Ms are sa id to be volatile memories „. ‟ their contents are lost when power is

interrupted.

ASYNCHRONOUS DRAM

• Less expensive RAMs can be implemented if simple cells are used.
• Such cells cannot retain their state indefinitely. Hence they are called Dynamic RAM (DRAM).
• The information stored in a dynamic memory-cell in the form of a charge on a capacitor.
• This charge can be maintained only for tens of milliseconds.
• The contents must be periodically refreshed by restoring this capacitor charge to its full value.

COMPUTER ORGANIZATION (18CS34) MODULE-3

• In order to store information in the cell, the transistor T is turned “O N‟ as show n in the Figure .
• The appropriate voltage is applied to the bit-line which charges the capacitor.
• After the transistor is turned off, the capacitor begins to discharge.
• Hence, info. stored in cell can be retrieved correctly before threshold value of capacitor drops down.
• During a read-operation,

→ transistor is turned “ON”
→ a sense amplifier detects whether the charge on the capacitor is above the threshold value.

 If (charge on capacitor) > (threshold value) Bit-line will have logic value “1”
 If (charge on capacitor) < (threshold value) Bit-line will set to logic value “0”.

ASYNCHRONOUS DRAM DESCRIPTION
• The 4 bit cells in each row are divided into 512 groups of 8 as shown in the Figure .
• 21 bit address is needed to access a byte in the memory. 21 bit is divided as follows:

1) 12 address bits are needed to select a row.
i.e. A8-0 → specifies row-address of a byte.

2) 9 bits are needed to specify a group of 8 bits in the selected row.
i.e. A20-9 → specifies column-address of a byte.

• During Read/Write-operation,

→ row-address is applied first.
→ row-address is loaded into row-latch in response to a signal pulse on RAS’ input of chip.

(RAS = Row-address Strobe CAS = Column-address Strobe)
• When a Read-operation is initiated, all cells on the selected row are read and refreshed.
• Shortly after the row-address is loaded, the column-address is

→ applied to the address pins &
→ loaded into CAS’.

Deepa .S.R, Associate Professor, Dept of CSE, KSIT 6

COMPUTER ORGANIZATION (18CS34) MODULE-3

• The information in the latch is decoded.
• The appropriate group of 8 Sense/Write circuits is selected.

R/W’=1(read-operation) Output values of selected circuits are transferred to data-lines D0-D7.
R/W’=0(write-operation) Information on D0-D7 are transferred to the selected circuits.

• R AS‟ & CAS ‟ are active-low so that they cause latching of address when they change from high to
low.
• To ensure that the contents of DRAMs are maintained, each row of cells is accessed periodically.
• A special memory-circuit provides the necessary control signals RAS‟ & CAS‟ that govern the timing.
• The processor must take into account the delay in the response of the memory.

Fast Page Mode

 Transferring the bytes in sequential order is achieved by applying the consecutive sequence of

column-address under the control of successive CAS‟ signals.
 This scheme allows transferring a block of data at a faster rate.
 The block of transfer capability is called as fast page mode.

SYNCHRONOUS DRAM

• The operations are directly synchronized with clock signal as shown in the figure

• The address and data connections are buffered by means of registers.
• The output of each sense amplifier is connected to a latch.
• A Read-operation causes the contents of all cells in the selected row to be loaded in theselatches.
• Data held in latches that correspond to selected columns are transferred into data-output register.
• Thus, data becoming available on the data-output pins.

COMPUTER ORGANIZATION (18CS34) MODULE-3

• First, the row-address is latched under control of RAS‟ signal as sho wn in the Figure

• The memory typically takes 2 or 3 clock cycles to activate the selected row.
• Then, the column-address is latched under the control of CAS‟ signal.
• After a delay of one clock cycle, the first set of data bits is placed on the data-lines.
• SDRAM automatically increments column-address to access next 3 sets of bits in the selected row.

LATENCY & BANDWIDTH

• A good indication of performance is given by 2 parameters: 1) Latency 2) Bandwidth.
Latency
• It refers to the amount of time it takes to transfer a word of data to or from the memory.
• For a transfer of single word, the latency provides the complete indication of memoryperformance.
• For a block transfer, the latency denotes the time it takes to transfer the first word of data.
Bandwidth
• It is defined as the number of bits or bytes that can be transferred in one second.
• Bandwidth mainly depends on

1) The speed of access to the stored data &
2) The number of bits that can be accessed in parallel.

DOUBLE DATA RATE SDRAM (DDR-SDRAM)

• The standard SDRAM performs all actions on the rising edge of the clock signal.

• The DDR-SDRAM transfer data on both the edges (loading edge, trailing edge).
• The Bandwidth of DDR-SDRAM is doubled for long burst transfer.

• To make it possible to access the data at high rate, the cell array is organized into two banks.
• Each bank can be accessed separately.
• Consecutive words of a given block are stored in different banks.
• Such interleaving of words allows simultaneous access to two words.
• The two words are transferred on successive edge of the clock.

Deepa .S.R, Associate Professor, Dept of CSE, KSIT 8

COMPUTER ORGANIZATION (18CS34) MODULE-3

STRUCTURE OF LARGER MEMORIES

Dynamic Memory System

• The physical implementation is done in the form of memory-modules.
• If a large memory is built by placing DRAM chips directly on the Motherboard,

then it will occupy large amount of space on the board.
• These packaging consideration have led to the development of larger memory units known as SIMM‟s &

DIMM‟s.
1) SIMM Single Inlinememory-module
2) DIMM Dual Inlinememory-module

• SIMM/DIMM consists of many memory-chips on small board that plugs into a socket on motherboard.

MEMORY SYSTEM CONSIDERATION

MEMORY CONTROLLER

• To reduce the number of pins, the dynamic memory-chips use multiplexed-address inputs.
• The address is divided into 2 parts:

1) High Order Address Bit
 Select a row in cell array.
 It is provided first and latched into memory-chips under the control of RAS‟signal.
2) Low Order Address Bit
 Selects a column.
 They are provided on same address pins and latched using CAS‟ signals.

• The Multiplexing of address bit is usually done by Memory Controller Circuit as shown in the figure .

• The Controller accepts a complete address & R/W‟ signal from theprocessor.
• A Request signal indicates a memory access operation is needed.
• Then, the Controller

→ forwards the row & column portions of the address to the memory.
→ generates RAS‟ & CAS‟ signals &
→ sends R/W‟ & CS‟ signals to the memory.

COMPUTER ORGANIZATION (18CS34) MODULE-3

RAMBUS MEMORY

• The usage of wide bus is expensive.
• Rambus developed the implementation of narrow bus.
• Rambus technology is a fast signaling method used to transfer information between chips.
• The signals consist of much smaller voltage swings around a reference voltage Vref.
• The reference voltage is about 2V.
• The two logical values are represented by 0.3V swings above and below Vref.
• This type of signaling is generally is known as Differential Signalling.
• Rambus provides a complete specification for design of communication called as Rambus Channel.
• Rambus memory has a clock frequency of 400 MHz.

• The data are transmitted on both the edges of clock so that effective data-transfer rate is 800MHZ.
• Circuitry needed to interface to Rambus channel is included on chip. Such chips are called RDRAM.

(RDRAM = Rambus DRAMs).

• Rambus channel has: st th th
1) 9 Data-lines (1 -8
2) Control-Line &
3) Power line.

line ->Transfer the data, 9 line->Paritychecking).

• A two channel rambus has 18 data-lines which has no separate Address-Lines.
• Communication between processor and RDRAM modules is carried out by means of packets
transmitted on the data-lines.
• There are 3 types of packets:

1) Request
2) Acknowledge &
3) Data.

READ ONLY MEMORY (ROM)

• Both SRAM and DRAM chips are volatile, i.e. They lose the stored information if power is turned off.
• Many application requires non-volatile memory which retains the stored information if power is

turned off.
• For ex:

OS software has to be loaded from disk to memory i.e. it requires non-volatile memory.
• Non-volatile memory is used in embedded system.
• Since the normal operation involves only reading of stored data, a memory of this type is called ROM.

 At Logic value ‘0’ Transistor(T) is connected to the ground point(P).
Transistor switch is closed & voltage on bit-line nearly drops to zero as shown in Figure

 At Logic value ‘1’ Transistor switch is open.

The bit-line remains at high voltage.

Deepa .S.R, Associate Professor, Dept of CSE, KSIT 10

COMPUTER ORGANIZATION (18CS34) MODULE-3

• To read the state of the cell, the word-line is activated.
• A Sense circuit at the end of the bit-line generates the proper output value.

TYPES OF ROM
• Different types of non-volatile memory are

1) PROM
2) EPROM
3) EEPROM &
4) Flash Memory (Flash Cards & Flash Drives)

PROM (PROGRAMMABLE ROM)
• PROM allows the data to be loaded by the user.
• Programmab ilit y is achieved by inserting a „fuse ‟ at point P in a ROM cell.
• Before PROM is programmed, the memory contains all 0‟s.
• User can insert 1‟s at required location by burning-out fuse using highcurrent-pulse.
• This process is irreversible.
• Advantages:

1) It provides flexibility.
2) It is faster.
3) t is less expensive because they can be programmed directly by the user.

EPROM (ERASABLE REPROGRAMMABLE ROM)
• EPROM allows

→ stored data to be erased and
→ new data to be loaded.

• In cell, a connection to ground is always made at „P‟ and a special transistor is used.
• The transistor has the ability to function as

→ a normal transistor or
→ a disabled transistor that is always turned „off‟.

• Transistor can be programmed to behave as a permanently open switch, by injecting charge into it.
• Erasure requires dissipating the charges trapped in the transistor of memory-cells. This

can be done by exposing the chip to ultra-violet light.
• Advantages:

1) It provides flexibility during the development-phase of digital-system.
2) It is capable of retaining the stored information for a long time.

• Disadvantages:

1) The chip must be physically removed from the circuit for reprogramming.
2) The entire contents need to be erased by UV light.

EEPROM (ELECTRICALLY ERASABLE ROM)
• Advantages:

1) It can be both programmed and erased electrically.
2) It allows the erasing of all cell contents selectively.

• Disadvantage: It requires different voltage for erasing, writing and reading the stored data.

COMPUTER ORGANIZATION (18CS34) MODULE-3

FLASH MEMORY
• In EEPROM, it is possible to read & write the contents of a single cell.
• In Flash device, it is possible to read contents of a single cell & write entire contents of a block.
• Prior to writing, the previous contents of the block are erased.

Eg. In MP3 player, the flash memory stores the data that represents sound.
• Single flash chips cannot provide sufficient storage capacity for embedded-system.
• Advantages:

1) Flash drives have greater density which leads to higher capacity & low cost per bit.
2) It requires single power supply voltage & consumes less power.

• There are 2 methods for implementing larger memory: 1) Flash Cards & 2) Flash Drives
1) Flash Cards
 One way of constructing larger module is to mount flash-chips on a small card.
 Such flash-card have standard interface.
 The card is simply plugged into a conveniently accessible slot.
 Memory-size of the card can be 8, 32 or 64MB.
 Eg: A minute of music can be stored in 1MB of memory. Hence 64MB flash cards can store an

hour of music.
2) Flash Drives
 Larger flash memory can be developed by replacing the hard disk-drive.
 The flash drives are designed to fully emulate the hard disk.
 The flash drives are solid state electronic devices that have no movable parts.
Advantages:

1) They have shorter seek & access time which results in faster response.
2) They have low power consumption. .‟. they are attractive for battery driven
application.
3) They are insensitive to vibration.

Disadvantages:
1) The capacity of flash drive (<1GB) is less than hard disk (>1GB).
2) It leads to higher cost per bit.
3) Flash memory will weaken after it has been written a number of times (typically at
least 1 million times).

Deepa .S.R, Associate Professor, Dept of CSE, KSIT 12

COMPUTER ORGANIZATION (18CS34) MODULE-3

SPEED, SIZE COST

A big challenge in the design of a computer system is to provide a sufficiently large memory, with a

reasonable speed at an affordable cost.

• Memory hierarchy separates computer storage into a hierarchy based on response time as shown in the
figure.

COMPUTER ORGANIZATION (18CS34) MODULE-3

Level-0:

• At level-0, registers are present which are contained inside the CPU.
• Since they are present inside the CPU, they have least access time.
• They are most expensive and therefore smallest in size (in KB).
• Registers are implemented using Flip-Flops .

Level-1:

• At level-1, Cache Memory is present.
• It stores the segments of program that are frequently accessed by the processor.

• It is expensive and therefore smaller in size (in MB).
• Cache memory is implemented using static RAM.

Level-2:

• At level-2, main memory is present.
• It can communicate directly with the CPU and with auxiliary memory devices through an I/O processor.
• It is less expensive than cache memory and therefore larger in size (in few GB).
• Main memory is implemented using dynamic RAM.

Level-3:

• At level-3, secondary storage devices like Magnetic Disk are present.

• They are used as back up storage.
• They are cheaper than main memory and therefore much larger in size (in few TB).

Level-4:

• At level-4, tertiary storage devices like magnetic tape are present.
• They are used to store removable files.
• They are cheapest and largest in size (1-20 TB).

Deepa .S.R, Associate Professor, Dept of CSE, KSIT 14

https://www.gatevidyalay.com/latches-and-flip-flops/
https://www.gatevidyalay.com/cache-memory/
https://www.gatevidyalay.com/magnetic-disk-secondary-memory-coa/

COMPUTER ORGANIZATION (18CS34) MODULE-3

CACHE MEMORIES

• The effectiveness of cache mechanism is based on the property of “Locality of Reference”

Locality of Reference
• Many instructions in the localized areas of program are executed repeatedly during some time period
• Remainder of the program is accessed relatively infrequently as shown in the Figure .
• There are 2 types:

1) Temporal

 The recently executed instructions are likely to be executed again very soon.
2) Spatial
 Instructions in close proximity to recently executed instruction are also likely to be executed soon.

• If active segment of program is placed in cache-memory, then total execution time can be reduced.
• Block refers to the set of contiguous address locations of some size.
• The cache-line is used to refer to the cache-block.

• The Cache-memory stores a reasonable number of blocks at a given time.
• This number of blocks is small compared to the total number of blocks available in main-memory.
• Correspondence b/w main-memory-block & cache-memory-block is specified by mapping-function.
• Cache control hardware decides which block should be removed to create space for the new block.
• The collection of rule for making this decision is called the Replacement Algorithm.

• The cache control-circuit determines whether the requested-word currently exists in the cache.

• The write-operation is done in 2 ways: 1) Write-through protocol & 2) Write-back protocol.
Write-Through Protocol
 Here the cache-location and the main-memory-locations are updated simultaneously.
Write-Back Protocol
 This technique is to

→ update only the cache-location &
→ mark the cache-location with associated flag bit called Dirty/Modified Bit.

 The word in memory will be updated later, when the marked-block is removed from cache.

During Read-operation
• If the requested-word currently not exists in the cache, then read-miss will occur.
• To overcome the read miss, Load–through/Early restart protocol is used.

Load–Through Protocol
 The block of words that contains the requested-word is copied from the memory into cache.
 After entire block is loaded into cache, the requested-word is forwarded to processor.

COMPUTER ORGANIZATION (18CS34) MODULE-3

During Write-operation
• If the requested-word not exists in the cache, then write-miss will occur.

1) If Write Through Protocol is used, the information is written directly into main-memory.
2) If Write Back Protocol is used,

→ then block containing the addressed word is first brought into the cache &
→ then the desired word in the cache is over-written with the new information.

MAPPING-FUNCTION
• Here we discuss about 3 different mapping-function:

1) Direct Mapping
2) Associative Mapping
3) Set-Associative Mapping

DIRECT MAPPING
• A direct-mapped cache is the simplest approach: each main memory address maps to exactly one cache
block.

• The block-j of the main-memory maps onto block-j modulo-128 of the cache as shown in the Figure

• When the memory-blocks 0, 128, & 256 are loaded into cache, the block is stored in cache-block 0.

Similarly, memory-blocks 1, 129, 257 are stored in cache-block 1.
• The contention may arise when

1) When the cache is full.
2) When more than one memory-block is mapped onto a given cache-block position.

Deepa .S.R, Associate Professor, Dept of CSE, KSIT 16

COMPUTER ORGANIZATION (18CS34) MODULE-3

• The contention is resolved by
allowing the new blocks to overwrite the currently resident-block.

• Memory-address determines placement of block in the cache.

• The memory-address is divided into 3 fields:
1) Low Order 4 bit field
 Selects one of 16 words in a block.
2) 7 bit cache-block field
 7-bits determine the cache-position in which new block must be stored.
3) 5 bit Tag field
 5-bits memory-address of block is stored in 5 tag-bits associated with cache-location.

• As execution proceeds,
5-bit tag field of memory-address is compared with tag-bits associated with cache-location.

If they match, then the desired word is in that block of the cache.

Otherwise, the block containing required word must be first read from the memory.
And then the word must be loaded into the cache.

ASSOCIATIVE MAPPING

• The memory-block can be placed into any cache-block position as shown in the Figure .

COMPUTER ORGANIZATION (18CS34) MODULE-3

• 12 tag-bits will identify a memory-block when it is resolved in the cache.
• Tag-bits of an address received from processor are compared to the tag-bits of each block of cache.
• This comparison is done to see if the desired block is present.
• It gives complete freedom in choosing the cache-location.
• A new block that has to be brought into the cache has to replace an existing block if the cache is full.
• The memory has to determine whether a given block is in the cache.
• Advantage: It is more flexible than direct mapping technique.

• Disadvantage: Its cost is high.

SET-ASSOCIATIVE MAPPING

• It is the combination of direct and associative mapping as shown in the figure

Deepa .S.R, Associate Professor, Dept of CSE, KSIT 18

COMPUTER ORGANIZATION (18CS34) MODULE-3

• The blocks of the cache are grouped into sets.
• The mapping allows a block of the main-memory to reside in any block of the specified set.
• The cache has 2 blocks per set, so the memory-blocks 0, 64, 128… 4032 maps into cache set „0‟.
• The cache can occupy either of the two block position within the set.

6 bit set field
 Determines which set of cache contains the desired block.
6 bit tag field
 The tag field of the address is compared to the tags of the two blocks of the set.
 This comparison is done to check if the desired block is present.

• The cache which contains 1 block per set is called direct mapping.

• A cache that has „k‟ blocks per set is called as“k-way set associative cache‟.

• Each block contains a control-bit called a valid-bit.
• The Valid-bit indicates that whether the block contains valid-data.
• The dirty bit indicates that whether the block has been modified during its cache residency.

Valid-bit=0 When power is initially applied to system.
Valid-bit=1 When the block is loaded from main-memory at first time.

• If the main-memory-block is updated by a source & if the block in the source is already exists in the

cache, then the valid-bit will be cleared to “0‟.
• If Processor & DMA uses the same copies of data then it is called as Cache Coherence Problem.

• Advantages:

1) Contention problem of direct mapping is solved by having few choices for block placement.
2) The hardware cost is decreased by reducing the size of associative search.

REPLACEMENT ALGORITHM
• In direct mapping method,

the position of each block is pre-determined and there is no need of replacement strategy.
• In associative & set associative method,

The block position is not pre-determined.
If the cache is full and if new blocks are brought into the cache,

then the cache-controller must decide which of the old blocks has to be replaced.
• When a block is to be overwritten, the block with longest time w/o being referenced is over-written.
• This block is called Least recently Used (LRU) block & the technique is called LRU algorithm.
• The cache-controller tracks the references to all blocks with the help of block-counter.
• Advantage: Performance of LRU is improved by randomness in deciding which block is to be over-
written.

Eg:
Consider 4 blocks/set in set associative cache.

 2 bit counter can be used for each block.
 When a ‘hit’ occurs, then block counter=0; The counter with values originally lower than the
referenced one are incremented by 1 & all others remain unchanged.
 When a ‘miss’ occurs & if the set is full, the blocks with the counter value 3 is removed, the new

block is put in its place & its counter is set to “0‟ and other block counters are incremented by 1.

COMPUTER ORGANIZATION (18CS34) MODULE-3

PERFORMANCE CONSIDERATION
• Two key factors in the commercial success are 1) performance & 2) cost.
• In other words, the best possible performance at low cost.
• A common measure of success is called the Price Performance ratio.
• Performance depends on

→ how fast the machine instructions are brought to the processor &
→ how fast the machine instructions are executed.

• To achieve parallelism, interleaving is used.
• Parallelism means both the slow and fast units are accessed in the same manner.

INTERLEAVING
• The main-memory of a computer is structured as a collection of physically separate modules.
• Each module has its own

1) ABR (address buffer register) &
2) DBR (data buffer register).

• So, memory access operations may proceed in more than one module at the same time as shown in the figure

• Thus, the aggregate-rate of transmission of words to/from the main-memory can be increased.

• The low-order k-bits of the memory-address select a module.

While the high-order m-bits name a location within the module.
In this way, consecutive addresses are located in successive modules.

• Thus, any component of the system can keep several modules busy at any one time T.
• This results in both

→ faster access to a block of data and
→ higher average utilization of the memory-system as a whole.

• To implement the interleaved-structure, there must be 2k modules;
Otherwise, there will be gaps of non-existent locations in the address-space.

Deepa .S.R, Associate Professor, Dept of CSE, KSIT 20

COMPUTER ORGANIZATION (18CS34) MODULE-3

Hit Rate & Miss Penalty
• The number of hits stated as a fraction of all attempted accesses is called the Hit Rate .
• The extra time needed to bring the desired information into the cache is called the Miss Penalty.
• High hit rates well over 0.9 are essential for high-performance computers.
• Performance is adversely affected by the actions that need to be taken when a miss occurs.
• A performance penalty is incurred because

of the extra time needed to bring a block of data from a slower unit to a faster unit.
• During that period, the processor is stalled waiting for instructions or data.
• We refer to the total access time seen by the processor when a miss occurs as the miss penalty.

• Let h be the hit rate, M the miss penalty, and C the time to access information in the cache. Thus, the
average access time experienced by the processor is

tavg = hC + (1 − h)M

• In high performance processors 2 levels of caches are normally used.
• Avg access time in a system with 2 levels of caches is

3 Other Performance Enhancements

1. Write buffer

 Write-through:

• Each write operation involves writing to the main memory.
• If the processor has to wait for the write operation to be complete, it slows down the processor.
• Processor does not depend on the results of the write operation.
• Write buffer can be included for temporary storage of write requests.
• Processor places each write request into the buffer and continues execution.

• If a subsequent Read request references data which is still in the write buffer, then this data is
referenced in the write buffer.

 Write-back:

• Block is written back to the main memory when it is replaced.
• If the processor waits for this write to complete, before reading the new block, it is slowed down.
• Fast write buffer can hold the block to be written, and the new block can be read first.

COMPUTER ORGANIZATION (18CS34) MODULE-3

2. Prefetching

• New data are brought into the processor when they are first needed.
• Processor has to wait before the data transfer is complete.

• Prefetch the data into the cache before they are actually needed, or a before a Read miss occurs.
• Prefetching can be accomplished through software by including a specia l instruction in the machine

language of the processor.
 Inclusion of prefetch instructions increases the length of the programs.

• Prefetching can also be accomplished using hardware:
 Circuitry that attempts to discover patterns in

memory references and then prefetches according
to this pattern.

3. Lockup-Free Cache

• Prefetching scheme does not work if it stops other accesses to the cache until the prefetch is completed.
• A cache of this type is said to be “locked” while it services a miss.
• Cache structure which supports multiple outstanding misses is called a lockup free cache.
• Since only one miss can be serviced at a time, a lockup free cache must include circuits that keep track

of all the outstanding misses.
• Special registers may hold the necessary

information about these misses.

Deepa .S.R, Associate Professor, Dept of CSE, KSIT 22

COMPUTER ORGANIZATION

4-1

MODULE 4: ARITHMETIC

NUMBERS, ARITHMETIC OPERATIONS AND CHARACTERS
NUMBER REPRESENTATION
• Numbers can be represented in 3 formats:

1) Sign and magnitude
2) 1's complement
3) 2's complement

• In all three formats, MSB=0 for +ve numbers & MSB=1 for -ve numbers.
• In sign-and-magnitude system,

negative value is obtained by changing the MSB from 0 to 1 of the corresponding positive value.
For ex, +5 is represented by 0101 &

-5 is represented by 1101.
• In 1's complement system,

negative values are obtained by complementing each bit of the corresponding positive number.
For ex, -5 is obtained by complementing each bit in 0101 to yield 1010.

(In other words, the operation of forming the 1's complement of a given number is equivalent to
subtracting that number from 2n-1).
• In 2's complement system,

forming the 2's complement of a number is done by subtracting that number from 2n.
For ex, -5 is obtained by complementing each bit in 0101 & then adding 1 to yield 1011.

(In other words, the 2's complement of a number is obtained by adding 1 to the 1's complement of
that number).
• 2's complement system yields the most efficient way to carry out addition/subtraction operations.

ADDITION OF POSITIVE NUMBERS
• Consider adding two 1-bit numbers.
• The sum of 1 & 1 requires the 2-bit vector 10 to represent the value 2. We say that sum is 0 and the
carry-out is 1.

COMPUTER ORGANIZATION

4-25

ADDITION & SUBTRACTION OF SIGNED NUMBERS
• Following are the two rules for addition and subtraction of n-bit signed numbers using the 2's
complement representation system (Figure 1.6).

Rule 1:
 To Add two numbers, add their n-bits and ignore the carry-out signal from the MSB position.
 Result will be algebraically correct, if it lies in the range -2n-1 to +2n-1-1.

Rule 2:
 To Subtract two numbers X and Y (that is to perform X-Y), take the 2's complement of Y and
then add it to X as in rule 1.
 Result will be algebraically correct, if it lies in the range (2n-1) to +(2n-1-1).

• When the result of an arithmetic operation is outside the representable-range, an arithmetic overflow
is said to occur.
• To represent a signed in 2's complement form using a larger number of bits, repeat the sign bit as
many times as needed to the left. This operation is called sign extension.
• In 1's complement representation, the result obtained after an addition operation is not always
correct. The carry-out(cn) cannot be ignored. If cn=0, the result obtained is correct. If cn=1, then a 1
must be added to the result to make it correct.

OVERFLOW IN INTEGER ARITHMETIC
• When result of an arithmetic operation is outside the representable-range, an arithmetic overflow
is said to occur.
• For example: If we add two numbers +7 and +4, then the output sum S is 1011(0111+0100),
which is the code for -5, an incorrect result.
• An overflow occurs in following 2 cases

1) Overflow can occur only when adding two numbers that have the same sign.
2) The carry-out signal from the sign-bit position is not a sufficient indicator of overflow when
adding signed numbers.

COMPUTER ORGANIZATION

4-25

ADDITION & SUBTRACTION OF SIGNED NUMBERS
n-BIT RIPPLE CARRY ADDER
• A cascaded connection of n full-adder blocks can be used to add 2-bit numbers.
• Since carries must propagate (or ripple) through cascade, the configuration is called an n-bit ripple
carry adder (Figure 9.1).

COMPUTER ORGANIZATION

4-25

COMPUTER ORGANIZATION

4-25

ADDITION/SUBTRACTION LOGIC UNIT
• The n-bit adder can be used to add 2's complement numbers X and Y (Figure 9.3).
• Overflow can only occur when the signs of the 2 operands are the same.
• In order to perform the subtraction operation X-Y on 2's complement numbers X and Y; we form the
2's complement of Y and add it to X.
• Addition or subtraction operation is done based on value applied to the Add/Sub input control-line.
• Control-line=0 for addition, applying the Y vector unchanged to one of the adder inputs.

Control-line=1 for subtraction, the Y vector is 2's complemented.

DESIGN OF FAST ADDERS
• Drawback of ripple carry adder: If the adder is used to implement the addition/subtraction, all
sum bits are available in 2n gate delays.
• Two approaches can be used to reduce delay in adders:

1) Use the fastest possible electronic-technology in implementing the ripple-carry design.
2) Use an augmented logic-gate network structure.

COMPUTER ORGANIZATION

4-25

CARRY-LOOKAHEAD ADDITIONS
• The logic expression for si(sum) and ci+1(carry-out) of stage i are

si=xi+yi+ci ------(1) ci+1=xiyi+xici+yici ------(2)
• Factoring (2) into

ci+1=xiyi+(xi+yi)ci
we can write

ci+1=Gi+PiCi where Gi=xiyi and Pi=xi+yi

• The expressions Gi and Pi are called generate and propagate functions (Figure 9.4).
• If Gi=1, then ci+1=1, independent of the input carry ci. This occurs when both xi and yi are 1.
Propagate function means that an input-carry will produce an output-carry when either xi=1 or yi=1.

• All Gi and Pi functions can be formed independently and in parallel in one logic-gate delay.
• Expanding ci terms of i-1 subscripted variables and substituting into the ci+1 expression, we obtain

ci+1=Gi+PiGi-1+PiPi-1Gi-2.+P1G0+PiPi-1 . . . P0c0

• Conclusion: Delay through the adder is 3 gate delays for all carry-bits &
4 gate delays for all sum-bits.

• Consider the design of a 4-bit adder. The carries can be implemented as
c1=G0+P0c0

c2=G1+P1G0+P1P0c0
c3=G2+P2G1+P2P1G0+P2P1P0c0
c4=G3+P3G2+P3P2G1+P3P2P1G0+P3P2P1P0c0

• The carries are implemented in the block labeled carry-lookahead logic. An adder implemented in this
form is called a Carry-Lookahead Adder.
• Limitation: If we try to extend the carry-lookahead adder for longer operands, we run into a problem
of gate fan-in constraints.

COMPUTER ORGANIZATION

4-25

HIGHER-LEVEL GENERATE & PROPAGATE FUNCTIONS
• 16-bit adder can be built from four 4-bit adder blocks (Figure 9.5).
• These blocks provide new output functions defined as Gk and Pk,

where k=0 for the first 4-bit block,
k=1 for the second 4-bit block and so on.

• In the first block,
P0=P3P2P1P0

&
G0=G3+P3G2+P3P2G1+P3P2P1G0

• The first-level Gi and Pi functions determine whether bit stage i generates or propagates a carry, and
the second level Gk and Pk functions determine whether block k generates or propagates a carry.
• Carry c16 is formed by one of the carry-lookahead circuits as

c16=G3+P3G2+P3P2G1+P3P2P1G0+P3P2P1P0c0

• Conclusion: All carries are available 5 gate delays after X, Y and c0 are applied as inputs.

COMPUTER ORGANIZATION

4-25

MULTIPLICATION OF POSITIVE NUMBERS

ARRAY MULTIPLICATION
• The main component in each cell is a full adder(FA)..
• The AND gate in each cell determines whether a multiplicand bit mj, is added to the incoming partial-
product bit, based on the value of the multiplier bit qi (Figure 9.6).

COMPUTER ORGANIZATION

4-25

SEQUENTIAL CIRCUIT BINARY MULTIPLIER
• Registers A and Q combined hold PPi(partial product)

while the multiplier bit qi generates the signal Add/Noadd.
• The carry-out from the adder is stored in flip-flop C (Figure 9.7).
• Procedure for multiplication:

1) Multiplier is loaded into register Q,
Multiplicand is loaded into register M and

C & A are cleared to 0.
2) If q0=1, add M to A and store sum in A. Then C, A and Q are shifted right one bit-position.

If q0=0, no addition performed and C, A & Q are shifted right one bit-position.
3) After n cycles, the high-order half of the product is held in register A and

the low-order half is held in register Q.

COMPUTER ORGANIZATION

4-25

SIGNED OPERAND MULTIPLICATION
BOOTH ALGORITHM
• This algorithm

→ generates a 2n-bit product
→ treats both positive & negative 2's-complement n-bit operands uniformly(Figure 9.9-9.12).

• Attractive feature: This algorithm achieves some efficiency in the number of addition required when
the multiplier has a few large blocks of 1s.
• This algorithm suggests that we can reduce the number of operations required for multiplication by
representing multiplier as a difference between 2 numbers.

For e.g. multiplier(Q) 14(001110) can be represented as
010000 (16)
-000010 (2)
001110 (14)

• Therefore, product P=M*Q can be computed by adding 24 times the M to the 2's complement of 21
times the M.

COMPUTER ORGANIZATION

4-25

FAST MULTIPLICATION
BIT-PAIR RECODING OF MULTIPLIERS
• This method

→ derived from the booth algorithm
→ reduces the number of summands by a factor of 2

• Group the Booth-recoded multiplier bits in pairs. (Figure 9.14 & 9.15).
• The pair (+1 -1) is equivalent to the pair (0 +1).

COMPUTER ORGANIZATION

4-25

CARRY-SAVE ADDITION OF SUMMANDS
• Consider the array for 4*4 multiplication. (Figure 9.16 & 9.18).
• Instead of letting the carries ripple along the rows, they can be "saved" and introduced into the next
row, at the correct weighted positions.

COMPUTER ORGANIZATION

4-25

• The full adder is input with three partial bit products in the first row.
• Multiplication requires the addition of several summands.
• CSA speeds up the addition process.
• Consider the array for 4x4 multiplication shown in fig 9.16.
• First row consisting of just the AND gates that implement the bit products m3q0, m2q0, m1q0 and m0q0.
• The delay through the carry-save array is somewhat less than delay through the ripple-carry array.
This is because the S and C vector outputs from each row are produced in parallel in one full-adder
delay.
• Consider the addition of many summands in fig 9.18.
• Group the summands in threes and perform carry-save addition on each of these groups in parallel to
generate a set of S and C vectors in one full-adder delay
• Group all of the S and C vectors into threes, and perform carry-save addition on them, generating a
further set of S and C vectors in one more full-adder delay
• Continue with this process until there are only two vectors remaining
• They can be added in a RCA or CLA to produce the desired product.
• When the number of summands is large, the time saved is proportionally much greater.
• Delay: AND gate + 2 gate/CSA level + CLA gate delay, Eg., 6 bit number require 15 gate delay,
array 6x6 require 6(n-1)-1 = 29 gate Delay.
• In general, CSA takes 1.7 log2k-1.7 levels of CSA to reduce k summands.

COMPUTER ORGANIZATION

4-25

INTEGER DIVISION
• An n-bit positive-divisor is loaded into register M.

An n-bit positive-dividend is loaded into register Q at the start of the operation.
Register A is set to 0 (Figure 9.21).

• After division operation, the n-bit quotient is in register Q, and
the remainder is in register A.

COMPUTER ORGANIZATION

4-25

NON-RESTORING DIVISION
• Procedure:

Step 1: Do the following n times
i) If the sign of A is 0, shift A and Q left one bit position and subtract M from A;

otherwise, shift A and Q left and add M to A (Figure 9.23).
ii) Now, if the sign of A is 0, set q0 to 1; otherwise set q0 to 0.

Step 2: If the sign of A is 1, add M to A (restore).

COMPUTER ORGANIZATION

4-25

RESTORING DIVISION
• Procedure: Do the following n times

1) Shift A and Q left one binary position (Figure 9.22).
2) Subtract M from A, and place the answer back in A
3) If the sign of A is 1, set q0 to 0 and add M back to A(restore A).

If the sign of A is 0, set q0 to 1 and no restoring done.

COMPUTER ORGANIZATION

4-25

FLOATING-POINT NUMBERS & OPERATIONS
IEEE STANDARD FOR FLOATING POINT NUMBERS
• Single precision representation occupies a single 32-bit word.

The scale factor has a range of 2-126 to 2+127 (which is approximately equal to 10+38).
• The 32 bit word is divided into 3 fields: sign(1 bit), exponent(8 bits) and mantissa(23 bits).
• Signed exponent=E.

Unsigned exponent E'=E+127. Thus, E' is in the range 0<E'<255.
• The last 23 bits represent the mantissa. Since binary normalization is used, the MSB of the mantissa
is always equal to 1. (M represents fractional-part).
• The 24-bit mantissa provides a precision equivalent to about 7 decimal-digits (Figure 9.24).
• Double precision representation occupies a single 64-bit word. And E' is in the range 1<E'<2046.
• The 53-bit mantissa provides a precision equivalent to about 16 decimal-digits.

COMPUTER ORGANIZATION

4-25

NORMALIZATION
• When the decimal point is placed to the right of the first(non zero) significant digit, the number is
said to be normalized.
• If a number is not normalized, it can always be put in normalized form by shifting the fraction and
adjusting the exponent. As computations proceed, a number that does not fall in the representable
range of normal numbers might be generated.
• In single precision, it requires an exponent less than -126 (underflow) or greater than +127
(overflow). Both are exceptions that need to be considered.

SPECIAL VALUES
• The end values 0 and 255 of the excess-127 exponent E’ are used to represent special values.
• When E’=0 and the mantissa fraction m is zero, the value exact 0 is represented.
• When E’=255 and M=0, the value ∞ is represented, where ∞ is the result of dividing a normal
number by zero.
• when E’=0 and M!=-, denormal numbers are represented. Their value is X2-126

• When E’=255 and M!=0, the value represented is called not a number(NaN). A NaN is the result of
performing an invalied operation such as 0/0 or .

ARITHMETIC OPERATIONS ON FLOATING-POINT NUMBERS
Multiply Rule
1) Add the exponents & subtract 127.
2) Multiply the mantissas & determine sign of the result.
3) Normalize the resulting value if necessary.
Divide Rule
1) Subtract the exponents & add 127.
2) Divide the mantissas & determine sign of the result.
3) Normalize the resulting value if necessary.
Add/Subtract Rule
1) Choose the number with the smaller exponent & shift its mantissa right a number of steps
equal to the difference in exponents(n).
2) Set exponent of the result equal to larger exponent.
3) Perform addition/subtraction on the mantissas & determine sign of the result.
4) Normalize the resulting value if necessary.

COMPUTER ORGANIZATION

4-25

IMPLEMENTING FLOATING-POINT OPERATIONS
• First compare exponents to determine how far to shift the mantissa of the number with the smaller
exponent.
• The shift-count value n

→ is determined by 8 bit subtractor &
→ is sent to SHIFTER unit.

• In step 1, sign is sent to SWAP network (Figure 9.26).
If sign=0, then EA>EB and mantissas MA & MB are sent straight through SWAP network.
If sign=1, then EA<EB and the mantissas are swapped before they are sent to SHIFTER.

• In step 2, 2:! MUX is used. The exponent of result E is tentatively determined as EA if EA>EB or
EB if EA<EB

• In step 3, CONTROL logic
→ determines whether mantissas are to be added or subtracted.
→ determines sign of the result.

• In step 4, result of step 3 is normalized. The number of leading zeros in M determines number of bit
shifts(X) to be applied to M.

COMPUTER ORGANIZATION

4-25

Problem 1:
Represent the decimal values 5, -2, 14, -10, 26, -19, 51 and -43 as signed 7-bit numbers in the
following binary formats:

(a) sign-and-magnitude
(b) 1’s-complement
(c) 2’s-complement

Solution:
The three binary representations are given as:

Problem 2:
(a) Convert the following pairs of decimal numbers to 5-bit 2’s-complement numbers, then add them.
State whether or not overflow occurs in each case.

a) 5 and 10 b) 7 and 13
c) –14 and 11 d) –5 and 7
e) –3 and –8

(b) Repeat Problem 1.7 for the subtract operation, where the second number of each pair is to be
subtracted from the first number. State whether or not overflow occurs in each case.
Solution:

(a)

(b) To subtract the second number, form its 2's-complement and add it to the first number.

COMPUTER ORGANIZATION

4-25

Problem 3:
Perform following operations on the 6-bit signed numbers using 2's complement representation
system. Also indicate whether overflow has occurred.

Solution:

COMPUTER ORGANIZATION

4-25

Problem 4:
Perform signed multiplication of following 2’s complement numbers using Booth’s algorithm.
(a) A=010111 and B=110110 (b) A=110011 and B=101100
(c) A=110101 and B=011011 (d) A=001111 and B=001111
(e) A=10100 and B=10101 (f) A=01110 and B=11000
Solution:

COMPUTER ORGANIZATION

4-25

Problem 5:
Perform signed multiplication of following 2’s complement numbers using bit-pair recoding method.
(a) A=010111 and B=110110 (b) A=110011 and B=101100
(c) A=110101 and B=011011 (d) A=001111 and B=001111
Solution:

COMPUTER ORGANIZATION

4-25

Problem 6:
Given A=10101 and B=00100, perform A/B using restoring division algorithm.
Solution:

Problem 7:
Given A=10101 and B=00101, perform A/B using non-restoring division algorithm.
Solution:

COMPUTER ORGANIZATION

4-25

Problem 8:
Represent 1259.12510 in single precision and double precision formats
Solution:

Step 1: Convert decimal number to binary format
1259(10) =10011101011(2)

Fractional Part
0.125(10) =0.001

Binary number = 10011101011+0.001
= 10011101011.001

Step 2: Normalize the number
10011101011.001=1.0011101011001 x 210

Step 3: Single precision format:
For a given number S=0, E=10 and M=0011101011001
Bias for single precision format is = 127

E’= E+127 = 10+127 = 137(10)

= 10001001(2)

Number in single precision format is given as

Step 4: Double precision format:
For a given number S=0, E=10 and M=0011101011001
Bias for double precision format is = 1023

E’=E+1023=10+1023=1033(10)

=10000001001(2)

Number in double precision format is given as

COMPUTER ORGANIZATION

5-1

MODULE 5: BASIC PROCESSING UNIT

SOME FUNDAMENTAL CONCEPTS
• To execute an instruction, processor has to perform following 3 steps:

1) Fetch contents of memory-location pointed to by PC. Content of this location is an instruction

to be executed. The instructions are loaded into IR, Symbolically, this operation is written as:
IR [[PC]]

2) Increment PC by 4.
PC [PC] +4

3) Carry out the actions specified by instruction (in the IR).

• The first 2 steps are referred to as Fetch Phase.
Step 3 is referred to as Execution Phase.

• The operation specified by an instruction can be carried out by performing one or more of the
following actions:

1) Read the contents of a given memory-location and load them into a register.

2) Read data from one or more registers.
3) Perform an arithmetic or logic operation and place the result into a register.
4) Store data from a register into a given memory-location.

• The hardware-components needed to perform these actions are shown in Figure 5.1.

COMPUTER ORGANIZATION

5-2

SINGLE BUS ORGANIZATION

• ALU and all the registers are interconnected via a Single Common Bus (Figure 7.1).
• Data & address lines of the external memory-bus is connected to the internal processor-bus via MDR
& MAR respectively. (MDR Memory Data Register, MAR  Memory Address Register).
• MDR has 2 inputs and 2 outputs. Data may be loaded

→ into MDR either from memory-bus (external) or
→ from processor-bus (internal).

• MAR‟s input is connected to internal-bus;
MAR‟s output is connected to external-bus.

• Instruction Decoder & Control Unit is responsible for

→ issuing the control-signals to all the units inside the processor.
→ implementing the actions specified by the instruction (loaded in the IR).

• Register R0 through R(n-1) are the Processor Registers.
The programmer can access these registers for general-purpose use.

• Only processor can access 3 registers Y, Z & Temp for temporary storage during program-execution.
The programmer cannot access these 3 registers.

• In ALU, 1) „A‟ input gets the operand from the output of the multiplexer (MUX).
2) „B‟ input gets the operand directly from the processor-bus.

• There are 2 options provided for „A‟ input of the ALU.

• MUX is used to select one of the 2 inputs.
• MUX selects either

→ output of Y or
→ constant-value 4(which is used to increment PC content).

• An instruction is executed by performing one or more of the following operations:
1) Transfer a word of data from one register to another or to the ALU.

2) Perform arithmetic or a logic operation and store the result in a register.
3) Fetch the contents of a given memory-location and load them into a register.
4) Store a word of data from a register into a given memory-location.

• Disadvantage: Only one data-word can be transferred over the bus in a clock cycle.
Solution: Provide multiple internal-paths. Multiple paths allow several data-transfers to take place in

parallel.

COMPUTER ORGANIZATION

5-3

REGISTER TRANSFERS

• Instruction execution involves a sequence of steps in which data are transferred from one register to
another.
• For each register, two control-signals are used: Riin & Riout. These are called Gating Signals.

• Riin=1  data on bus is loaded into Ri.
Riout=1  content of Ri is placed on bus.

Riout=0,  bus can be used for transferring data from other registers.
• For example, Move R1, R2; This transfers the contents of register R1 to register R2. This can be
accomplished as follows:

1) Enable the output of registers R1 by setting R1out to 1 (Figure 7.2).
This places the contents of R1 on processor-bus.

2) Enable the input of register R2 by setting R2out to 1.
This loads data from processor-bus into register R4.

• All operations and data transfers within the processor take place within time-periods defined by the

processor-clock.
• The control-signals that govern a particular transfer are asserted at the start of the clock cycle.

Input & Output Gating for one Register Bit
• A 2-input multiplexer is used to select the data applied to the input of an edge-triggered D flip-flop.
• Riin=1  mux selects data on bus. This data will be loaded into flip-flop at rising-edge of clock.

Riin=0  mux feeds back the value currently stored in flip-flop (Figure 7.3).
• Q output of flip-flop is connected to bus via a tri-state gate.

Riout=0  gate's output is in the high-impedance state.
Riout=1  the gate drives the bus to 0 or 1, depending on the value of Q.

COMPUTER ORGANIZATION

5-4

PERFORMING AN ARITHMETIC OR LOGIC OPERATION

• The ALU performs arithmetic operations on the 2 operands applied to its A and B inputs.
• One of the operands is output of MUX;

And, the other operand is obtained directly from processor-bus.

• The result (produced by the ALU) is stored temporarily in register Z.
• The sequence of operations for [R3][R1]+[R2] is as follows:

1) R1out, Y in
2) R2out, SelectY, Add, Zin
3) Zout, R3in

• Instruction execution proceeds as follows:
Step 1 --> Contents from register R1 are loaded into register Y.
Step2 --> Contents from Y and from register R2 are applied to the A and B inputs of ALU;

Addition is performed &
Result is stored in the Z register.

Step 3 --> The contents of Z register is stored in the R3 register.
• The signals are activated for the duration of the clock cycle corresponding to that step. All other
signals are inactive.

CONTROL-SIGNALS OF MDR

• The MDR register has 4 control-signals (Figure 7.4):
1) MDRin & MDRout control the connection to the internal processor data bus &
2) MDRinE & MDRoutE control the connection to the memory Data bus.

• MAR register has 2 control-signals.
1) MARin controls the connection to the internal processor address bus &
2) MARout controls the connection to the memory address bus.

COMPUTER ORGANIZATION

5-5

FETCHING A WORD FROM MEMORY

• To fetch instruction/data from memory, processor transfers required address to MAR.
At the same time, processor issues Read signal on control-lines of memory-bus.

• When requested-data are received from memory, they are stored in MDR. From MDR, they are

transferred to other registers.
• The response time of each memory access varies (based on cache miss, memory-mapped I/O). To
accommodate this, MFC is used. (MFC  Memory Function Completed).
• MFC is a signal sent from addressed-device to the processor. MFC informs the processor that the
requested operation has been completed by addressed-device.

• Consider the instruction Move (R1),R2. The sequence of steps is (Figure 7.5):
1) R1out, MARin, Read ;desired address is loaded into MAR & Read command is issued.
2) MDRinE, WMFC ;load MDR from memory-bus & Wait for MFC response from memory.
3) MDRout, R2in ;load R2 from MDR.

where WMFC=control-signal that causes processor's control.

circuitry to wait for arrival of MFC signal.

Storing a Word in Memory
• Consider the instruction Move R2,(R1). This requires the following sequence:

1) R1out, MARin ;desired address is loaded into MAR.
2) R2out, MDRin, Write ;data to be written are loaded into MDR & Write command is issued.

3) MDRoutE, WMFC ;load data into memory-location pointed by R1 from MDR.

COMPUTER ORGANIZATION

5-6

EXECUTION OF A COMPLETE INSTRUCTION

• Consider the instruction Add (R3),R1 which adds the contents of a memory-location pointed by R3 to
register R1. Executing this instruction requires the following actions:

1) Fetch the instruction.

2) Fetch the first operand.
3) Perform the addition &
4) Load the result into R1.

• Instruction execution proceeds as follows:

Step1--> The instruction-fetch operation is initiated by

→ loading contents of PC into MAR &
→ sending a Read request to memory.

The Select signal is set to Select4, which causes the Mux to select constant 4. This value
is added to operand at input B (PC‟s content), and the result is stored in Z.

Step2--> Updated value in Z is moved to PC. This completes the PC increment operation and
PC will now point to next instruction.

Step3--> Fetched instruction is moved into MDR and then to IR.
The step 1 through 3 constitutes the Fetch Phase.
At the beginning of step 4, the instruction decoder interprets the contents of the IR. This

enables the control circuitry to activate the control-signals for steps 4 through 7.
The step 4 through 7 constitutes the Execution Phase.

Step4--> Contents of R3 are loaded into MAR & a memory read signal is issued.
Step5--> Contents of R1 are transferred to Y to prepare for addition.
Step6--> When Read operation is completed, memory-operand is available in MDR, and the

addition is performed.
Step7--> Sum is stored in Z, then transferred to R1.The End signal causes a new instruction

fetch cycle to begin by returning to step1.

COMPUTER ORGANIZATION

5-7

BRANCHING INSTRUCTIONS

• Control sequence for an unconditional branch instruction is as follows:

• Instruction execution proceeds as follows:

Step 1-3--> The processing starts & the fetch phase ends in step3.
Step 4--> The offset-value is extracted from IR by instruction-decoding circuit.

Since the updated value of PC is already available in register Y, the offset X is gated onto
the bus, and an addition operation is performed.

Step 5--> the result, which is the branch-address, is loaded into the PC.
• The branch instruction loads the branch target address in PC so that PC will fetch the next instruction
from the branch target address.

• The branch target address is usually obtained by adding the offset in the contents of PC.
• The offset X is usually the difference between the branch target-address and the address
immediately following the branch instruction.
• In case of conditional branch,

we have to check the status of the condition-codes before loading a new value into the PC.

e.g.: Offset-field-of-IRout, Add, Zin, If N=0 then End
If N=0, processor returns to step 1 immediately after step 4.
If N=1, step 5 is performed to load a new value into PC.

COMPUTER ORGANIZATION

5-8

MULTIPLE BUS ORGANIZATION

• Disadvantage of Single-bus organization: Only one data-word can be transferred over the bus in
a clock cycle. This increases the steps required to complete the execution of the instruction
Solution: To reduce the number of steps, most processors provide multiple internal-paths. Multiple

paths enable several transfers to take place in parallel.
• As shown in fig 7.8, three buses can be used to connect registers and the ALU of the processor.
• All general-purpose registers are grouped into a single block called the Register File.
• Register-file has 3 ports:

1) Two output-ports allow the contents of 2 different registers to be simultaneously placed on

buses A & B.
2) Third input-port allows data on bus C to be loaded into a third register during the same
clock-cycle.

• Buses A and B are used to transfer source-operands to A & B inputs of ALU.
• The result is transferred to destination over bus C.

• Incrementer Unit is used to increment PC by 4.

• Instruction execution proceeds as follows:

Step 1--> Contents of PC are
→ passed through ALU using R=B control-signal &
→ loaded into MAR to start memory Read operation. At the same time, PC is incremented by 4.

Step2--> Processor waits for MFC signal from memory.
Step3--> Processor loads requested-data into MDR, and then transfers them to IR.
Step4--> The instruction is decoded and add operation takes place in a single step.

COMPUTER ORGANIZATION

5-9

COMPLETE PROCESSOR

• This has separate processing-units to deal with integer data and floating-point data.
Integer Unit  To process integer data. (Figure 7.14).
Floating Unit  To process floating –point data.

• Data-Cache is inserted between these processing-units & main-memory.

The integer and floating unit gets data from data cache.
• Instruction-Unit fetches instructions

→ from an instruction-cache or
→ from main-memory when desired instructions are not already in cache.

• Processor is connected to system-bus &
hence to the rest of the computer by means of a Bus Interface.

• Using separate caches for instructions & data is common practice in many processors today.
• A processor may include several units of each type to increase the potential for concurrent
operations.

• The 80486 processor has 8-kbytes single cache for both instruction and data.
Whereas the Pentium processor has two separate 8 kbytes caches for instruction and data.

Note:
To execute instructions, the processor must have some means of generating the control-signals. There

are two approaches for this purpose:
1) Hardwired control and 2) Microprogrammed control.

COMPUTER ORGANIZATION

5-10

HARDWIRED CONTROL

• Hardwired control is a method of control unit design (Figure 7.11).
• The control-signals are generated by using logic circuits such as gates, flip-flops, decoders etc.
• Decoder/Encoder Block is a combinational-circuit that generates required control-outputs

depending on state of all its inputs.
• Instruction Decoder

 It decodes the instruction loaded in the IR.
 If IR is an 8 bit register, then instruction decoder generates 28(256 lines); one for each
instruction.
 It consists of a separate output-lines INS1 through INSm for each machine instruction.

 According to code in the IR, one of the output-lines INS1 through INSm is set to 1, and all
other lines are set to 0.

• Step-Decoder provides a separate signal line for each step in the control sequence.
• Encoder

 It gets the input from instruction decoder, step decoder, external inputs and condition codes.

 It uses all these inputs to generate individual control-signals: Y in, PCout, Add, End and so on.
 For example (Figure 7.12), Zin=T1+T6.ADD+T4.BR

;This signal is asserted during time-slot T1 for all instructions.
during T6 for an Add instruction.

during T4 for unconditional branch instruction
• When RUN=1, counter is incremented by 1 at the end of every clock cycle.

When RUN=0, counter stops counting.
• After execution of each instruction, end signal is generated. End signal resets step counter.
• Sequence of operations carried out by this machine is determined by wiring of logic circuits, hence
the name “hardwired”.

• Advantage: Can operate at high speed.
• Disadvantages:

1) Since no. of instructions/control-lines is often in hundreds, the complexity of control unit is
very high.
2) It is costly and difficult to design.

3) The control unit is inflexible because it is difficult to change the design.

COMPUTER ORGANIZATION

5-11

HARDWIRED CONTROL VS MICROPROGRAMMED CONTROL
Attribute Hardwired Control Microprogrammed Control

Definition Hardwired control is a control

mechanism to generate control-
signals by using gates, flip-
flops, decoders, and other
digital circuits.

Micro programmed control is a control

mechanism to generate control-signals
by using a memory called control store
(CS), which contains the control-
signals.

Speed Fast Slow

Control functions Implemented in hardware. Implemented in software.

Flexibility Not flexible to accommodate
new system specifications or
new instructions.

More flexible, to accommodate new
system specification or new instructions
redesign is required.

Ability to handle large

or complex instruction

sets

Difficult. Easier.

Ability to support

operating systems &

diagnostic features

Very difficult. Easy.

Design process Complicated. Orderly and systematic.
Applications Mostly RISC microprocessors. Mainframes, some microprocessors.

Instructionset size Usually under 100 instructions. Usually over 100 instructions.

ROM size - 2K to 10K by 20-400 bit
microinstructions.

Chip area efficiency Uses least area. Uses more area.

Diagram

COMPUTER ORGANIZATION

5-12

MICROPROGRAMMED CONTROL

• Microprogramming is a method of control unit design (Figure 7.16).
• Control-signals are generated by a program similar to machine language programs.
• Control Word(CW) is a word whose individual bits represent various control-signals (like Add, PCin).

• Each of the control-steps in control sequence of an instruction defines a unique combination of 1s &
0s in CW.
• Individual control-words in microroutine are referred to as microinstructions (Figure 7.15).
• A sequence of CWs corresponding to control-sequence of a machine instruction constitutes the
microroutine.
• The microroutines for all instructions in the instruction-set of a computer are stored in a special

memory called the Control Store (CS).
• Control-unit generates control-signals for any instruction by sequentially reading CWs of
corresponding microroutine from CS.
• µPC is used to read CWs sequentially from CS. (µPC Microprogram Counter).
• Every time new instruction is loaded into IR, o/p of Starting Address Generator is loaded into µPC.

• Then, µPC is automatically incremented by clock;
causing successive microinstructions to be read from CS.

Hence, control-signals are delivered to various parts of processor in correct sequence.

Advantages
• It simplifies the design of control unit. Thus it is both, cheaper and less error prone implement.
• Control functions are implemented in software rather than hardware.
• The design process is orderly and systematic.
• More flexible, can be changed to accommodate new system specifications or to correct the design

errors quickly and cheaply.
• Complex function such as floating point arithmetic can be realized efficiently.
Disadvantages
• A microprogrammed control unit is somewhat slower than the hardwired control unit, because time is
required to access the microinstructions from CM.

• The flexibility is achieved at some extra hardware cost due to the control memory and its access
circuitry.

COMPUTER ORGANIZATION

5-13

ORGANIZATION OF MICROPROGRAMMED CONTROL UNIT TO SUPPORT CONDITIONAL

BRANCHING
• Drawback of previous Microprogram control:

 It cannot handle the situation when the control unit is required to check the status of the

condition codes or external inputs to choose between alternative courses of action.
Solution:

 Use conditional branch microinstruction.
• In case of conditional branching, microinstructions specify which of the external inputs, condition-
codes should be checked as a condition for branching to take place.

• Starting and Branch Address Generator Block loads a new address into µPC when a
microinstruction instructs it to do so (Figure 7.18).
• To allow implementation of a conditional branch, inputs to this block consist of

→ external inputs and condition-codes &
→ contents of IR.

• µPC is incremented every time a new microinstruction is fetched from microprogram memory except

in following situations:
1) When a new instruction is loaded into IR, µPC is loaded with starting-address of microroutine
for that instruction.

2) When a Branch microinstruction is encountered and branch condition is satisfied, µPC is
loaded with branch-address.
3) When an End microinstruction is encountered, µPC is loaded with address of first CW in
microroutine for instruction fetch cycle.

COMPUTER ORGANIZATION

5-14

MICROINSTRUCTIONS

• A simple way to structure microinstructions is to assign one bit position to each control-signal
required in the CPU.
• There are 42 signals and hence each microinstruction will have 42 bits.

• Drawbacks of microprogrammed control:
1) Assigning individual bits to each control-signal results in long microinstructions because

the number of required signals is usually large.
2) Available bit-space is poorly used because

only a few bits are set to 1 in any given microinstruction.
• Solution: Signals can be grouped because

1) Most signals are not needed simultaneously.
2) Many signals are mutually exclusive. E.g. only 1 function of ALU can be activated at a time.

For ex: Gating signals: IN and OUT signals (Figure 7.19).
Control-signals: Read, Write.

ALU signals: Add, Sub, Mul, Div, Mod.
• Grouping control-signals into fields requires a little more hardware because

decoding-circuits must be used to decode bit patterns of each field into individual control-signals.
• Advantage: This method results in a smaller control-store (only 20 bits are needed to store the
patterns for the 42 signals).

COMPUTER ORGANIZATION

5-15

TECHNIQUES OF GROUPING OF CONTROL-SIGNALS
• The grouping of control-signal can be done either by using

1) Vertical organization &
2) Horizontal organisation.

Vertical Organization Horizontal Organization

Highly encoded schemes that use compact
codes to specify only a small number of control

functions in each microinstruction are referred
to as a vertical organization.

The minimally encoded scheme in which many
resources can be controlled with a single

microinstuction is called a horizontal
organization.

Slower operating-speeds. Useful when higher operating-speed is desired.
Short formats. Long formats.

Limited ability to

microoperations.

express parallel Ability to express a high degree of parallelism.

Considerable encoding

information.

of the control Little encoding of the control information.

MICROPROGRAM SEQUENCING
• The task of microprogram sequencing is done by microprogram sequencer.
• Two important factors must be considered while designing the microprogram sequencer:

1) The size of the microinstruction &
2) The address generation time.

• The size of the microinstruction should be minimum so that the size of control memory required to
store microinstructions is also less.
• This reduces the cost of control memory.
• With less address generation time, microinstruction can be executed in less time resulting better
throughout.

• During execution of a microprogram the address of the next microinstruction to be executed has 3
sources:

1) Determined by instruction register.
2) Next sequential address &
3) Branch.

• Microinstructions can be shared using microinstruction branching.
• Disadvantage of microprogrammed branching:

1) Having a separate microroutine for each machine instruction results in a large total number
of microinstructions and a large control-store.
2) Execution time is longer because it takes more time to carry out the required branches.

• Consider the instruction Add src,Rdst ;which adds the source-operand to the contents of Rdst and

places the sum in Rdst.
• Let source-operand can be specified in following addressing modes (Figure 7.20):

a) Indexed
b) Autoincrement

c) Autodecrement
d) Register indirect &
e) Register direct

• Each box in the chart corresponds to a microinstruction that controls the transfers and operations
indicated within the box.

• The microinstruction is located at the address indicated by the octal number (001,002).

COMPUTER ORGANIZATION

5-16

COMPUTER ORGANIZATION

5-17

BRANCH ADDRESS MODIFICATION USING BIT-ORING

• The branch address is determined by ORing particular bit or bits with the current address of
microinstruction.
• Eg: If the current address is 170 and branch address is 171 then the branch address can be

generated by ORing 01(bit 1), with the current address.
• Consider the point labeled in the figure. At this point, it is necessary to choose between direct and
indirect addressing modes.
• If indirect-mode is specified in the instruction, then the microinstruction in location 170 is performed
to fetch the operand from the memory.

If direct-mode is specified, this fetch must be bypassed by branching immediately to location 171.
• The most efficient way to bypass microinstruction 170 is to have bit-ORing of

→ current address 170 &
→ branch address 171.

WIDE BRANCH ADDRESSING
• The instruction-decoder (InstDec) generates the starting-address of the microroutine that
implements the instruction that has just been loaded into the IR.
• Here, register IR contains the Add instruction, for which the instruction decoder generates the
microinstruction address 101. (However, this address cannot be loaded as is into the μPC).

• The source-operand can be specified in any of several addressing-modes. The bit-ORing technique
can be used to modify the starting-address generated by the instruction-decoder to reach the
appropriate path.
Use of WMFC
• WMFC signal is issued at location 112 which causes a branch to the microinstruction in location 171.

• WMFC signal means that the microinstruction may take several clock cycles to complete. If the
branch is allowed to happen in the first clock cycle, the microinstruction at location 171 would be
fetched and executed prematurely. To avoid this problem, WMFC signal must inhibit any change in the
contents of the μPC during the waiting-period.

COMPUTER ORGANIZATION

5-18

Detailed Examination of Add (Rsrc)+,Rdst

• Consider Add (Rsrc)+,Rdst; which adds Rsrc content to Rdst content, then stores the sum in Rdst
and finally increments Rsrc by 4 (i.e. auto-increment mode).
• In bit 10 and 9, bit-patterns 11, 10, 01 and 00 denote indexed, auto-decrement, auto-increment and

register modes respectively. For each of these modes, bit 8 is used to specify the indirect version.
• The processor has 16 registers that can be used for addressing purposes; each specified using a 4-
bit-code (Figure 7.21).
• There are 2 stages of decoding:

1) The microinstruction field must be decoded to determine that an Rsrc or Rdst register is

involved.
2) The decoded output is then used to gate the contents of the Rsrc or Rdst fields in the IR into
a second decoder, which produces the gating-signals for the actual registers R0 to R15.

COMPUTER ORGANIZATION

5-19

MICROINSTRUCTIONS WITH NEXT-ADDRESS FIELDS

• Drawback of previous organization:
 The microprogram requires several branch microinstructions which perform no useful

operation. Thus, they detract from the operating-speed of the computer.
Solution:

 Include an address-field as a part of every microinstruction to indicate the location of the next
microinstruction to be fetched. (Thus, every microinstruction becomes a branch
microinstruction).

• The flexibility of this approach comes at the expense of additional bits for the address-field(Fig 7.22).
• Advantage: Separate branch microinstructions are virtually eliminated. (Figure 7.23-24).

• Disadvantage: Additional bits for the address field (around 1/6).
• There is no need for a counter to keep track of sequential address. Hence, μPC is replaced with μAR.
• The next-address bits are fed through the OR gate to the μAR, so that the address can be modified
on the basis of the data in the IR, external inputs and condition-codes.
• The decoding circuits generate the starting-address of a given microroutine on the basis of the
opcode in the IR. (μAR  Microinstruction Address Register).

COMPUTER ORGANIZATION

5-20

COMPUTER ORGANIZATION

5-21

PREFETCHING MICROINSTRUCTIONS

• Disadvantage of Microprogrammed Control: Slower operating-speed because of the time it takes
to fetch microinstructions from the control-store.

Solution: Faster operation is achieved if the next microinstruction is pre-fetched while the

current one is being executed.
Emulation
• The main function of microprogrammed control is to provide a means for simple, flexible and
relatively inexpensive execution of machine instruction.
• Its flexibility in using a machine's resources allows diverse classes of instructions to be implemented.
• Suppose we add to the instruction-repository of a given computer M1, an entirely new set of

instructions that is in fact the instruction-set of a different computer M2.
• Programs written in the machine language of M2 can be then be run on computer M1 i.e. M1
emulates M2.
• Emulation allows us to replace obsolete equipment with more up-to-date machines.

• If the replacement computer fully emulates the original one, then no software changes have to be
made to run existing programs.
• Emulation is easiest when the machines involved have similar architectures.

COMPUTER ORGANIZATION

5-22

Problem 1:

Why is the Wait-for-memory-function-completed step needed for reading from or writing to the main
memory?
Solution:

The WMFC step is needed to synchronize the operation of the processor and the main memory.

Problem 2:
For the single bus organization, write the complete control sequence for the instruction: Move (R1), R1
Solution:

Problem 3:

1) PCout, MARin, Read, Select4, Add, Zin
2) Zout, PCin, Y in, WMFC
3) MDRout, IRin
4) R1out, MARin, Read
5) MDRinE, WMFC

6) MDRout, R2in, End

Write the sequence of control steps required for the single bus organization in each of the following
instructions:

a) Add the immediate number NUM to register R1.
b) Add the contents of memory-location NUM to register R1.
c) Add the contents of the memory-location whose address is at memory-location NUM to
register R1.

Assume that each instruction consists of two words. The first word specifies the operation andN the

addressing mode, and the second word contains the number NUM
Solution:

Problem 4:

Show the control steps for the Branch on Negative instruction for a processor with three-bus
organization of the data path
Solution:

COMPUTER ORGANIZATION

5-23

Module 1. Basic

Structure of Computers

Outline

 Basic Operational Concepts

 Bus Structures

 Basic Performance Equation

 Performance Measurement

 Machine Instructions and Programs

 Memory Operations

 Memory Operations

 Addressing Modes

 Encoding of Machine Instructions
2KSIT

Learning Objectives

 Understand the basics of computer organization:

structure and operation of computers and their

peripherals

 Understand the concepts of programs as sequences or

machine instructions.

 To analyse various addressing modes and machine

instructions

 To study basic IO operations and Stack operations

KSIT 3

Computer organization vs

Computer Architecture

 Computer architecture refers to those attributes of a

system visible to a programmer

 Computer organization refers to the operational units

and their interconnections that realize the architectural

specifications.

KSIT 4

Functional Units

Functional Units

Figure 1.1. Basic functional units of a computer.

I/O Processor

Output

Memory

Input and
Arithmetic

logic

Control

6KSIT

Information Handled by a

Computer

 Instructions/machine instructions
 Govern the transfer of information within a computer as

well as between the computer and its I/O devices

 Specify the arithmetic and logic operations to be
performed

 Program

 Data
 Used as operands by the instructions

 Source program

 Encoded in binary code – 0 and 1

7KSIT

Memory Unit

 Store programs and data

 Two classes of storage
 Primary storage
 Fast

 Programs must be stored in memory while they are being executed

 Large number of semiconductor storage cells

 Processed in words

 Address

 RAM and memory access time

 Memory hierarchy – cache, main memory

 Secondary storage – larger and cheaper

8KSIT

Arithmetic and Logic Unit

(ALU)

 Most computer operations are executed in

ALU of the processor.

 Load the operands into memory – bring them

to the processor – perform operation in ALU

– store the result back to memory or retain in

the processor.

 Registers

 Fast control of ALU

9KSIT

Control Unit

 All computer operations are controlled by the control
unit.

 The timing signals that govern the I/O transfers are
also generated by the control unit.

 Control unit is usually distributed throughout the
machine instead of standing alone.

 Operations of a computer:
 Accept information in the form of programs and data through an

input unit and store it in the memory

 Fetch the information stored in the memory, under program control,
into an ALU, where the information is processed

 Output the processed information through an output unit

 Control all activities inside the machine through a control unit

10KSIT

The processor : Data Path and

Control

PC

Register

Bank

Data Memory

Address

Instructions Address

Data

Instruction

Memory

A

L

U

Data

Register #

Register #

Register #

Two types of functional units:

elements that operate on data values (combinational)

 elements that contain state (state elements) 11KSIT

Five Execution Steps
Step name Action for R-type

instructions

Action for Memory-

reference Instructions

Action for

branches

Action for

jumps

Instruction fetch IR = MEM[PC]

PC = PC + 4

Instruction decode/ register

fetch

A = Reg[IR[25-21]]

B = Reg[IR[20-16]]

ALUOut = PC + (sign extend (IR[15-0])<<2)

Execution, address

computation, branch/jump

completion

ALUOut = A op B ALUOut = A+sign

extend(IR[15-0])

IF(A==B) Then

PC=ALUOut

PC=PC[31-

28]||(IR[25-

0]<<2)

Memory access or R-type

completion

Reg[IR[15-11]] =

ALUOut

Load:MDR =Mem[ALUOut]

or

Store:Mem[ALUOut] = B

Memory read completion Load: Reg[IR[20-16]] =

MDR

12KSIT

Basic Operational

Concepts

Review

 Activity in a computer is governed by instructions.

 To perform a task, an appropriate program

consisting of a list of instructions is stored in the

memory.

 Individual instructions are brought from the memory

into the processor, which executes the specified

operations.

 Data to be used as operands are also stored in the

memory.

14KSIT

A Typical Instruction

 Add LOCA, R0

 Add the operand at memory location LOCA to the
operand in a register R0 in the processor.

 Place the sum into register R0.

 The original contents of LOCA are preserved.

 The original contents of R0 is overwritten.

 Instruction is fetched from the memory into the
processor – the operand at LOCA is fetched and
added to the contents of R0 – the resulting sum is
stored in register R0.

15KSIT

Separate Memory Access and

ALU Operation

 Load LOCA, R1

 Add R1, R0

 Whose contents will be overwritten?

16KSIT

Connection Between the

Processor and the Memory
Figure 1.2. Connections between the processor and the memory.

Processor

Memory

PC

IR

MDR

Control

ALU

R
n 1-

R1

R0

MAR

n general purpose
registers

17KSIT

Registers

 Instruction register (IR)

 Program counter (PC)

 General-purpose register (R0 – Rn-1)

 Memory address register (MAR)

 Memory data register (MDR)

18KSIT

Typical Operating Steps

 Programs reside in the memory through input
devices

 PC is set to point to the first instruction

 The contents of PC are transferred to MAR

 A Read signal is sent to the memory

 The first instruction is read out and loaded
into MDR

 The contents of MDR are transferred to IR

 Decode and execute the instruction

19KSIT

Typical Operating Steps

(Cont’)

 Get operands for ALU
 General-purpose register

 Memory (address to MAR – Read – MDR to ALU)

 Perform operation in ALU

 Store the result back
 To general-purpose register

 To memory (address to MAR, result to MDR – Write)

 During the execution, PC is
incremented to the next instruction

20KSIT

Interrupt

 Normal execution of programs may be preempted if

some device requires urgent servicing.

 The normal execution of the current program must

be interrupted – the device raises an interrupt

signal.

 Interrupt-service routine

 Current system information backup and restore (PC,

general-purpose registers, control information,

specific information)

21KSIT

Bus Structures

 There are many ways to connect different

parts inside a computer together.

 A group of lines that serves as a connecting

path for several devices is called a bus.

 Address/data/control

22KSIT

Bus Structure

 Single-bus

Figure 1.3. Single-bus structure.

MemoryInput Output Processor

23KSIT

Speed Issue

 Different devices have different

transfer/operate speed.

 If the speed of bus is bounded by the slowest

device connected to it, the efficiency will be

very low.

 How to solve this?

 A common approach – use buffers.

24KSIT

Performance

Performance

 The most important measure of a computer is

how quickly it can execute programs.

 Three factors affect performance:

 Hardware design

 Instruction set

 Compiler

26KSIT

Performance

 Processor time to execute a program depends on the hardware
involved in the execution of individual machine instructions.

Main
memory Processor

Bus

Cache
memory

Figure 1.5. The processor cache.
27KSIT

Performance

 The processor and a relatively small cache

memory can be fabricated on a single

integrated circuit chip.

 Speed

 Cost

 Memory management

28KSIT

Processor Clock

 Clock, clock cycle, and clock rate

 The execution of each instruction is divided

into several steps, each of which completes

in one clock cycle.

 Hertz – cycles per second

29KSIT

Basic Performance Equation

 T – processor time required to execute a program that has been
prepared in high-level language

 N – number of actual machine language instructions needed to
complete the execution (note: loop)

 S – average number of basic steps needed to execute one
machine instruction. Each step completes in one clock cycle

 R – clock rate

 Note: these are not independent to each other

R

SN
T




How to improve T?

30KSIT

Pipeline

 Instructions are not necessarily executed one after
another.

 The value of S doesn’t have to be the number of
clock cycles to execute one instruction.

 Pipelining – overlapping the execution of successive
instructions.

31KSIT

Clock Rate

 Increase clock rate
 Improve the integrated-circuit (IC) technology to make

the circuits faster

 Reduce the amount of processing done in one basic step
(however, this may increase the number of basic steps
needed)

 Increases in R that are entirely caused by
improvements in IC technology affect all
aspects of the processor’s operation equally
except the time to access the main memory.

32KSIT

Compiler

 A compiler translates a high-level language program

into a sequence of machine instructions.

 To reduce N, we need a suitable machine instruction

set and a compiler that makes good use of it.

 Goal – reduce N×S

 A compiler may not be designed for a specific

processor; however, a high-quality compiler is

usually designed for, and with, a specific processor.

33KSIT

Performance Measurement

 T is difficult to compute.

 Measure computer performance using benchmark programs.

 System Performance Evaluation Corporation (SPEC) selects and
publishes representative application programs for different application
domains, together with test results for many commercially available
computers.

 Compile and run (no simulation)

 Reference computer








n

i

n
iSPECratingSPEC

ratingSPEC

1

1

)(

under testcomputer on the timeRunning

computer reference on the timeRunning

34KSIT

Machine

Instructions and

Programs

35KSIT

Objectives

 Machine instructions and program execution,

including branching and subroutine call and return

operations.

 Addressing methods for accessing register and

memory operands.

 Assembly language for representing machine

instructions, data, and programs.

 Program-controlled Input/Output operations.

36KSIT

Memory Locations,

Addresses, and

Operations

37KSIT

Memory Location, Addresses,

and Operation

 Memory consists

of many millions of

storage cells,

each of which can

store 1 bit.

 Data is usually

accessed in n-bit

groups. n is called

word length.

second word

first word

Figure 2.5. Memory words.

n bits

last word

i th word

•
•
•

•
•
•

38KSIT

Memory Location, Addresses,

and Operation

 32-bit word length example

(b) Four characters

charactercharactercharacter character

(a) A signed integer

Sign bit: for positive numbers

for negative numbers

ASCIIASCIIASCIIASCII

32 bits

8 bits 8 bits 8 bits 8 bits

b31 b30 b1 b0

b31 0=

b31 1=

• • •

39KSIT

Memory Location, Addresses,

and Operation

 To retrieve information from memory, either for one

word or one byte (8-bit), addresses for each location

are needed.

 A k-bit address memory has 2k memory locations,

namely 0 – 2k-1, called memory space.

 24-bit memory: 224 = 16,777,216 = 16M (1M=220)

 32-bit memory: 232 = 4G (1G=230)

 1K(kilo)=210

 1T(tera)=240

40KSIT

Memory Location, Addresses,

and Operation

 It is impractical to assign distinct addresses

to individual bit locations in the memory.

 The most practical assignment is to have

successive addresses refer to successive

byte locations in the memory – byte-

addressable memory.

 Byte locations have addresses 0, 1, 2, … If

word length is 32 bits, they successive words

are located at addresses 0, 4, 8,…
41KSIT

Big-Endian and Little-Endian

Assignments

2
k

4- 2
k

3- 2
k

2- 2
k

1- 2
k

4-2
k

4-

0 1 2 3

4 5 6 7

00

4

2
k

1- 2
k

2- 2
k

3- 2
k

4-

3 2 1 0

7 6 5 4

Byte addressByte address

(a) Big-endian assignment (b) Little-endian assignment

4

Word

address

•
•
•

•
•
•

Figure 2.7. Byte and word addressing.

Big-Endian: lower byte addresses are used for the most significant bytes of the word

Little-Endian: opposite ordering. lower byte addresses are used for the less significant

bytes of the word

42KSIT

Memory Location, Addresses,

and Operation

 Address ordering of bytes

 Word alignment
 Words are said to be aligned in memory if they

begin at a byte addr. that is a multiple of the num
of bytes in a word.

 16-bit word: word addresses: 0, 2, 4,….

 32-bit word: word addresses: 0, 4, 8,….

 64-bit word: word addresses: 0, 8,16,….

 Access numbers, characters, and character
strings

43KSIT

Memory Operation

 Load (or Read or Fetch)

 Copy the content. The memory content doesn’t change.

 Address – Load

 Registers can be used

 Store (or Write)

 Overwrite the content in memory

 Address and Data – Store

 Registers can be used

44KSIT

Instruction and

Instruction

Sequencing

45KSIT

“Must-Perform” Operations

 Data transfers between the memory and the

processor registers

 Arithmetic and logic operations on data

 Program sequencing and control

 I/O transfers

46KSIT

Register Transfer Notation

 Identify a location by a symbolic name

standing for its hardware binary address

(LOC, R0,…)

 Contents of a location are denoted by placing

square brackets around the name of the

location (R1←[LOC], R3 ←[R1]+[R2])

 Register Transfer Notation (RTN)

47KSIT

Assembly Language Notation

 Represent machine instructions and

programs.

 Move LOC, R1 = R1←[LOC]

 Add R1, R2, R3 = R3 ←[R1]+[R2]

48KSIT

CPU Organization

 Single Accumulator

 Result usually goes to the Accumulator

 Accumulator has to be saved to memory quite

often

 General Register

 Registers hold operands thus reduce memory

traffic

 Register bookkeeping

 Stack

 Operands and result are always in the stack
49KSIT

Instruction Formats

 Three-Address Instructions

 ADD R1, R2, R3 R1 ← R2 + R3

 Two-Address Instructions

 ADD R1, R2 R1 ← R1 + R2

 One-Address Instructions

 ADD M AC ← AC + M[AR]

 Zero-Address Instructions

 ADD TOS ← TOS + (TOS – 1)

 RISC Instructions

 Lots of registers. Memory is restricted to Load & Store

Opcode Operand(s) or Address(es) 50KSIT

Instruction Formats

Example: Evaluate (A+B)  (C+D)

 Three-Address

1. ADD R1, A, B ; R1 ← M[A] + M[B]

2. ADD R2, C, D ; R2 ← M[C] + M[D]

3. MUL X, R1, R2 ; M[X] ← R1  R2

51KSIT

Instruction Formats

Example: Evaluate (A+B)  (C+D)

 Two-Address

1. MOV R1, A ; R1 ← M[A]

2. ADD R1, B ; R1 ← R1 + M[B]

3. MOV R2, C ; R2 ← M[C]

4. ADD R2, D ; R2 ← R2 + M[D]

5. MUL R1, R2 ; R1 ← R1  R2

6. MOV X, R1 ; M[X] ← R1

52KSIT

Using Registers

 Registers are faster

 Shorter instructions

 The number of registers is smaller (e.g. 32

registers need 5 bits)

 Potential speedup

 Minimize the frequency with which data is

moved back and forth between the memory

and processor registers.

53KSIT

Instruction Execution and

Straight-Line Sequencing

R0,C

B,R0

A,R0

Movei + 8

Begin execution here Movei

ContentsAddress

C

B

A

the program
Data for

segment
program
3-instruction

Addi + 4

Figure 2.8. A program for C  [A] + [B].

Assumptions:

- One memory operand

per instruction

- 32-bit word length

- Memory is byte

addressable

- Full memory address

can be directly specified

in a single-word instruction

Two-phase procedure

-Instruction fetch

-Instruction execute

Page 43

54KSIT

Branching

NUMn

NUM2

NUM1

R0,SUM

NUMn,R0

NUM3,R0

NUM2,R0

NUM1,R0

Figure 2.9. A straight-line program for adding n numbers.

Add

Add

Move

SUM

i

Move

Add

i 4n+

i 4n 4-+

i 8+

i 4+

•
•
•

•
•
•

•
•
•

55KSIT

Branching

N,R1Move

NUMn

NUM2

NUM1

R0,SUM

R1

"Next" number to R0

Figure 2.10. Using a loop to add n numbers.

LOOP

Decrement

Move

LOOP

loop

Program

Determine address of
"Next" number and add

N

SUM

n

R0Clear

Branch>0

•
•
•

•
•
•

Branch target

Conditional branch

56KSIT

Condition Codes

 Condition code flags

 Condition code register / status register

 N (negative)

 Z (zero)

 V (overflow)

 C (carry)

 Different instructions affect different flags

57KSIT

Conditional Branch

Instructions

 Example:

 A: 1 1 1 1 0 0 0 0

 B: 0 0 0 1 0 1 0 0

A: 1 1 1 1 0 0 0 0

+(−B): 1 1 1 0 1 1 0 0

1 1 0 1 1 1 0 0

C = 1

S = 1

V = 0

Z = 0

58KSIT

Status Bits

ALU

V Z S C

Zero Check

Cn

Cn-1

Fn-1

A B

F

59KSIT

Addressing

Modes

60KSIT

Generating Memory Addresses

 How to specify the address of branch target?

 Can we give the memory operand address

directly in a single Add instruction in the loop?

 Use a register to hold the address of NUM1;

then increment by 4 on each pass through

the loop.

61KSIT

Addressing Modes

 Implementation of variables and constants

1. Register Addressing Mode : the operand is the contents

of a processor register.

2. Absolute or Direct Addressing Mode : the operand is in

a memory location; the address of this location is given

explicitly in the instruction.

3. Immediate Addressing Mode : the operand is given

explicitly in the instruction.

62KSIT

Addressing Modes

 Pointers

1. Register Indirect Addressing Mode : one of the register

in the instruction holds the address of the operand

EA=[Ri]

2. Indirect Addressing Mode : the effective address of the

operand is the memory location whose address appears

in the instruction

EA=[LOC]

63KSIT

Addressing Modes

 Indirect Address

 Indicate the memory location that holds the

address of the memory location that holds the

data

AR = 101

100

101

102

103

104

0 1 0 4

1 1 0 A

64KSIT

Addressing Modes

 Arrays

1. Indexed Addressing Mode : the EA of the operand is

generated by adding a constant value to the contents of a

register X(Ri) => EA = [Ri] + X

2. Base with Index : (Ri,Rj) => EA = [Ri] + [Rj]

3. Base with index and Offset : X(Ri,Rj) => EA = [Ri] + [Rj] + X

65KSIT

Addressing Modes

 Indexed

 EA = Index Register + Relative Addr

100

101

102

103

104

AR = 100

1 1 0 A

XR = 2

+

Could be Positive or
Negative

(2’s Complement)

Useful with
“Autoincrement” or
“Autodecrement”

66KSIT

Addressing Modes

 Relative Addressing Mode

 The EA is determined by the index mode using the PC in

place of the GPR Ri.

X(PC) EA= [PC] + X

 Relative to the PC content

 Used to specify target address in branch instruction

Branch>0 LOOP

 This location is computed by specifying it as an offset

from the current value of PC.

 Branch target may be either before or after the branch

instruction, the offset is given as a singed num.

67KSIT

100

101

102

103

104

0

1

2

Addressing Modes

 Relative Address

 EA = PC + Relative Addr

AR = 100

1 1 0 A

PC = 2

+

Could be Positive or
Negative

(2’s Complement)

68KSIT

Addressing Modes

 The different
ways in which
the location of
an operand is
specified in
an instruction
are referred
to as
addressing
modes.

Name Assembler syntax Addressingfunction

Immediate #Value Operand = Value

Register R i EA = Ri

Absolute(Direct) LOC EA = LOC

Indirect (Ri) EA = [Ri]

(LOC) EA = [LOC]

Index X(R i) EA = [Ri] + X

Basewith index (Ri ,Rj) EA = [Ri] + [Rj]

Basewith index X(R i ,Rj) EA = [Ri] + [Rj] + X

and offset

Relative X(PC) EA = [PC] + X

Autoincrement (Ri)+ EA = [Ri] ;
Increment R i

Autodecrement (R i) Decrement R i ;

EA = [Ri]


69KSIT

Additional Modes

 Autoincrement mode – the effective address of the operand is
the contents of a register specified in the instruction. After
accessing the operand, the contents of this register are
automatically incremented to point to the next item in a list.

 (Ri)+. The increment is 1 for byte-sized operands, 2 for 16-bit
operands, and 4 for 32-bit operands.

 Autodecrement mode: -(Ri) – decrement first

R0Clear

R0,SUM

R1

(R2)+,R0

Figure 2.16. The Autoincrement addressing mode used in the program of Figure 2.12.

Initialization

Move

LOOP Add

Decrement

LOOP

#NUM1,R2

N,R1Move

Move

Branch>0

70KSIT

Assembly

Language

71KSIT

Assembly Language

 Human understandable notation for machine level

language

 Mnemonics – symbolic names

 Set of rules – syntax

72KSIT

Types of Instructions

 Data Transfer Instructions
Name Mnemonic

Load LD

Store ST

Move MOV

Exchange XCH

Input IN

Output OUT

Push PUSH

Pop POP

Data value is
not modified

73KSIT

Data Transfer Instructions

Mode Assembly Register Transfer

Direct address LD ADR AC ← M[ADR]

Indirect address LD @ADR AC ← M[M[ADR]]

Relative address LD $ADR AC ← M[PC+ADR]

Immediate operand LD #NBR AC ← NBR

Index addressing LD ADR(X) AC ← M[ADR+XR]

Register LD R1 AC ← R1

Register indirect LD (R1) AC ← M[R1]

Autoincrement LD (R1)+ AC ← M[R1], R1 ← R1+1

74KSIT

Data Manipulation Instructions

 Arithmetic

 Logical & Bit Manipulation

 Shift

Name Mnemonic

Increment INC

Decrement DEC

Add ADD

Subtract SUB

Multiply MUL

Divide DIV

Add with carry ADDC

Subtract with borrow SUBB

Negate NEG

Name Mnemonic

Clear CLR

Complement COM

AND AND

OR OR

Exclusive-OR XOR

Clear carry CLRC

Set carry SETC

Complement carry COMC

Enable interrupt EI

Disable interrupt DI

Name Mnemonic

Logical shift right SHR

Logical shift left SHL

Arithmetic shift right SHRA

Arithmetic shift left SHLA

Rotate right ROR

Rotate left ROL

Rotate right through carry RORC

Rotate left through carry ROLC

75KSIT

Program Control Instructions

Name Mnemonic

Branch BR

Jump JMP

Skip SKP

Call CALL

Return RET

Compare

(Subtract)
CMP

Test (AND) TST

Subtract A – B but
don’t store the result

1 0 1 1 0 0 0 1

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0

Mask

76KSIT

Conditional Branch

Instructions

Mnemonic Branch Condition Tested Condition

BZ Branch if zero Z = 1

BNZ Branch if not zero Z = 0

BC Branch if carry C = 1

BNC Branch if no carry C = 0

BP Branch if plus S = 0

BM Branch if minus S = 1

BV Branch if overflow V = 1

BNV Branch if no overflow V = 0

77KSIT

KSIT 78

Assembler Directives

 It allows the programmer to specify other

information needed to translate the source

program

 SUM EQU 200

 It will not appear in the object code

 It simply informs assembler that the Name

SUM should be replaced by the value 200

Basic

Input/Output

Operations

79KSIT

I/O

 The data on which the instructions operate

are not necessarily already stored in memory.

 Data need to be transferred between

processor and outside world (disk, keyboard,

etc.)

 I/O operations are essential, the way they are

performed can have a significant effect on the

performance of the computer.

80KSIT

I/O

 Three methods

1. Program controlled IO

2. Interrupt IO

3. Direct Memory Access DMA

81KSIT

Program-Controlled I/O

Example – keyboard Interfacing

 Read in character input from a keyboard and
produce character output on a display screen.

 Rate of data transfer (keyboard, display, processor)

 Difference in speed between processor and I/O device
creates the need for mechanisms to synchronize the
transfer of data.

 A solution: on output, the processor sends the first
character and then waits for a signal from the display
that the character has been received. It then sends the
second character. Input is sent from the keyboard in a
similar way.

82KSIT

Program-Controlled I/O

Example

- Registers

- Flags

- Device interface

83KSIT

DATAIN DATAOUT

SIN SOUT

Keyboard Display

Bus

Figure 2.19 Bus connection for processor, keyboard, and display.

Processor

Program-Controlled I/O

Example

 Machine instructions that can check the state

of the status flags and transfer data:
READWAIT Branch to READWAIT if SIN = 0

Input from DATAIN to R1

WRITEWAIT Branch to WRITEWAIT if SOUT = 0

Output from R1 to DATAOUT

84KSIT

Memory-Mapped I/O
 Memory-Mapped I/O – some memory

address values are used to refer to peripheral

device buffer registers. No special

instructions are needed. Also use device

status registers.

READWAIT Testbit #3, INSTATUS

Branch=0 READWAIT

MoveByte DATAIN, R1

WRITEWAIT Testbit #3, OUTSTATUS

Branch=0 WRITEWAIT

MoveByte R1, DATAOUT
85KSIT

Program-Controlled I/O

Example

 Assumption – the initial state of SIN is 0 and the

initial state of SOUT is 1.

 Any drawback of this mechanism in terms of

efficiency?

 Two wait loopsprocessor execution time is wasted

 Alternate solution?

 Interrupt

86KSIT

Stacks

87KSIT

Stacks

 Data Structure – list of data elements

 Access Restriction - Elements can be added or

removed at one end of the list only

LIFO Stack

88KSIT

Stack Organization

SP

Stack Bottom

Current
Top of Stack

TOS LIFO

Last In First Out
0

1

2

3

4

7

8

9

10

5

6

Stack

0 0 5 5

0 0 0 8

0 0 2 5

0 0 1 5

0 1 2 3

FULL EMPTY

89KSIT

Stack Organization

SP

Stack Bottom

Current
Top of Stack

TOS PUSH

SP ← SP – 1

M[SP] ← DR

If (SP = 0) then (FULL ← 1)

EMPTY ← 0

0

1

2

3

4

7

8

9

10

5

6

Stack

0 0 5 5

0 0 0 8

0 0 2 5

0 0 1 5

0 1 2 3

FULL EMPTY

1 6 9 0

1 6 9 0Current
Top of Stack

TOS

90KSIT

Stack Organization

SP

Stack Bottom

Current
Top of Stack

TOS POP

DR ← M[SP]

SP ← SP + 1

If (SP = 11) then (EMPTY ← 1)

FULL ← 0

0

1

2

3

4

7

8

9

10

5

6

Stack

0 0 5 5

0 0 0 8

0 0 2 5

0 0 1 5

0 1 2 3

FULL EMPTY

1 6 9 01 6 9 0

Current
Top of Stack

TOS

91KSIT

0

1

2

102

202

201

200

100

101

Stack Organization

 Memory Stack

 PUSH

SP ← SP – 1

M[SP] ← DR

 POP

DR ← M[SP]

SP ← SP + 1

PC

AR

SP

92KSIT

Additional

Instructions

93KSIT

Logical Shifts

 Logical shift – shifting left (LShiftL) and shifting right
(LShiftR)

CR00

before:

after:

0

1

0 0 01 1 1 . . . 11

0 0 1 1 1 000

(b) Logical shift right LShiftR #2,R0

(a) Logical shift left LShiftL #2,R0

C R0 0

before:

after:

0

1

0 0 01 1 1 . . . 11

1 10 . . . 00101

. . .

94KSIT

Arithmetic Shifts

C

before:

after:

0

1

1 1 00 0 1 . . . 01

1 1 0 0 1 011

(c) Arithmetic shift right AShiftR #2,R0

R0

. . .

95KSIT

Rotate

96KSIT

Rotate

97KSIT

Encoding of

Machine

Instructions

98KSIT

Encoding of Machine

Instructions

 Assembly language program needs to be converted into machine
instructions. (ADD = 0100 in ARM instruction set)

 In the previous section, an assumption was made that all
instructions are one word in length.

 OP code: the type of operation to be performed and the type of
operands used may be specified using an encoded binary pattern

 Suppose 32-bit word length, 8-bit OP code (how many instructions
can we have?), 16 registers in total (how many bits?), 3-bit
addressing mode indicator.

 Add R1, R2

 Move 24(R0), R5

 LshiftR #2, R0

 Move #$3A, R1

 Branch>0 LOOP

OP code Source Dest Other info

8 7 7 10

(a) One-word instruction

99KSIT

Encoding of Machine

Instructions

 What happens if we want to specify a memory

operand using the Absolute addressing mode?

 Move R2, LOC

 14-bit for LOC – insufficient

 Solution – use two words

(b) Two-word instruction

Memory address/Immediate operand

OP code Source Dest Other info

100KSIT

Encoding of Machine

Instructions

 Then what if an instruction in which two operands

can be specified using the Absolute addressing

mode?

 Move LOC1, LOC2

 Solution – use two additional words

 This approach results in instructions of variable

length. Complex instructions can be implemented,

closely resembling operations in high-level

programming languages – Complex Instruction Set

Computer (CISC)

101KSIT

Encoding of Machine

Instructions

 If we insist that all instructions must fit into a single

32-bit word, it is not possible to provide a 32-bit

address or a 32-bit immediate operand within the

instruction.

 It is still possible to define a highly functional

instruction set, which makes extensive use of the

processor registers.

 Add R1, R2 ----- yes

 Add LOC, R2 ----- no

 Add (R3), R2 ----- yes

102KSIT

Subroutines

 It is a subtask

 CALL instruction

 Store the contents of the PC in the link register

 Branch to the target address specified by the

instruction

 RETURN instruction

 Branch to the address contained in the link register

 The way in which a computer makes it possible to

call and return from subroutine – subroutine linkage

103KSIT

Subroutines

PC New PC Value

Link

104KSIT

Memory

Location

Calling

Program

Memory

Location

Subroutine

… …

200 CALL SUB 1000 First instruction

204 Next instruction …

208 … Return

204

204

1000

Stack Frame

 Location constitute a private work space for the

subroutine

 Created at the time the subroutine is entered and

freed up when the subroutine returns

 Frame Pointer – to access the local variables of

subroutine

105KSIT

KSIT 106

Model Questions
1. What is performance measurement? explain the overall SPEC

rating for the computer in a program suite

2. Mention four types of operations to be performed by instructions in

a computer. Explain with basic types of instruction formats to carry

out C = [A]+[B].

3. Define an addressing mode. Explain the following addressing

modes with example: immediate, indirect, index, relative and auto

increment

4. What is a stack frame? Explain a commonly used layout for

information in a subroutine stack frame

5. Explain shift and rotate operations with example

6. Draw the connection between processor and memory and mention

the functions of each component in the connection.

7. Write the difference between RISC and CISC processors.

8. A program contain 1000 instructions. Out of that 25% instructions

require 4 clock cycles, 40% instructions require 5 cock cycles and

remaining requires 3 clock cycles for execution. Find the total time

required to execute the program running in a 1 GHz machine.

KSIT 107

Model Questions
9. Explain different rotate instructions.

10. Write ALP program to copy N numbers from array A to array B

using indirect addresses.

11. Explain with necessary block diagram the basic functional unit of a

computer.

12. Big Endian and ittle Endian assignments, explain with necessary

figure. Represent the number 64243848H in 32 bits big endian and

little endian memory.

13. List the name, assembler syntax and addressing functions for the

different addressing modes.

14. Draw the arrangement of a single bus structure and brief about

memory mapped IO.

15. Explain I) Interrupt enabling, II) Interrupt disabling, III) Edge

triggering with respect to interrupts.

16. Explain how to encode the instructions into 32 bit words.

KSIT 108

Model Questions
17. With a neat diagram explain the different processor registers.

18. What are the factors that affect the performance? Explain any four.

19. With a neat block diagram, describe the IO operations.

20. Discuss briefly encoding of machine instructions.

21. Derive the basic performance equation. Discuss the measures to

improve the performance.

22. What is subroutine linkage? Explain with an example subroutine

linkage using linkage register.

23. Registers R1 and R2 of a computer contain the decimal values

1200 and 4600. what is EA of the memory opened in each of the

following instructions?

I) Load 20(R1),R5 II) Move #3000,R5

III) Store R5, 30(R1,R2) IV) Add -(R2) R5 V) Subtract (R1)+ , R5

Module 2.

INPUT/OUTPUT ORGANIZATION

1 KSIT

Outline

 Accessing I/O Devices

 Interrupts

 Direct Memory Access

 Buses Interface Circuits

 Standard I/O Interfaces

KSIT2

Learning Objectives
1. Expose different ways of communicating with I/O devices and

standard I/O interfaces.

2. To analyze interrupts and handling multiple device requests ,

enabling and disabling interrupts.

3. To analyze the functionality of DMA architecture.

4. To analyze the various connecting buses and interface circuits.

KSIT3

Accessing I/O Devices

4 KSIT

Accessing I/O devices

Bus

I/O device 1 I/O device n

Processor Memory

•Multiple I/O devices may be connected to the processor and the memory via a bus.
•Bus consists of three sets of lines to carry address, data and control signals.
•Each I/O device is assigned an unique address.
•To access an I/O device, the processor places the address on the address lines.
•The device recognizes the address, and responds to the control signals.

5 KSIT

Accessing I/O devices (contd..)

6

 I/O devices and the memory may share the same address space:
 Memory-mapped I/O.

 Any machine instruction that can access memory can be used to transfer data to or

from an I/O device.

 Simpler software.

 I/O devices and the memory may have different address spaces:

 Special instructions to transfer data to and from I/O devices.

 I/O devices may have to deal with fewer address lines.

 I/O address lines need not be physically separate from memory address lines.

 In fact, address lines may be shared between I/O devices and memory, with a

control signal to indicate whether it is a memory address or an I/O address.

KSIT

Accessing I/O devices (contd..)

I/O
interfacedecoder

Address Data and
status registers

Control
circuits

Input device

Bus

Address lines

Data lines

Control lines

•I/O device is connected to the bus using an I/O interface circuit which has:
- Address decoder, control circuit, and data and status registers.

•Address decoder decodes the address placed on the address lines thus enabling the
device to recognize its address.
•Data register holds the data being transferred to or from the processor.
•Status register holds information necessary for the operation of the I/O device.
•Data and status registers are connected to the data lines, and have unique addresses.
•I/O interface circuit coordinates I/O transfers.

7 KSIT

Accessing I/O devices (contd..)

 The rate of transfer to and from I/O devices is slower than

the speed of the processor. This creates the need for

mechanisms to synchronize data transfers between them.

 Program-controlled I/O:
 Processor repeatedly monitors a status flag to achieve the necessary synchronization.

 Processor polls the I/O device.

 Two other mechanisms used for synchronizing data transfers

between the processor and memory:
 Interrupts.

 Direct Memory Access.

8 KSIT

Interrupts

9 KSIT

Interrupts

 In program-controlled I/O, when the processor continuously

monitors the status of the device, it does not perform any

useful tasks.

 An alternate approach would be for the I/O device to alert

the processor when it becomes ready.
 Do so by sending a hardware signal called an interrupt to the processor.

 At least one of the bus control lines, called an interrupt-request line is dedicated for

this purpose.

 Processor can perform other useful tasks while it is waiting

for the device to be ready.

 The routine executed in response to an interrupt request is

called Interrupt Service Routine

10 KSIT

Interrupts (contd..)
Interrupt Service routineProgram 1

here

Interrupt
occurs

M

i

2

1

i 1+

•Processor is executing the instruction located at address i when an interrupt occurs.
•Routine executed in response to an interrupt request is called the interrupt-service routine.
•When an interrupt occurs, control must be transferred to the interrupt service routine.
•But before transferring control, the current contents of the PC (i+1), must be saved in a known
location.
•This will enable the return-from-interrupt instruction to resume execution at i+1.
•Return address, or the contents of the PC are usually stored on the processor stack.

11 KSIT

Interrupts (contd..)

 Treatment of an interrupt-service routine is very similar to

that of a subroutine.

 However there are significant differences:
 A subroutine performs a task that is required by the calling program.

 Interrupt-service routine may not have anything in common with the program it

interrupts.

 Interrupt-service routine and the program that it interrupts may belong to different

users.

 As a result, before branching to the interrupt-service routine, not only the PC, but

other information such as condition code flags, and processor registers used by both

the interrupted program and the interrupt service routine must be stored.

 This will enable the interrupted program to resume execution upon return from

interrupt service routine.

12 KSIT

Interrupts (contd..)
 Saving and restoring information can be done automatically by the

processor or explicitly by program instructions.

 Saving and restoring registers involves memory transfers:
 Increases the total execution time.

 Increases the delay between the time an interrupt request is received, and
the start of execution of the interrupt-service routine. This delay is called
interrupt latency.

 In order to reduce the interrupt latency, most processors save only
the minimal amount of information:
 This minimal amount of information includes Program Counter and processor

status registers.

 Any additional information that must be saved, must be saved
explicitly by the program instructions at the beginning of the
interrupt service routine.

13 KSIT

Interrupts (contd..)

 When a processor receives an interrupt-request, it must

branch to the interrupt service routine.

 It must also inform the device that it has recognized the

interrupt request.

 This can be accomplished in two ways:
 Some processors have an explicit interrupt-acknowledge control signal for

this purpose.

 In other cases, the data transfer that takes place between the device and the

processor can be used to inform the device.

14 KSIT

Enabling & Disabling Interrupts

 Interrupt-requests interrupt the execution of a program, and

may alter the intended sequence of events:
 Sometimes such alterations may be undesirable, and must not be allowed.

 For example, the processor may not want to be interrupted by the same device

while executing its interrupt-service routine.

 Processors generally provide the ability to enable and disable

such interruptions as desired.

 One simple way is to provide machine instructions such as

Interrupt-enable and Interrupt-disable for this purpose.

 To avoid interruption by the same device during the execution

of an interrupt service routine:

 First instruction of an interrupt service routine can be Interrupt-disable.

 Last instruction of an interrupt service routine can be Interrupt-enable.

15 KSIT

Edge Triggered Interrupts

 Interrupt handling circuit responds only to the leading edge

of the signal

 Processor receives only one request regardless of how

long the line is activated

 No need to explicitly disable interrupt requests

16 KSIT

Interrupts Handling

1. The device raises an interrupt request

2. The processor interrupts the program currently being

executed

3. Interrupts are disabled

4. The device is informed that its request has been

recognized

5. The action requested by the interrupt is performed by

the ISR

6. Interrupts are enabled and execution of the

interrupted program is resumed

17 KSIT

Handling Multiple Devices

 Multiple I/O devices may be connected to the processor and
the memory via a bus. Some or all of these devices may be
capable of generating interrupt requests.
 Each device operates independently, and hence no definite order can be

imposed on how the devices generate interrupt requests?

 How does the processor know which device has generated an
interrupt? (Status register)

 How does the processor know which interrupt service
routine needs to be executed? (Polling)

 When the processor is executing an interrupt service routine
for one device, can other device interrupt the processor?

 If two interrupt-requests are received simultaneously, then
how to break the tie?

18 KSIT

Handling Multiple Devices

 Consider a simple arrangement where all devices send their

interrupt-requests over a single control line in the bus.

 When the processor receives an interrupt request over this control

line, how does it know which device is requesting an interrupt?

 This information is available in the status register of the device

requesting an interrupt:

 The status register of each device has an IRQ bit which it sets to 1 when it requests

an interrupt.

 Interrupt service routine can poll the I/O devices connected to

the bus. The first device with IRQ equal to 1 is the one that is

serviced.

 Polling mechanism is easy, but time consuming to query the status

bits of all the I/O devices connected to the bus.

19 KSIT

Vectored Interrupts

 The device requesting an interrupt may identify itself directly

to the processor.
 Device can do so by sending a special code (4 to 8 bits) the processor over

the bus.

 Code supplied by the device may represent a part of the starting address of

the interrupt-service routine.

 The remainder of the starting address is obtained by the processor based on

other information such as the range of memory addresses where interrupt

service routines are located.

 Usually the location pointed to by the interrupting device is

used to store the starting address of the interrupt-service

routine.

 Processor reads this address (interrupt vector) and loads it into

the PC

20 KSIT

Interrupt Nesting

 Previously, before the processor started executing the

interrupt service routine for a device, it disabled the

interrupts from the device.

 In general, same arrangement is used when multiple devices

can send interrupt requests to the processor.
 During the execution of an interrupt service routine of device, the

processor does not accept interrupt requests from any other device.

 Since the interrupt service routines are usually short, the delay that this

causes is generally acceptable.

 However, for certain devices this delay may not be

acceptable.

 Which devices can be allowed to interrupt a processor when it is executing

an interrupt service routine of another device?

21 KSIT

Interrupt Nesting

 I/O devices are organized in a priority structure:
 An interrupt request from a high-priority device is accepted while the

processor is executing the interrupt service routine of a low priority device.

 A priority level is assigned to a processor that can be changed

under program control.
 Priority level of a processor is the priority of the program that is currently

being executed.

 When the processor starts executing the interrupt service routine of a

device, its priority is raised to that of the device.

 If the device sending an interrupt request has a higher priority than the

processor, the processor accepts the interrupt request.

22 KSIT

Interrupt Nesting
 Processor’s priority is encoded in a few bits of the processor

status register.
 Priority can be changed by instructions that write into the processor status

register.

 Usually, these are privileged instructions, or instructions that can be

executed only in the supervisor mode.

 Privileged instructions cannot be executed in the user mode.

 Prevents a user program from accidentally or intentionally changing the

priority of the processor.

 If there is an attempt to execute a privileged instruction in

the user mode, it causes a special type of interrupt called as

privilege exception.

23 KSIT

Interrupt Nesting

Priority arbitration

Device 1 Device 2 Devicep

P
ro

c
e

s
s
o

r

INTA1

INTR1 I NTRp

INTA p

•Each device has a separate interrupt-request and interrupt-acknowledge line.
•Each interrupt-request line is assigned a different priority level.
•Interrupt requests received over these lines are sent to a priority arbitration circuit
in the processor.
•If the interrupt request has a higher priority level than the priority of the processor,
then the request is accepted.

24 KSIT

Interrupts – Simultaneous Requests

 Which interrupt request does the processor accept if it receives

interrupt requests from two or more devices simultaneously?.

 If the I/O devices are organized in a priority structure, the

processor accepts the interrupt request from a device with

higher priority.
 Each device has its own interrupt request and interrupt acknowledge line.

 A different priority level is assigned to the interrupt request line of each device.

 However, if the devices share an interrupt request line, then how

does the processor decide which interrupt request to accept?

25 KSIT

Interrupts – Simultaneous Requests

P
ro

c
e

s
s
o

r

Device 2

I NTR

INTA
Device nDevice 1

Polling scheme:
•If the processor uses a polling mechanism to poll the status registers of I/O devices
to determine which device is requesting an interrupt.
•In this case the priority is determined by the order in which the devices are polled.
•The first device with status bit set to 1 is the device whose interrupt request is
accepted.

Daisy chain scheme:

•Devices are connected to form a daisy chain.
•Devices share the interrupt-request line, and interrupt-acknowledge line is connected
to form a daisy chain.
•When devices raise an interrupt request, the interrupt-request line is activated.
•The processor in response activates interrupt-acknowledge.
•Received by device 1, if device 1 does not need service, it passes the signal to device 2.
•Device that is electrically closest to the processor has the highest priority.

26 KSIT

Interrupts – Simultaneous Requests

•When I/O devices were organized into a priority structure, each device had its own
interrupt-request and interrupt-acknowledge line.
•When I/O devices were organized in a daisy chain fashion, the devices shared an
interrupt-request line, and the interrupt-acknowledge propagated through the devices.
•A combination of priority structure and daisy chain scheme can also used.

Device Device

circuit
Priority arbitration

P
ro

c
e

s
s
o

r

Device Device

I NTR1

INTR p

INTA1

INTA p

•Devices are organized into groups.
•Each group is assigned a different priority level.
•All the devices within a single group share an interrupt-request line, and are
connected to form a daisy chain.

27 KSIT

Controlling Device Requests

 Only those devices that are being used in a program should be

allowed to generate interrupt requests.

 To control which devices are allowed to generate interrupt

requests, the interface circuit of each I/O device has an

interrupt-enable bit.
 If the interrupt-enable bit in the device interface is set to 1, then the device is

allowed to generate an interrupt-request.

 Interrupt-enable bit in the device’s interface circuit determines

whether the device is allowed to generate an interrupt request.

 Interrupt-enable bit in the processor status register or the

priority structure of the interrupts determines whether a given

interrupt will be accepted.

28 KSIT

Exceptions

 Interrupts caused by interrupt-requests sent by I/O devices.

 Interrupts could be used in many other situations where the

execution of one program needs to be suspended and

execution of another program needs to be started.

 In general, the term exception is used to refer to any event

that causes an interruption.

 Interrupt-requests from I/O devices is one type of an exception.

 Other types of exceptions are:
 Recovery from errors

 Debugging

 Privilege Exception

29 KSIT

Exceptions - Recovery from errors

 Many sources of errors in a processor. For example:
 Error in the data stored.

 Error during the execution of an instruction.

 When such errors are detected, exception processing is

initiated.

 Processor takes the same steps as in the case of I/O interrupt-request.

 It suspends the execution of the current program, and starts executing an

exception-service routine.

 Difference between handling I/O interrupt-request and

handling exceptions due to errors:
 In case of I/O interrupt-request, the processor usually completes the

execution of an instruction in progress before branching to the interrupt-

service routine.

 In case of exception processing however, the execution of an instruction in

progress usually cannot be completed.
30 KSIT

Exceptions - Debugging

 Debugger uses exceptions to provide important features:
 Trace,

 Breakpoints.

 Trace mode:

 Exception occurs after the execution of every instruction.

 Debugging program is used as the exception-service routine.

 Breakpoints:
 Exception occurs only at specific points selected by the user.

 Debugging program is used as the exception-service routine.

31 KSIT

Exceptions - Privilege Exception

 Certain instructions can be executed only when the

processor is in the supervisor mode. These are called

privileged instructions.

 If an attempt is made to execute a privileged instruction in

the user mode, a privilege exception occurs.

 Privilege exception causes:
 Processor to switch to the supervisor mode,

 Execution of an appropriate exception-servicing routine.

32 KSIT

Direct Memory Access

33 KSIT

Direct Memory Access (contd..)

 Direct Memory Access (DMA):
 A special control unit may be provided to transfer a block of data directly

between an I/O device and the main memory, without continuous

intervention by the processor.

 Control unit which performs these transfers is a part of the

I/O device’s interface circuit. This control unit is called as a

DMA controller.

 DMA controller performs functions that would be normally

carried out by the processor:
 For each word, it provides the memory address and all the control signals.

 To transfer a block of data, it increments the memory addresses and keeps

track of the number of transfers.

34 KSIT

Direct Memory Access (contd..)
 DMA controller can transfer a block of data from an external

device to the processor, without any intervention from the

processor.
 However, the operation of the DMA controller must be under the control of a

program executed by the processor. That is, the processor must initiate the DMA

transfer.

 To initiate the DMA transfer, the processor informs the DMA

controller of:
 Starting address,

 Number of words in the block.

 Direction of transfer (I/O device to the memory, or memory to the I/O device).

 Once the DMA controller completes the DMA transfer, it

informs the processor by raising an interrupt signal.

35 KSIT

Direct Memory Access

memory
Processor

System bus

Main

KeyboardDisk/DMA
controller Printer

DMA
controller

DiskDisk

•DMA controller connects a high-speed network to the computer bus.
•Disk controller, which controls two disks also has DMA capability. It provides two
DMA channels.
•It can perform two independent DMA operations, as if each disk has its own DMA
controller. The registers to store the memory address, word count and status and

control information are duplicated.

Network
Interface

36 KSIT

Direct Memory Access (contd..)

 Processor and DMA controllers have to use the bus in an

interwoven fashion to access the memory.
 DMA devices are given higher priority than the processor to access the bus.

 Among different DMA devices, high priority is given to high-speed peripherals

such as a disk or a graphics display device.

 Processor originates most memory access cycles on the bus.

 DMA controller can be said to “steal” memory access cycles from the bus. This

interweaving technique is called as “cycle stealing”.

 An alternate approach is the provide a DMA controller an

exclusive capability to initiate transfers on the bus, and hence

exclusive access to the main memory. This is known as the block

or burst mode.

37 KSIT

Bus Arbitration
 Processor and DMA controllers both need to initiate data

transfers on the bus and access main memory.

 The device that is allowed to initiate transfers on the bus at
any given time is called the bus master.

 When the current bus master relinquishes its status as the bus
master, another device can acquire this status.
 The process by which the next device to become the bus master is selected and bus

mastership is transferred to it is called bus arbitration.

 Centralized arbitration:
 A single bus arbiter performs the arbitration.

 Distributed arbitration:
 All devices participate in the selection of the next bus master.

38 KSIT

Centralized Bus Arbitration

Processor

DMA

controller

1

DMA

controller

2BG1 BG2

B R

B BSY

39 KSIT

Centralized Bus Arbitration(cont.,)
• Bus arbiter may be the processor or a separate unit connected to the bus.

• Normally, the processor is the bus master, unless it grants bus membership

to one of the DMA controllers.

• DMA controller requests the control of the bus by asserting the Bus Request

(BR) line.

• In response, the processor activates the Bus-Grant1 (BG1) line, indicating

that the controller may use the bus when it is free.

• BG1 signal is connected to all DMA controllers in a daisy chain fashion.

• BBSY signal is 0, it indicates that the bus is busy. When BBSY becomes 1,

the DMA controller which asserted BR can acquire control of the bus.

40 KSIT

Centralized arbitration (contd..)

BBSY

BG1

BG2

Bus
master

BR

Processor DMA controller 2 Processor

Time

DMA controller 2
asserts the BR signal.

Processor asserts
the BG1 signal

BG1 signal propagates
to DMA#2.

Processor relinquishes control
of the bus by setting BBSY to 1.

41 KSIT

Distributed arbitration
 All devices waiting to use the bus share the responsibility of

carrying out the arbitration process.
 Arbitration process does not depend on a central arbiter and hence distributed

arbitration has higher reliability.

 Each device is assigned a 4-bit ID number.

 All the devices are connected using 5 lines, 4 arbitration lines to

transmit the ID, and one line for the Start-Arbitration signal.

 To request the bus a device:
 Asserts the Start-Arbitration signal.

 Places its 4-bit ID number on the arbitration lines.

 The pattern that appears on the arbitration lines is the logical-OR

of all the 4-bit device IDs placed on the arbitration lines.

42 KSIT

Distributed arbitration

43 KSIT

Distributed arbitration(Contd.,)

 Arbitration process:

 Each device compares the pattern that appears on the arbitration lines

to its own ID, starting with MSB.

 If it detects a difference, it transmits 0s on the arbitration lines for that

and all lower bit positions.

 The pattern that appears on the arbitration lines is the logical-OR of

all the 4-bit device IDs placed on the arbitration lines.

44 KSIT

Distributed arbitration (contd..)
•Device A has the ID 5 and wants to request the bus:

- Transmits the pattern 0101 on the arbitration lines.
•Device B has the ID 6 and wants to request the bus:

- Transmits the pattern 0110 on the arbitration lines.
•Pattern that appears on the arbitration lines is the logical OR of the patterns:

- Pattern 0111 appears on the arbitration lines.

Arbitration process:
•Each device compares the pattern that appears on the arbitration lines to its own
ID, starting with MSB.
•If it detects a difference, it transmits 0s on the arbitration lines for that and all lower
bit positions.
•Device A compares its ID 5 with a pattern 0101 to pattern 0111.
•It detects a difference at bit position 0, as a result, it transmits a pattern 0100 on the
arbitration lines.
•The pattern that appears on the arbitration lines is the logical-OR of 0100 and 0110,
which is 0110.
•This pattern is the same as the device ID of B, and hence B has won the arbitration.

45 KSIT

Buses

46 KSIT

Buses

 Processor, main memory, and I/O devices are

interconnected by means of a bus.

 Bus provides a communication path for the transfer of data.
 Bus also includes lines to support interrupts and arbitration.

 A bus protocol is the set of rules that govern the behavior of

various devices connected to the bus, as to when to place

information on the bus, when to assert control signals, etc.

47 KSIT

Buses (contd..)
 Bus lines may be grouped into three types:

 Data

 Address

 Control

 Control signals specify:
 Whether it is a read or a write operation.

 Required size of the data, when several operand sizes (byte, word, long word) are
possible.

 Timing information to indicate when the processor and I/O devices may place data or
receive data from the bus.

 Schemes for timing of data transfers over a bus can be classified
into:
 Synchronous,

 Asynchronous.

48 KSIT

Synchronous bus

Bus clock

Bus cycle

49 KSIT

Synchronous bus (contd..)

Bus cycle

Data

Bus clock

command
Address and

t0 t1 t2

Time

Master places the
device address and

command on the bus,
and indicates that

it is a Read operation.

Addressed slave places
data on the data lines Master “strobes” the data

on the data lines into its
input buffer, for a Read

operation.

•In case of a Write operation, the master places the data on the bus along with the
address and commands at time t0.
•The slave strobes the data into its input buffer at time t2.

50 KSIT

Synchronous bus (contd..)

 Once the master places the device address and command on

the bus, it takes time for this information to propagate to the

devices:
 This time depends on the physical and electrical characteristics of the bus.

 Also, all the devices have to be given enough time to decode

the address and control signals, so that the addressed slave

can place data on the bus.

 Width of the pulse t1 - t0 depends on:
 Maximum propagation delay between two devices connected to the bus.

 Time taken by all the devices to decode the address and control signals, so that the

addressed slave can respond at time t1.

51 KSIT

Synchronous bus (contd..)

 At the end of the clock cycle, at time t2, the master strobes

the data on the data lines into its input buffer if it’s a Read
operation.
 “Strobe” means to capture the values of the data and store them into a buffer.

 When data are to be loaded into a storage buffer register, the

data should be available for a period longer than the setup

time of the device.

 Width of the pulse t2 - t1 should be longer than:
 Maximum propagation time of the bus plus

 Set up time of the input buffer register of the master.

52 KSIT

Synchronous bus (contd..)

Data

Bus clock

command
Address and

t
0

t1 t
2

command
Address and

Data

Seen by
master

Seen by slave

tAM

tAS

tDS

tDM

Time

•Signals do not appear on the bus as soon as they are placed on the bus, due to the
propagation delay in the interface circuits.
•Signals reach the devices after a propagation delay which depends on the
characteristics of the bus.
•Data must remain on the bus for some time after t2 equal to the hold time of the buffer.

Address &
command

appear on the
bus.

Address &
command reach

the slave.
Data appears
on the bus.

Data reaches
the master.

53 KSIT

Synchronous bus (contd..)

 Data transfer has to be completed within one clock cycle.
 Clock period t2 - t0 must be such that the longest propagation delay on the bus and

the slowest device interface must be accommodated.

 Forces all the devices to operate at the speed of the slowest device.

 Processor just assumes that the data are available at t2 in case

of a Read operation, or are read by the device in case of a

Write operation.
 What if the device is actually failed, and never really responded?

54 KSIT

Synchronous bus (contd..)

 Most buses have control signals to represent a response from

the slave.

 Control signals serve two purposes:
 Inform the master that the slave has recognized the address, and is ready to

participate in a data transfer operation.

 Enable to adjust the duration of the data transfer operation based on the speed of the

participating slaves.

 High-frequency bus clock is used:
 Data transfer spans several clock cycles instead of just one clock cycle as in the earlier

case.

55 KSIT

Synchronous bus (contd..)

1 2 3 4

Clock

Address

Command

Data

Slave-ready

TimeAddress & command
requesting a Read

operation appear on
the bus.

Slave places the data on the bus,
and asserts Slave-ready signal.

Master strobes data
into the input buffer.

Clock changes are seen by all the devices
at the same time.

56 KSIT

Asynchronous bus

 Data transfers on the bus is controlled by a handshake

between the master and the slave.

 Common clock in the synchronous bus case is replaced by

two timing control lines:
 Master-ready,

 Slave-ready.

 Master-ready signal is asserted by the master to indicate to

the slave that it is ready to participate in a data transfer.

 Slave-ready signal is asserted by the slave in response to the

master-ready from the master, and it indicates to the master

that the slave is ready to participate in a data transfer.

57 KSIT

Asynchronous bus (contd..)

 Data transfer using the handshake protocol:
 Master places the address and command information on the bus.

 Asserts the Master-ready signal to indicate to the slaves that the address and

command information has been placed on the bus.

 All devices on the bus decode the address.

 Address slave performs the required operation, and informs the processor it has done

so by asserting the Slave-ready signal.

 Master removes all the signals from the bus, once Slave-ready is asserted.

 If the operation is a Read operation, Master also strobes the data into its input buffer.

58 KSIT

Asynchronous bus (contd..)

Slave-ready

Data

Master-ready

and command
Address

Bus cycle

t1 t2 t3 t4 t5t0

Time

t0 - Master places the address and command information on the bus.
t1 - Master asserts the Master-ready signal. Master-ready signal is asserted at t1 instead of t0

t2 - Addressed slave places the data on the bus and asserts the Slave-ready signal.
t3 - Slave-ready signal arrives at the master.
t4 - Master removes the address and command information.
t5 - Slave receives the transition of the Master-ready signal from 1 to 0. It removes the data
and the Slave-ready signal from the bus.59 KSIT

Asynchronous vs. Synchronous bus

 Advantages of asynchronous bus:
 Eliminates the need for synchronization between the sender and the receiver.

 Can accommodate varying delays automatically, using the Slave-ready signal.

 Disadvantages of asynchronous bus:
 Data transfer rate with full handshake is limited by two-round trip delays.

 Data transfers using a synchronous bus involves only one round trip delay, and hence

a synchronous bus can achieve faster rates.

60 KSIT

Interface Circuits

61 KSIT

Interface circuits
 I/O interface consists of the circuitry required to connect an I/O

device to a computer bus.

 Side of the interface which connects to the computer has bus signals
for:
 Address,

 Data

 Control

 Side of the interface which connects to the I/O device has:
 Datapath and associated controls to transfer data between the interface and the I/O device.

 This side is called as a “port”.

 Ports can be classified into two:
 Parallel port,

 Serial port.

62 KSIT

Interface circuits (contd..)

 Parallel port transfers data in the form of a number of bits,

normally 8 or 16, to or from the device.

 Serial port transfers and receives data one bit at a time.

 Processor communicates with the bus in the same way,

whether it is a parallel port or a serial port.
 Conversion from the parallel to serial and vice versa takes place inside the interface

circuit.

63 KSIT

Parallel port

Valid

Data

Keyboard

switches

Encoder

and

debouncing

circuit

SIN

Input

interface

Data

Address

R /

Master-ready

Slave-ready

W

DATAIN

Processor

•Keyboard is connected to a processor using a parallel port.
•Processor is 32-bits and uses memory-mapped I/O and the asynchronous bus
protocol.
•On the processor side of the interface we have:

- Data lines.
- Address lines
- Control or R/W line.
- Master-ready signal and
- Slave-ready signal.

64 KSIT

Parallel port (contd..)

•On the keyboard side of the interface:
- Encoder circuit which generates a code for the key pressed.
- Debouncing circuit which eliminates the effect of a key bounce (a single key

stroke may appear as multiple events to a processor).
- Data lines contain the code for the key.
- Valid line changes from 0 to 1 when the key is pressed. This causes the code to
be loaded into DATAIN and SIN to be set to 1.

Valid

Data

Keyboard

switches

Encoder

and

debouncing

circuit

SIN

Input

interface

Data

Address

R /

Master-ready

Slave-ready

W

DATAIN

Processor

65 KSIT

•Output lines of DATAIN are
are connected to the data lines of
the bus by means of 3 state drivers
•Drivers are turned on when the
processor issues a read signal and
the address selects this register.

•SIN signal is generated using a status flag circuit.
•It is connected to line D0 of the processor bus
using a three-state driver.
•Address decoder selects the input interface based
on bits A1 through A31.
•Bit A0 determines whether the status or data
register is to be read, when Master-ready is
active.
•In response, the processor activates the Slave-ready
signal, when either the Read-status or Read-data
is equal to 1, which depends on line A0.

Input Interface Circuit

66 KSIT

Parallel port (contd..)

CPU SOUT

Output

interface

Data

Address

R /

Master-ready

Slave-ready

Valid
W

DataDATAOUT

PrinterProcessor

Idle

•Printer is connected to a processor using a parallel port.
•Processor is 32 bits, uses memory-mapped I/O and asynchronous bus protocol.
•On the processor side:

- Data lines.
- Address lines
- Control or R/W line.
- Master-ready signal and
- Slave-ready signal.

67 KSIT

Parallel port (contd..)

CPU SOUT

Output

interface

Data

Address

R /

Master-ready

Slave-ready

Valid
W

DataDATAOUT

PrinterProcessor

Idle

•On the printer side:
- Idle signal line which the printer asserts when it is ready to accept a character.
This causes the SOUT flag to be set to 1.

- Processor places a new character into a DATAOUT register.
- Valid signal, asserted by the interface circuit when it places a new character
on the data lines.

68 KSIT

•Data lines of the processor bus
are connected to the DATAOUT
register of the interface.
•The status flag SOUT is connected
to the data line D1 using a three-state
driver.
•The three-state driver is turned on,
when the control Read-status line is
1.
•Address decoder selects the output
interface using address lines A1
through A31.
•Address line A0 determines whether
the data is to be loaded into the
DATAOUT register or status flag is
to be read.
•If the Load-data line is 1, then the
Valid line is set to 1.
•If the Idle line is 1, then the status
flag SOUT is set to 1.

Output Interface Circuit

69 KSIT

DATAIN

1

SIN

Ready

A31

A1

A0

Address
decoder

D7

D0

R/ W

A2

DATAOUT

Input
status

Bus
PA7

PA0

CA

PB7

PB0

CB1

CB2

SOUT

D1

RS1

RS0

My-address

Handshake
control

Master-

Ready
Slave-

•Combined I/O interface circuit.
•Address bits A2 through A31, that is
30 bits are used to select the overall
interface.
•Address bits A1 through A0, that is, 2
bits select one of the three registers,
namely, DATAIN, DATAOUT, and
the status register.
•Status register contains the flags SIN and
SOUT in bits 0 and 1.
•Data lines PA0 through PA7 connect the
input device to the DATAIN register.
•DATAOUT register connects the data
lines on the processor bus to lines PB0
through PB7 which connect to the output
device.
•Separate input and output data lines for
connection to an I/O device.

70 KSIT

DATAIN

DATAOUT

Data

Direction
Register

Register

select

Status

and

control

Accept

Ready

R/W

RS0

RS1

RS2

My-address

INTR

C1

C2

P7

P0

D7

D0

•Data lines to I/O device are bidirectional.
•Data lines P7 through P0 can be used for
both input, and output.
•In fact, some lines can be used for input &
some for output depending on the pattern
in the Data Direction Register (DDR).
•Processor places an 8-bit pattern into a DDR.
•If a given bit position in the DDR is 1, the
corresponding data line acts as an output
line, otherwise it acts as an input line.
•C1 and C2 control the interaction between
the interface circuit and the I/O devices.
•Ready and Accept lines are the handshake
control lines on the processor bus side, and
are connected to Master-ready & Slave-ready.
•Input signal My-address is connected to the
output of an address decoder.
•Three register select lines that allow up to 8
registers to be selected.

71 KSIT

Serial port

 Serial port is used to connect the processor to I/O devices

that require transmission of data one bit at a time.

 Serial port communicates in a bit-serial fashion on the device

side and bit parallel fashion on the bus side.
 Transformation between the parallel and serial formats is achieved with shift registers

that have parallel access capability.

72 KSIT

I NTR

Chip and
register
select

Status
and

control

Accept

Ready

R/W

RS0

RS1

My-address

Receiving clock

T
ransmission clock

D7

D0

Output shift register

DATAOUT

DATAIN

Input shift register

Serial

Serial
input

•Input shift register accepts input one bit
at a time from the I/O device.
•Once all the 8 bits are received, the
contents of the input shift register are
loaded in parallel into DATAIN register.
•Output data in the DATAOUT register
are loaded into the output shift register.
•Bits are shifted out of the output shift
register and sent out to the I/O device one
bit at a time.
•As soon as data from the input shift reg.
are loaded into DATAIN, it can start
accepting another 8 bits of data.
•Input shift register and DATAIN registers
are both used at input so that the input
shift register can start receiving another
set of 8 bits from the input device after
loading the contents to DATAIN, before
the processor reads the contents of
DATAIN. This is called as double-
buffering.

73 KSIT

Serial port (contd..)

 Serial interfaces require fewer wires, and hence serial

transmission is convenient for connecting devices that are

physically distant from the computer.

 Speed of transmission of the data over a serial interface is

known as the “bit rate”.
 Bit rate depends on the nature of the devices connected.

 In order to accommodate devices with a range of speeds, a

serial interface must be able to use a range of clock speeds.

 Several standard serial interfaces have been developed:
 Universal Asynchronous Receiver Transmitter (UART) for low-speed serial devices.

 RS-232-C for connection to communication links.

74 KSIT

Standard I/O interfaces
 I/O device is connected to a computer using an interface circuit.

 Do we have to design a different interface for every combination

of an I/O device and a computer?

 A practical approach is to develop standard interfaces and

protocols.

 A personal computer has:
 A motherboard which houses the processor chip, main memory and some I/O

interfaces.

 A few connectors into which additional interfaces can be plugged.

 Processor bus is defined by the signals on the processor chip.
 Devices which require high-speed connection to the processor are connected directly to

this bus.

75 KSIT

Standard I/O interfaces (contd..)

 Because of electrical reasons only a few devices can be

connected directly to the processor bus.

 Motherboard usually provides another bus that can support

more devices.
 Processor bus and the other bus (called as expansion bus) are interconnected by a

circuit called “bridge”.

 Devices connected to the expansion bus experience a small delay in data transfers.

 Design of a processor bus is closely tied to the architecture of

the processor.
 No uniform standard can be defined.

 Expansion bus however can have uniform standard defined.

76 KSIT

Standard I/O interfaces (contd..)

77

 A number of standards have been developed for the

expansion bus.
 Some have evolved by default.

 For example, IBM’s Industry Standard Architecture.

 Three widely used bus standards:
 PCI (Peripheral Component Interconnect)

 SCSI (Small Computer System Interface)

 USB (Universal Serial Bus)

KSIT

Standard I/O interfaces (contd..)

Main
memory

Processor

Bridge

Processor bus

PCI bus

memory

Additional

controller
CD-ROM

controller
Disk

Disk 1 Disk 2 ROM
CD-

SCSI
controller

USB
controller

Video

Keyboard Game

disk
IDE

SCSI bus

ISAEthernet
Interface

Expansion bus on
the motherboard

Bridge circuit translates
signals and protocols from
processor bus to PCI bus.

Interface

78 KSIT

PCI Bus
 Peripheral Component Interconnect

 Introduced in 1992

 Low-cost bus

 Processor independent

 Plug-and-play capability

 In today’s computers, most memory transfers involve a burst of data rather than just
one word. The PCI is designed primarily to support this mode of operation.

 The bus supports three independent address spaces: memory, I/O, and configuration.

 we assumed that the master maintains the address information on the bus until data
transfer is completed. But, the address is needed only long enough for the slave to be
selected. Thus, the address is needed on the bus for one clock cycle only, freeing the
address lines to be used for sending data in subsequent clock cycles. The result is a
significant cost reduction.

 A master is called an initiator in PCI terminology. The addressed device that responds to
read and write commands is called a target.

79 KSIT

Data transfer signals on the PCI bus.

Name Function

CLK A 33-MHz or 66-MHz clock.

FRAME# Sent by the initiator to indicate the duration of a

transaction.

AD 32 address/data lines, which may be optionally

increased to 64.

C/BE# 4 command/byte-enable lines (8 for a 64-bit bus).

IRD Y#, TRD Y# Initiator-ready and Target-ready signals.

DEVSEL# A response from the device indicating that it has

recognized its address and is ready for a data

transfer transaction.

IDSEL# Initialization Device Select.

80 KSIT

1 2 3 4 5 6 7

CLK

Frame#

AD

C/BE#

IRDY#

TRDY#

DEVSEL#

Adress #1 #4

Cmnd Byte enable

A read operation on the PCI bus

#2 #3

81 KSIT

Device Configuration
 When an I/O device is connected to a computer, several actions are needed

to configure both the device and the software that communicates with it.

 PCI incorporates in each I/O device interface a small configuration ROM
memory that stores information about that device.

 The configuration ROMs of all devices are accessible in the configuration
address space. The PCI initialization software reads these ROMs and
determines whether the device is a printer, a keyboard, an Ethernet
interface, or a disk controller. It can further learn bout various device
options and characteristics.

 Devices are assigned addresses during the initialization process.

 This means that during the bus configuration operation, devices cannot be
accessed based on their address, as they have not yet been assigned one.

 Hence, the configuration address space uses a different mechanism. Each
device has an input signal called Initialization Device Select, IDSEL#

 Electrical characteristics:

 PCI bus has been defined for operation with either a 5 or 3.3 V power supply82 KSIT

SCSI Bus
 The acronym SCSI stands for Small Computer System Interface.

 It refers to a standard bus defined by the American National
Standards Institute (ANSI) under the designation X3.131 .

 In the original specifications of the standard, devices such as disks
are connected to a computer via a 50-wire cable, which can be
up to 25 meters in length and can transfer data at rates up to 5
megabytes/s.

 The SCSI bus standard has undergone many revisions, and its data
transfer capability has increased very rapidly, almost doubling
every two years.

 SCSI-2 and SCSI-3 have been defined, and each has several
options.

 Because of various options SCSI connector may have 50, 68 or 80
pins.

83 KSIT

SCSI Bus (Contd.,)

 Devices connected to the SCSI bus are not part of the address space of the processor

 The SCSI bus is connected to the processor bus through a SCSI controller. This controller uses DMA
to transfer data packets from the main memory to the device, or vice versa.

 A packet may contain a block of data, commands from the processor to the device, or status
information about the device.

 A controller connected to a SCSI bus is one of two types – an initiator or a target.

 An initiator has the ability to select a particular target and to send commands specifying the
operations to be performed. The disk controller operates as a target. It carries out the commands it
receives from the initiator.

 The initiator establishes a logical connection with the intended target.

 Once this connection has been established, it can be suspended and restored as needed to transfer
commands and bursts of data.

 While a particular connection is suspended, other device can use the bus to transfer information.

 This ability to overlap data transfer requests is one of the key features of the SCSI bus that leads to
its high performance.

84 KSIT

SCSI Bus (Contd.,)

 Data transfers on the SCSI bus are always controlled by the

target controller.

 To send a command to a target, an initiator requests control

of the bus and, after winning arbitration, selects the

controller it wants to communicate with and hands control of

the bus over to it.

 Then the controller starts a data transfer operation to receive

a command from the initiator.

85 KSIT

SCSI Bus (Contd.,)

 Assume that processor needs to read block of data from a disk drive and that data
are stored in disk sectors that are not contiguous.

 The processor sends a command to the SCSI controller, which causes the
following sequence of events to take place:

1. The SCSI controller, acting as an initiator, contends for control of the bus.

2. When the initiator wins the arbitration process, it selects the target controller and
hands over control of the bus to it.

3. The target starts an output operation (from initiator to target); in response to this,
the initiator sends a command specifying the required read operation.

4. The target, realizing that it first needs to perform a disk seek operation, sends a
message to the initiator indicating that it will temporarily suspend the connection
between them. Then it releases the bus.

5. The target controller sends a command to the disk drive to move the read head to
the first sector involved in the requested read operation. Then, it reads the data
stored in that sector and stores them in a data buffer. When it is ready to begin
transferring data to the initiator, the target requests control of the bus. After it wins
arbitration, it reselects the initiator controller, thus restoring the suspended
connection.

86 KSIT

SCSI Bus (Contd.,)
6. The target transfers the contents of the data buffer to the

initiator and then suspends the connection again

7. The target controller sends a command to the disk drive to

perform another seek operation. Then, it transfers the

contents of the second disk sector to the initiator as before.

At the end of this transfers, the logical connection between

the two controllers is terminated.

8. As the initiator controller receives the data, it stores them

into the main memory using the DMA approach.

9. The SCSI controller sends as interrupt to the processor to

inform it that the requested operation has been completed

87 KSIT

Table 4. The SCSI bus signals.

Category Name Function

Data DB(0) to

DB(7)

Data lines:Carry one byte of information

duringthe information transfer phase and

iden tify device during arbitration,selection and

reselection phases

DB(P) Paritybit for the data bus

Phase BSY Busy: Asserted when the bus isnotfree

SEL Selection: Assertedduring selection and

reselection

Information

type

C/D Control/Data: Asserted during transfer of

control information (command,status or

message)

–

–

–

–

–

–

MSG Message:indicates thatthe information being

transferred is a message

–

Operation of SCSI bus from H/W point of

view

88 KSIT

Handshake REQ Request: Assertedby a target to requesta data

transfercycle

ACK Acknowledge: Asserted by the initiator when it

hascompleted adata transfer operation

Direction of

transfer

I/O Input/Output: Assertedto indicatean input

operation (relative to the initiator)

Other ATN Attention: Asserted by an initiator when it

wishesto senda messageto a target

RST Reset: Causesall device controls to disconnect

from the bus and assumetheir start-upstate

–

–

–

–

–

Category Name Function

Table 4. The SCSI bus signals.(cont.)

89 KSIT

Main Phases involved
 Arbitration

 A controller requests the bus by asserting BSY and by asserting it’s
associated data line

 When BSY becomes active, all controllers that are requesting bus examine
data lines

 Selection
 Controller that won arbitration selects target by asserting SEL and data line

of target. After that initiator releases BSY line.
 Target responds by asserting BSY line

 Target controller will have control on the bus from then

 Information Transfer
 Handshaking signals are used between initiator and target
 At the end target releases BSY line

 Reselection

90 KSIT

Free Arbitration Selection

Targets examine ID

DB 2

DB 5

DB 6

BSY

SEL

Figure 42. Arbitration and selection on the SCSI bus.

Device 6 wins arbitration and selects device 2.
91 KSIT

USB
 Universal Serial Bus (USB) is an industry standard developed

through a collaborative effort of several computer and
communication companies, including Compaq, Hewlett-
Packard, Intel, Lucent, Microsoft, Nortel Networks, and
Philips.

 Speed
 Low-speed(1.5 Mb/s)

 Full-speed(12 Mb/s)

 High-speed(480 Mb/s)

 Port Limitation

 Device Characteristics

 Plug-and-play

92 KSIT

Host computer

Root
hub

Hub

I/O
device

Hub I/O
device

I/O
device

Hub

I/O
device

I/O
device

I/O
device

Universal Serial Bus tree structure

93 KSIT

Universal Serial Bus tree structure
 To accommodate a large number of devices that can be added or

removed at any time, the USB has the tree structure as shown in the
figure.

 Each node of the tree has a device called a hub, which acts as an
intermediate control point between the host and the I/O devices. At the
root of the tree, a root hub connects the entire tree to the host
computer. The leaves of the tree are the I/O devices being served (for
example, keyboard, Internet connection, speaker, or digital TV)

 In normal operation, a hub copies a message that it receives from its
upstream connection to all its downstream ports. As a result, a message
sent by the host computer is broadcast to all I/O devices, but only the
addressed device will respond to that message. However, a message from
an I/O device is sent only upstream towards the root of the tree and is
not seen by other devices. Hence, the USB enables the host to
communicate with the I/O devices, but it does not enable these devices
to communicate with each other.

94 KSIT

Addressing
 When a USB is connected to a host computer, its root hub is attached to the processor

bus, where it appears as a single device. The host software communicates with individual
devices attached to the USB by sending packets of information, which the root hub
forwards to the appropriate device in the USB tree.

 Each device on the USB, whether it is a hub or an I/O device, is assigned a 7-bit address.
This address is local to the USB tree and is not related in any way to the addresses used
on the processor bus.

 A hub may have any number of devices or other hubs connected to it, and addresses are
assigned arbitrarily. When a device is first connected to a hub, or when it is powered on,
it has the address 0. The hardware of the hub to which this device is connected is capable
of detecting that the device has been connected, and it records this fact as part of its own
status information. Periodically, the host polls each hub to collect status information and
learn about new devices that may have been added or disconnected.

 When the host is informed that a new device has been connected, it uses a sequence of
commands to send a reset signal on the corresponding hub port, read information from
the device about its capabilities, send configuration information to the device, and assign
the device a unique USB address. Once this sequence is completed the device begins
normal operation and responds only to the new address.

95 KSIT

USB Protocols

 All information transferred over the USB is organized in packets, where a packet
consists of one or more bytes of information. There are many types of packets that
perform a variety of control functions.

 The information transferred on the USB can be divided into two broad categories:
control and data.
 Control packets perform such tasks as addressing a device to initiate data transfer,

acknowledging that data have been received correctly, or indicating an error.

 Data packets carry information that is delivered to a device.

 A packet consists of one or more fields containing different kinds of information. The
first field of any packet is called the packet identifier, PID, which identifies the type
of that packet.

 They are transmitted twice. The first time they are sent with their true values, and
the second time with each bit complemented

 The four PID bits identify one of 16 different packet types. Some control packets,
such as ACK (Acknowledge), consist only of the PID byte.

96 KSIT

PID0 PID1 PID2 PID3 PID0PID0 PID1 PID2 PID3

(a) Packet identifier field

PID ADDR ENDP CRC16

8 7 4 5Bits

(b) Token packet, IN or OUT

PID DATA CRC16

8 0 to 8192 16Bits

(c) Data packet

Figure 45. USB packet format.

Control packets used for
controlling data transfer
operations are called token
packets.

97 KSIT

Figure: An output

transfer

ACK

Token

Data0

Token

Data1

Host Hub I/O Device

Token

Data0

ACK

ACK

Token

Data1

ACK

Time

98 KSIT

Isochronous Traffic on USB

 One of the key objectives of the USB is to support the transfer of isochronous data.

 Devices that generates or receives isochronous data require a time reference to control
the sampling process.

 To provide this reference. Transmission over the USB is divided into frames of equal
length.

 A frame is 1ms long for low-and full-speed data.

 The root hub generates a Start of Frame control packet (SOF) precisely once every 1 ms
to mark the beginning of a new frame.

 The arrival of an SOF packet at any device constitutes a regular clock signal that the
device can use for its own purposes.

 To assist devices that may need longer periods of time, the SOF packet carries an 11-bit
frame number.

 Following each SOF packet, the host carries out input and output transfers for
isochronous devices.

 This means that each device will have an opportunity for an input or output transfer once
every 1 ms.

99 KSIT

Electrical Characteristics

 The cables used for USB connections consist of four wires.

 Two are used to carry power, +5V and Ground.

 Thus, a hub or an I/O device may be powered directly from

the bus, or it may have its own external power connection.

 The other two wires are used to carry data.

 Different signaling schemes are used for different speeds of

transmission.

 At low speed, 1s and 0s are transmitted by sending a high

voltage state (5V) on one or the other o the two signal wires.

For high-speed links, differential transmission is used.

100 KSIT

Model Questions
1. In a situation where multiple devices capable of initiating interrupts are

connected to processor, explain the implementation of interrupt priority,

using individual INTER and INTA and a common INTR line to all devices.

2. Define the terms 'cycle stealing' and 'block mode'.

3. What is bus arbitration ? Explain the different approaches to bus arbitration.

4. Briefly discuss the main phases involved in the operation of SCSI bus.

5. Explain the tree structure of USB with split bus operation.

6. Explain the following terms I) interrupt service routine II) interrupt latency

III)interrupt disabling

7. With a diagram explain daisy chaining technique

8. With a block diagram explain how the printer is interfaced to processor

9. Define two types of SCSI controller.

KSIT101

Model Questions
10. Explain the use of PCI bus in a computer with necessary figure.

11. List the SCSI bus signals with their functions.

12. Define memory mapped IO and IO mapped IO with examples.

13. What are the different methods of DMA? Explain them in brief.

Explain the registers in DMA.

14. Explain the serial port and serial interface.

15. What is an interrupt? with example illustrate the concept of

interrupts. Explain polling and vectored interrupts.

16. Describe how a read operation is performed on a PCI bus.

17. List the sequence of events that takes place when a processor

sends a commands to the SCSI controller.

18. Define exceptions. Explain two kinds of exceptions

KSIT102

Model Questions
19. Draw and explain the general 8 bit parallel processing.

20. Explain the following with respect to USB, I) USB

architecture, II) USB addressing, III) USB protocols.

21. List out the functions of an IO interface.

KSIT103

Module 3.

The Memory System

Outline

 Basic Concepts

 Semiconductor RAM Memories

 Read Only Memories

 Speed, Size, and Cost

 Cache Memories – Mapping Functions

 Performance Considerations

 Virtual Memories

 Secondary Storage

KSIT 2

Learning Objectives

1. To learn basic memory circuits and organization of the

main memory

2. To analyze cache memory concept, which shortens the

effective memory access time

3. To gain knowledge on virtual memory mechanisms

which increases the apparent size of the main memory

4. To analyze various secondary memory elements like

magnetic disks, optical disks and magnetic tapes

KSIT 3

Some basic concepts

 Maximum size of the Main Memory

 byte-addressable

 CPU-Main Memory Connection

KSIT 4

Up to 2kaddressable
MDR

MAR

k-bit
address bus

n-bit
data bus

Control lines

(, MFC, etc.)

Processor Memory

locations

Word length = n bits

WR /

Some basic concepts(Contd.,)

 Measures for the speed of a memory:
 memory access time.

 memory cycle time.

 An important design issue is to provide a
computer system with as large and fast a
memory as possible, within a given cost
target.

 Several techniques to increase the
effective size and speed of the memory:
 Cache memory (to increase the effective speed).

 Virtual memory (to increase the effective size).

KSIT 5

The Memory System
Semiconductor RAM memories

Internal organization of memory

chips
 Each memory cell can hold one bit of information.

 Memory cells are organized in the form of an array.

 One row is one memory word.

 All cells of a row are connected to a common line, known as

the “word line”.

 Word line is connected to the address decoder.

 Sense/write circuits are connected to the data input/output

lines of the memory chip.

KSIT 7

Internal organization of memory

chips (Contd.,)

KSIT 8

FF

circuit
Sense / Write

Address

decoder

FF

CS

cells
Memory

circuit
Sense / Write Sense / Write

circuit

Data input /output lines:

A 0

A 1

A 2

A 3

W0

W1

W15

7 1 0

WR /

7 1 0

b7 b1 b0

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•••

•••

•••

SRAM Cell

 Two transistor inverters are cross connected to implement a basic flip-

flop.

 The cell is connected to one word line and two bits lines by transistors T1

and T2

 When word line is at ground level, the transistors are turned off and the

latch retains its state

 Read operation: In order to read state of SRAM cell, the word line is

activated to close switches T1 and T2. Sense/Write circuits at the bottom

monitor the state of b and b’

KSIT 9

YX

Word line

Bit lines

b

T 2T1

b 

Asynchronous DRAMs

 Static RAMs (SRAMs):
◦ Consist of circuits that are capable of retaining their state as long as the

power is applied.

◦ Volatile memories, because their contents are lost when power is

interrupted.

◦ Access times of static RAMs are in the range of few nanoseconds.

◦ However, the cost is usually high.

 Dynamic RAMs (DRAMs):
◦ Do not retain their state indefinitely.

◦ Contents must be periodically refreshed.

◦ Contents may be refreshed while accessing them for reading.

KSIT 10

Asynchronous DRAMs

 Each row can store 512 bytes.

12 bits to select a row, and 9

bits to select a group in a

row. Total of 21 bits.

• First apply the row address,

RAS signal latches the row

address. Then apply the

column address, CAS signal

latches the address.

• Timing of the memory unit is

controlled by a specialized

unit which generates RAS

and CAS.

• This is asynchronous DRAM

KSIT 11

Column

CSSense / Write
circuits

cell arraylatch
address
Row

Column

latch

decoder
Row

decoderaddress

4096 512 8()

R/W

A20 9- A8 0-

D0D7

RAS

CAS

Fast Page Mode

 Suppose if we want to access the consecutive
bytes in the selected row.

 This can be done without having to reselect the
row.
 Add a latch at the output of the sense circuits in each row.

 All the latches are loaded when the row is selected.

 Different column addresses can be applied to select and place different
bytes on the data lines.

 Consecutive sequence of column addresses can be
applied under the control signal CAS, without
reselecting the row.
 Allows a block of data to be transferred at a much faster rate than random

accesses.

 A small collection/group of bytes is usually referred to as a block.

 This transfer capability is referred to as the
fast page mode feature.

KSIT 12

Synchronous DRAMs

KSIT 13

R/ W

RAS

CAS

CS

Clock

Cell array
latch

address
Row

decoder
Row

decoder

Column Read/Write
circuits & latches

counter
address
Column

Row/Column

address

Data input
register

Data output
register

Data

Refresh
counter

Mode register

and
timing control

•Operation is directly synchronized
with processor clock signal.
•The outputs of the sense circuits are
connected to a latch.
•During a Read operation, the
contents of the cells in a row are
loaded onto the latches.
•During a refresh operation, the
contents of the cells are refreshed
without changing the contents of
the latches.
•Data held in the latches correspond
to the selected columns are transferred
to the output.
•For a burst mode of operation,
successive columns are selected using
column address counter and clock.
CAS signal need not be generated
externally. A new data is placed during
raising edge of the clock

Latency, Bandwidth, and DDR

SDRAMs
 Memory latency is the time it takes to

transfer a word of data to or from

memory

 Memory bandwidth is the number of bits

or bytes that can be transferred in one

second.

 DDRSDRAMs

◦ Cell array is organized in two banks

KSIT 14

Static memories

KSIT 15

19-bit internal chip address

decoder
2-bit

addresses
21-bit

A
0

A1

A
19

memory chip

A20

D
31-24

D
7-0

D
23-16

D
15-8

512K 8

Chip select

memory chip

19-bit
address

512K 8

8-bit data
input/output

Implement a memory unit of 2M
words of 32 bits each.
Use 512x8 static memory chips.
Each column consists of 4 chips.
Each chip implements one byte
position.
A chip is selected by setting its
chip select control line to 1.
Selected chip places its data on the
data output line, outputs of other
chips are in high impedance state.
21 bits to address a 32-bit word.
High order 2 bits are needed to
select the row, by activating the
four Chip Select signals.
19 bits are used to access specific
byte locations inside the selected
chip.

Dynamic memories

 Large dynamic memory systems can be implemented
using DRAM chips in a similar way to static memory
systems.

 Placing large memory systems directly on the
motherboard will occupy a large amount of space.
 Also, this arrangement is inflexible since the memory system cannot be expanded easily.

 Packaging considerations have led to the development
of larger memory units known as SIMMs (Single In-line
Memory Modules) and DIMMs (Dual In-line Memory
Modules).

 Memory modules are an assembly of memory chips
on a small board that plugs vertically onto a single
socket on the motherboard.
 Occupy less space on the motherboard.

 Allows for easy expansion by replacement.
KSIT 16

Memory controller

 Recall that in a dynamic memory chip, to reduce the

number of pins, multiplexed addresses are used.

 Address is divided into two parts:

 High-order address bits select a row in the array.

 They are provided first, and latched using RAS signal.

 Low-order address bits select a column in the row.

 They are provided later, and latched using CAS signal.

 However, a processor issues all address bits at the

same time.

 In order to achieve the multiplexing, memory

controller circuit is inserted between the processor

and memory.

KSIT 17

Memory controller (contd..)

KSIT18

Processor

RAS

CAS

R/ W

Clock

Address

Row/Column
address

Memory
controller

R/ W

Clock

Request

CS

Data

Memory

The Memory System
Read-Only Memories (ROMs)

Read-Only Memories (ROMs)

 SRAM and SDRAM chips are volatile:

 Lose the contents when the power is turned off.
 Many applications need memory devices to retain contents after

the power is turned off.

 For example, computer is turned on, the operating system must be
loaded from the disk into the memory.

 Store instructions which would load the OS from the disk.

 Need to store these instructions so that they will not be lost after the
power is turned off.

 We need to store the instructions into a non-volatile memory.
 Non-volatile memory is read in the same manner as volatile

memory.

 Separate writing process is needed to place information in this
memory.

 Normal operation involves only reading of data, this type

of memory is called Read-Only memory (ROM).

KSIT 20

Read-Only Memories (Contd.,)

 Read-Only Memory:
 Data are written into a ROM when it is manufactured.

 Programmable Read-Only Memory (PROM):
 Allow the data to be loaded by a user.

 Process of inserting the data is irreversible.

 Storing information specific to a user in a ROM is expensive.

 Providing programming capability to a user may be better.

 Erasable Programmable Read-Only Memory
(EPROM):
 Stored data to be erased and new data to be loaded.

 Flexibility, useful during the development phase of digital systems.

 Erasable, reprogrammable ROM.

 Erasure requires exposing the ROM to UV light.

KSIT 21

Read-Only Memories (Contd.,)

 Electrically Erasable Programmable Read-Only Memory (EEPROM):
 To erase the contents of EPROMs, they have to be exposed to ultraviolet light.

 Physically removed from the circuit.

 EEPROMs the contents can be stored and erased electrically.

 Flash memory:

 Has similar approach to EEPROM.

 Read the contents of a single cell, but write the contents of an entire
block of cells.

 Flash devices have greater density.
▪ Higher capacity and low storage cost per bit.

 Power consumption of flash memory is very low, making it attractive
for use in equipment that is battery-driven.

 Single flash chips are not sufficiently large, so

larger memory modules are implemented using

flash cards and flash drives.

KSIT 22

Speed, Size, and Cost

 A big challenge in the design of a computer system
is to provide a sufficiently large memory, with a
reasonable speed at an affordable cost.

 Static RAM:
 Very fast, but expensive, because a basic SRAM cell has a complex circuit making it

impossible to pack a large number of cells onto a single chip.

 Dynamic RAM:
 Simpler basic cell circuit, hence are much less expensive, but significantly slower than

SRAMs.

 Magnetic disks:
 Storage provided by DRAMs is higher than SRAMs, but is still less than what is necessary.

 Secondary storage such as magnetic disks provide a large amount

of storage, but is much slower than DRAMs.
KSIT 23

Memory Hierarchy

KSIT 24

Processor

Primary
cache

Main
memory

Increasing
size

Increasing
speed

Magnetic disk
secondary
memory

Increasing
cost per bit

Registers

L1

Secondary
cache

L2

•Fastest access is to the data held in
processor registers. Registers are at
the top of the memory hierarchy.
•Relatively small amount of memory that
can be implemented on the processor
chip. This is processor cache.
•Two levels of cache. Level 1 (L1) cache
is on the processor chip. Level 2 (L2)
cache is in between main memory and
processor.
•Next level is main memory, implemented
as SIMMs. Much larger, but much slower
than cache memory.
•Next level is magnetic disks. Huge amount
of inexepensive storage.
•Speed of memory access is critical, the
idea is to bring instructions and data
that will be used in the near future as
close to the processor as possible.

The Memory System
Cache Memories

Cache Memories

 Processor is much faster than the main memory.
 As a result, the processor has to spend much of its time waiting while instructions

and data are being fetched from the main memory.

 Major obstacle towards achieving good performance.

 Speed of the main memory cannot be increased
beyond a certain point.

 Cache memory is an architectural arrangement
which makes the main memory appear faster to
the processor than it really is.

 Cache memory is based on the property of
computer programs known as “locality of
reference”.

KSIT 26

Locality of Reference

 Analysis of programs indicates that many
instructions in localized areas of a program
are executed repeatedly during some period
of time, while the others are accessed
relatively less frequently.
 These instructions may be the ones in a loop, nested loop or few

procedures calling each other repeatedly.

 This is called “locality of reference”.

 Temporal locality of reference:
 Recently executed instruction is likely to be executed again very soon.

 Spatial locality of reference:
 Instructions with addresses close to a recently instruction are likely

to be executed soon.

KSIT 27

Cache memories

• Processor issues a Read request, a block of words is transferred from the main
memory to the cache, one word at a time.

• Subsequent references to the data in this block of words are found in the
cache.

• At any given time, only some blocks in the main memory are held in the cache.
Which blocks in the main memory are in the cache is determined by a
“mapping function”.

• When the cache is full, and a block of words needs to be transferred
from the main memory, some block of words in the cache must be
replaced. This is determined by a “replacement algorithm”.

KSIT 28

Cache
Main

memoryProcessor

Cache hit

• Existence of a cache is transparent to the processor. The
processor issues Read and
Write requests in the same manner.

• If the data is in the cache it is called a Read or Write hit.

• Read hit:

 The data is obtained from the cache.

• Write hit:

 Cache has a replica of the contents of the main memory.

 Contents of the cache and the main memory may be updated
simultaneously. This is the write-through protocol.

 Update the contents of the cache, and mark it as updated by setting
a bit known as the dirty bit or modified bit. The contents of the
main memory are updated when this block is replaced. This is
write-back or copy-back protocol.

KSIT 29

Cache miss

• If the data is not present in the cache, then a Read miss or Write miss
occurs.

• Read miss:

 Block of words containing this requested word is transferred from the memory.

 After the block is transferred, the desired word is forwarded to the processor.

 The desired word may also be forwarded to the processor as soon as it is
transferred without waiting for the entire block to be transferred. This is called
load-through or early-restart.

• Write-miss:

 Write-through protocol is used, then the contents of the main memory are
updated directly.

 If write-back protocol is used, the block containing the

addressed word is first brought into the cache. The desired word

is overwritten with new information.

KSIT 30

Cache Coherence Problem
• A bit called as “valid bit” is provided for each block.
• If the block contains valid data, then the bit is set to 1, else it is 0.
• Valid bits are set to 0, when the power is just turned on.
• When a block is loaded into the cache for the first time, the valid bit is set to 1.

• Data transfers between main memory and disk occur directly bypassing the
cache.

• When the data on a disk changes, the main memory block is also updated.
• However, if the data is also resident in the cache, then the valid bit is set to 0.

• What happens if the data in the disk and main memory changes and the write-
back protocol is being used?

• In this case, the data in the cache may also have changed and is indicated by
the dirty bit.

• The copies of the data in the cache, and the main memory are different. This is
called the cache coherence problem.

• One option is to force a write-back before the main memory is updated from
the disk.

KSIT 31

Mapping functions

 Mapping functions determine how
memory blocks are placed in the cache.

 A simple processor example:
 Cache consisting of 128 blocks of 16 words each.

 Total size of cache is 2048 (2K) words.

 Main memory is addressable by a 16-bit address.

 Main memory has 64K words.

 Main memory has 4K blocks of 16 words each.

 Three mapping functions:
 Direct mapping

 Associative mapping

 Set-associative mapping.

KSIT 32

Direct mapping

KSIT 33

Main
memory Block 0

Block 1

Block 127

Block 128

Block 129

Block 255

Block 256

Block 257

Block 4095

7 4

Main memory address

Tag Block Word

5

tag

tag

tag

Cache

Block 0

Block 1

Block 127

•Block j of the main memory maps to j modulo 128 of
the cache. 0 maps to 0, 129 maps to 1.
•More than one memory block is mapped onto the same
position in the cache.
•May lead to contention for cache blocks even if the
cache is not full.
•Resolve the contention by allowing new block to
replace the old block, leading to a trivial replacement
algorithm.
•Memory address is divided into three fields:

- Low order 4 bits determine one of the 16
words in a block.

- When a new block is brought into the cache,
the the next 7 bits determine which cache

block this new block is placed in.
- High order 5 bits determine which of the possible

32 blocks is currently present in the cache. These
are tag bits.

•Simple to implement but not very flexible.

Associative mapping

KSIT 34

•Main memory block can be placed into any cache
position.
•Memory address is divided into two fields:

- Low order 4 bits identify the word within a block.
- High order 12 bits or tag bits identify a memory

block when it is resident in the cache.
•Flexible, and uses cache space efficiently.
•Replacement algorithms can be used to replace an
existing block in the cache when the cache is full.
•Cost is higher than direct-mapped cache because of
the need to search all 128 patterns to determine
whether a given block is in the cache.

Main
memory Block 0

Block 1

Block 127

Block 128

Block 129

Block 255

Block 256

Block 257

Block 4095

4

Main memory address

Tag Word

12

tag

tag

tag

Cache

Block 0

Block 1

Block 127

Set-Associative mapping

KSIT 35

Blocks of cache are grouped into sets.
Mapping function allows a block of the main
memory to reside in any block of a specific set.
Divide the cache into 64 sets, with two blocks per set.
Memory block 0, 64, 128 etc. map to block 0, and they
can occupy either of the two positions.
Memory address is divided into three fields:

- 6 bit field determines the set number.
- High order 6 bit fields are compared to the tag

fields of the two blocks in a set.
Set-associative mapping combination of direct and
associative mapping.
Number of blocks per set is a design parameter.

- One extreme is to have all the blocks in one set,
requiring no set bits (fully associative mapping).

- Other extreme is to have one block per set, is
the same as direct mapping.

Main
memory Block 0

Block 1

Block 63

Block 64

Block 65

Block 127

Block 128

Block 129

Block 4095

7 4

Main memory address

Tag Block Word

5

tag

tag

tag

Cache

Block 1

Block 2

Block 126

Block 127

Block 3

Block 0tag

tag

tag

Replacement Algorithms

KSIT 36

• In a direct mapped cache, the position of each block is

predetermined – no replacement strategy exists.

• In associative and set associative caches there exists some

flexibility.

• Least recently used blocks LRU – LRU replacement algorithm.

The Memory System
Performance considerations

Performance considerations

 A key design objective of a computer system is to

achieve the best possible performance at the lowest

possible cost.

◦ Price/performance ratio is a common measure of success.

 Performance of a processor depends on:

◦ How fast machine instructions can be brought into the

processor for execution.

◦ How fast the instructions can be executed.

KSIT 38

Interleaving

 Divides the memory system into a number
of memory modules. Each module has its own address buffer
register (ABR) and data buffer register (DBR).

 Arranges addressing so that successive
words in the address space are placed in
different modules.

 When requests for memory access involve
consecutive addresses, the access will be to
different modules.

 Since parallel access to these modules is
possible, the average rate of fetching words
from the Main Memory can be increased.

KSIT 39

Methods of address layouts

 Consecutive words are placed in a
module.

 High-order k bits of a memory
address determine the module.

 Low-order m bits of a memory
address determine the word within a
module.

 When a block of words is transferred
from main memory to cache, only
one module is busy at a time.

KSIT 40

mbits

Address in module MM address

i

k bits

Module Module Module

Module

DBRABR DBRABR ABR DBR

0 n 1- i

k bits

0

ModuleModuleModule

Module MM address

DBRABRABR DBRABR DBR

Address in module

2
k

1-

mbits

•Consecutive words are located in

consecutive modules.

•Consecutive addresses can be located

in consecutive modules.

•While transferring a block of data,

several memory modules can be kept

busy at the same time.

Hit Rate and Miss Penalty

 Hit rate

 Miss penalty

 Hit rate can be improved by increasing block size, while

keeping cache size constant

 Block sizes that are neither very small nor very large

give best results.

 Miss penalty can be reduced if load-through approach is

used when loading new blocks into cache.

KSIT 41

Caches on the processor chip

 In high performance processors 2 levels

of caches are normally used.

 Avg access time in a system with 2 levels

of caches is

T ave = h1c1+(1-h1)h2c2+(1-h1)(1-h2)M

KSIT 42

Other Performance Enhancements

Write buffer
 Write-through:
• Each write operation involves writing to the main memory.
• If the processor has to wait for the write operation to be complete, it

slows down the processor.
• Processor does not depend on the results of the write operation.
• Write buffer can be included for temporary storage of write requests.
• Processor places each write request into the buffer and continues

execution.
• If a subsequent Read request references data which is still in the write

buffer, then this data is referenced in the write buffer.

 Write-back:
• Block is written back to the main memory when it is replaced.
• If the processor waits for this write to complete, before reading the new

block, it is slowed down.
• Fast write buffer can hold the block to be written, and the new

block can be read first.

KSIT 43

Other Performance Enhancements

(Contd.,)

Prefetching
• New data are brought into the processor when they are first

needed.
• Processor has to wait before the data transfer is complete.
• Prefetch the data into the cache before they are actually

needed, or a before a Read miss occurs.
• Prefetching can be accomplished through software by including

a special instruction in the machine language of the processor.
 Inclusion of prefetch instructions increases the length of

the programs.
• Prefetching can also be accomplished using hardware:

 Circuitry that attempts to discover patterns in

memory references and then prefetches according

to this pattern.

KSIT 44

Other Performance Enhancements

(Contd.,)
Lockup-Free Cache

• Prefetching scheme does not work if it stops other
accesses to the cache until the prefetch is completed.

• A cache of this type is said to be “locked” while it
services a miss.

• Cache structure which supports multiple outstanding
misses is called a lockup free cache.

• Since only one miss can be serviced at a time, a lockup
free cache must include circuits that keep track of all
the outstanding misses.

• Special registers may hold the necessary
information about these misses.

KSIT 45

The Memory System
Virtual Memory

Virtual memories

 Recall that an important challenge in the design
of a computer system is to provide a large, fast
memory system at an affordable cost.

 Architectural solutions to increase the effective
speed and size of the memory system.

 Cache memories were developed to increase the
effective speed of the memory system.

 Virtual memory is an architectural solution to
increase the effective size of the memory system.

KSIT47

Virtual memories (contd..)

 Recall that the addressable memory space
depends on the number of address bits in a
computer.
 For example, if a computer issues 32-bit addresses, the addressable memory space is

4G bytes.

 Physical main memory in a computer is generally
not as large as the entire possible addressable
space.
 Physical memory typically ranges from a few hundred megabytes to 1G bytes.

 Large programs that cannot fit completely into
the main memory have their parts stored on
secondary storage devices such as magnetic
disks.
 Pieces of programs must be transferred to the main memory from secondary storage

before they can be executed.

KSIT48

Virtual memories (contd..)

 When a new piece of a program is to be

transferred to the main memory, and the

main memory is full, then some other piece

in the main memory must be replaced.
 Recall this is very similar to what we studied in case of cache memories.

 Operating system automatically transfers

data between the main memory and

secondary storage.
 Application programmer need not be concerned with this transfer.

 Also, application programmer does not need to be aware of the limitations

imposed by the available physical memory.

KSIT49

Virtual memories (contd..)

 Techniques that automatically move program and
data between main memory and secondary storage
when they are required for execution are called
virtual-memory techniques.

 Programs and processors reference an instruction or
data independent of the size of the main memory.

 Processor issues binary addresses for instructions
and data.
 These binary addresses are called logical or virtual addresses.

 Virtual addresses are translated into physical
addresses by a combination of hardware and
software subsystems.
 If virtual address refers to a part of the program that is currently in the main memory, it is

accessed immediately.

 If the address refers to a part of the program that is not currently in the main memory, it is
first transferred to the main memory before it can be used.

KSIT50

Virtual memory organization

KSIT51

Data

Data

DMA transfer

Physical address

Physical address

Virtual address

Disk storage

Main memory

Cache

MMU

Processor
•Memory management unit (MMU) translates
virtual addresses into physical addresses.
•If the desired data or instructions are in the
main memory they are fetched as described
previously.
•If the desired data or instructions are not in
the main memory, they must be transferred
from secondary storage to the main memory.
•MMU causes the operating system to bring
the data from the secondary storage into the
main memory.

Address translation

 Assume that program and data are
composed of fixed-length units called pages.

 A page consists of a block of words that
occupy contiguous locations in the main
memory.

 Page is a basic unit of information that is
transferred between secondary storage and
main memory.

 Size of a page commonly ranges from 2K to
16K bytes.
 Pages should not be too small, because the access time of a secondary

storage device is much larger than the main memory.

 Pages should not be too large, else a large portion of the page may not be
used, and it will occupy valuable space in the main memory.

KSIT52

Address translation (contd..)

 Concepts of virtual memory are similar

to the concepts of cache memory.

 Cache memory:
◦ Introduced to bridge the speed gap between the processor and the

main memory.

◦ Implemented in hardware.

 Virtual memory:
◦ Introduced to bridge the speed gap between the main memory and

secondary storage.

◦ Implemented in part by software.

KSIT53

Address translation (contd..)

 Each virtual or logical address generated by a
processor is interpreted as a virtual page number
(high-order bits) plus an offset (low-order bits)
that specifies the location of a particular byte
within that page.

 Information about the main memory location of
each page is kept in the page table.
 Main memory address where the page is stored.

 Current status of the page.

 Area of the main memory that can hold a page is
called as page frame.

 Starting address of the page table is kept in a
page table base register.

KSIT54

Address translation (contd..)

 Virtual page number generated by the

processor is added to the contents of the

page table base register.

◦ This provides the address of the corresponding entry in the page table.

 The contents of this location in the page

table give the starting address of the page

if the page is currently in the main

memory.

KSIT55

Address translation (contd..)

KSIT56

Page frame

Virtual address from processor

in memory

Offset

Offset

Virtual page numberPage table address

Page table base register

Control
bits

Physical address in main memory

PAGE TABLE

Page frame

+

Virtual address is
interpreted as page
number and offset.

Page table holds information
about each page. This includes
the starting address of the page
in the main memory.

PTBR holds
the address of
the page table.

PTBR + virtual
page number provide
the entry of the page
in the page table.

This entry has the starting location
of the page.

Address translation (contd..)

 Page table entry for a page also includes
some control bits which describe the status
of the page while it is in the main memory.

 One bit indicates the validity of the page.
 Indicates whether the page is actually loaded into the main memory.

 Allows the operating system to invalidate the page without actually
removing it.

 One bit indicates whether the page has
been modified during its residency in the
main memory.

 This bit determines whether the page should be written back to the disk
when it is removed from the main memory.

 Similar to the dirty or modified bit in case of cache memory.

KSIT57

Address translation (contd..)

 Other control bits for various other types

of restrictions that may be imposed.
◦ For example, a program may only have read permission for a page, but

not write or modify permissions.

KSIT58

Address translation (contd..)

 Where should the page table be located?
 Recall that the page table is used by the MMU for

every read and write access to the memory.
 Ideal location for the page table is within the MMU.

 Page table is quite large.
 MMU is implemented as part of the processor

chip.
 Impossible to include a complete page table on

the chip.
 Page table is kept in the main memory.
 A copy of a small portion of the page table can

be accommodated within the MMU.
 Portion consists of page table entries that correspond to the most recently accessed

pages.

KSIT59

Address translation (contd..)

 A small cache called as Translation Lookaside
Buffer (TLB) is included in the MMU.
 TLB holds page table entries of the most recently accessed pages.

 Recall that cache memory holds most recently
accessed blocks from the main memory.
 Operation of the TLB and page table in the main memory is similar to the operation

of the cache and main memory.

 Page table entry for a page includes:
 Address of the page frame where the page resides in the main memory.

 Some control bits.

 In addition to the above for each page, TLB must
hold the virtual page number for each page.

KSIT60

Address translation (contd..)

KSIT61

No

Yes

Hit

Miss

Virtual address from processor

TLB

OffsetVirtual page number

number
Virtual page Page frame

in memory
Control

bits

OffsetPage frame

=?

Physical address in main memory

Associative-mapped TLB

High-order bits of the virtual address
generated by the processor select the
virtual page.
These bits are compared to the virtual
page numbers in the TLB.
If there is a match, a hit occurs and
the corresponding address of the page
frame is read.
If there is no match, a miss occurs
and the page table within the main
memory must be consulted.
Set-associative mapped TLBs are
found in commercial processors.

Address translation (contd..)

 How to keep the entries of the TLB
coherent with the contents of the page
table in the main memory?

 Operating system may change the contents
of the page table in the main memory.
 Simultaneously it must also invalidate the corresponding entries in the TLB.

 A control bit is provided in the TLB to
invalidate an entry.

 If an entry is invalidated, then the TLB gets
the information for that entry from the page
table.
 Follows the same process that it would follow if the entry is not found in

the TLB or if a “miss” occurs.

KSIT62

Address translation (contd..)
 What happens if a program generates an

access to a page that is not in the main
memory?

 In this case, a page fault is said to occur.
 Whole page must be brought into the main memory from the disk, before

the execution can proceed.

 Upon detecting a page fault by the MMU,
following actions occur:
 MMU asks the operating system to intervene by raising an exception.

 Processing of the active task which caused the page fault is interrupted.

 Control is transferred to the operating system.

 Operating system copies the requested page from secondary storage to
the main memory.

 Once the page is copied, control is returned to the task which was
interrupted.

KSIT63

Address translation (contd..)

 Servicing of a page fault requires

transferring the requested page from

secondary storage to the main memory.

 This transfer may incur a long delay.

 While the page is being transferred the

operating system may:
◦ Suspend the execution of the task that caused the page fault.

◦ Begin execution of another task whose pages are in the main memory.

 Enables efficient use of the processor.

KSIT64

Address translation (contd..)

 How to ensure that the interrupted task

can continue correctly when it resumes

execution?

 There are two possibilities:
◦ Execution of the interrupted task must continue from the point where

it was interrupted.

◦ The instruction must be restarted.

 Which specific option is followed

depends on the design of the processor.

KSIT65

Address translation (contd..)

 When a new page is to be brought into the
main memory from secondary storage, the
main memory may be full.
 Some page from the main memory must be replaced with this new page.

 How to choose which page to replace?
 This is similar to the replacement that occurs when the cache is full.

 The principle of locality of reference (?) can also be applied here.

 A replacement strategy similar to LRU can be applied.

 Since the size of the main memory is
relatively larger compared to cache, a
relatively large amount of programs and data
can be held in the main memory.
 Minimizes the frequency of transfers between secondary storage and main

memory.

KSIT66

Address translation (contd..)

 A page may be modified during its residency
in the main memory.

 When should the page be written back to
the secondary storage?

 Recall that we encountered a similar
problem in the context of cache and main
memory:
 Write-through protocol(?)

 Write-back protocol(?)

 Write-through protocol cannot be used,
since it will incur a long delay each time a
small amount of data is written to the disk.

KSIT67

The Memory System
Secondary Storage

Magnetic Hard Disks

KSIT 69

Disk

Disk drive

Disk controller

Organization of Data on a Disk

KSIT 70

Sector 0, track 0

Sector 3, trackn

Figure 5.30. Organization of one surface of a disk.

Sector 0, track 1

Access Data on a Disk

 Sector header

 Following the data, there is an error-
correction code (ECC).

 Formatting process

 Difference between inner tracks and
outer tracks

 Access time – seek time / rotational delay
(latency time)

 Data buffer/cache

KSIT 71

Disk Controller

KSIT 72

Processor Main memory

System bus

Figure 5.31. Disks connected to the system bus.

Disk controller

Disk drive Disk drive

Disk Controller

 Seek

 Read

 Write

 Error checking

KSIT 73

RAID Disk Arrays

 Redundant Array of Inexpensive Disks

 Using multiple disks makes it cheaper for

huge storage, and also possible to improve

the reliability of the overall system.

 RAID0 – data striping

 RAID1 – identical copies of data on two

disks

 RAID2, 3, 4 – increased reliability

 RAID5 – parity-based error-recovery

KSIT 74

Optical Disks

KSIT 75

(a) Cross-section

Source Detector Source Detector Source Detector

No reflection

Reflection Reflection

Pit Land

0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0

(c) Stored binary pattern

Figure 5.32. Optical disk.

1

(b) Transition from pit to land

Optical Disks

 CD-ROM

 CD-Recordable (CD-R)

 CD-ReWritable (CD-RW)

 DVD

 DVD-RAM

KSIT 76

Magnetic Tape Systems

KSIT 77

Figure 5.33. Organization of data on magnetic tape.

File
File

mark
mark

File

7 or 9

gap gap
File gap Record RecordRecord Record

bits

•
•
•
•

•
•
•
•

Model Questions

1. Explain the internal organization of a 16 megabit DRAM chip, configured as
2M x 8 cells. Also explain as at how can be made to work in fast page mode.

2. With a block diagram, explain the direct and set associative mapping between
cache and main memory.

3. Describe the principles of magnetic disk.

4. What is virtual memory? With a diagram, explain how virtual memory address
is translated.

5. Draw for 1K x 1 memory chip with neat figure.

6. Analyze with diagram the memory hierarchy with respect to speed, size and
cost.

7. Briefly explain any four non - volatile memory concepts.

8. Discuss the internal organization of a 2M x 8 asynchronous DRAM chip.

9. Describe the different mapping functions in cache.

10. Define: i)memory latency ii) memory bandwidth iii) hit rate iv) miss penalty

11. Explain any one feature of memory design that leads to improved
performance of computer.

KSIT 78

Module 4.

Arithmetic

Outline

KSIT2

 Numbers - Arithmetic Operations and Characters

 Addition and Subtraction of Signed Numbers

 Design of Fast Adders

 Multiplication of Positive Numbers

 Signed Operand Multiplication

 Fast Multiplication

 Integer Division

 Floating-point Numbers and Operations

Learning Objectives

KSIT3

1. To understand number representation and addition/
subtraction in the 2s complement form.

2. To analyze the booth algorithm used to determine how
multiplicand summands are selected by the multiplier
bit patterns.

3. To analyze high speed adders using carry lookahead
logic to generate carry signal in parallel.

4. To gain extensive knowledge in representing floating
point numbers in the IEEE standard format and
perform basic arithmetic operation.

Number, Arithmetic Operations, and

Characters

KSIT4

 Signed Integer

 3 major representations:

Sign and magnitude

One’s complement

Two’s complement

 Assumptions:

4-bit machine word

16 different values can be represented

Roughly half are positive, half are negative

Sign and Magnitude Representation

KSIT5

0000

0111

0011

1011

1111

1110

1101

1100

1010

1001

1000

0110

0101

0100

0010

0001

+0

+1

+2

+3

+4

+5

+6

+7-0

-1

-2

-3

-4

-5

-6

-7

0 100 = + 4

1 100 = - 4

+

-

High order bit is sign: 0 = positive (or zero), 1 = negative
Three low order bits is the magnitude: 0 (000) thru 7 (111)
Number range for n bits = +/-2n-1 -1
Two representations for 0

One’s Complement Representation

KSIT6

 Subtraction implemented by addition & 1's complement

 Still two representations of 0! This causes some problems

 Some complexities in addition

0000

0111

0011

1011

1111

1110

1101

1100

1010

1001

1000

0110

0101

0100

0010

0001

+0

+1

+2

+3

+4

+5

+6

+7-7

-6

-5

-4

-3

-2

-1

-0

0 100 = + 4

1 011 = - 4

+

-

Two’s Complement Representation

KSIT7

 Only one representation for 0

 One more negative number than positive number

0000

0111

0011

1011

1111

1110

1101

1100

1010

1001

1000

0110

0101

0100

0010

0001

+0

+1

+2

+3

+4

+5

+6

+7-8

-7

-6

-5

-4

-3

-2

-1

0 100 = + 4

1 100 = - 4

+

-

like 1's comp
except shifted
one position
clockwise

Binary, Signed-Integer Representations

KSIT8

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

0

0

1

1

0

0

0

0

1

1

0

0

1

1

1

0

1

0

1

0

1

0

0

1

0

1

0

1

0

1

1+

1-

2+

3+

4+

5+

6+

7+

2-

3-

4-

5-

6-

7-

8-

0+

0-

1+

2+

3+

4+

5+

6+

7+

0+

7-

6-

5-

4-

3-

2-

1-

0-

1+

2+

3+

4+

5+

6+

7+

0+

7-

6-

5-

4-

3-

2-

1-

b
3

b
2
b

1
b

0

Sign and
magnitude 1's complement 2's complement

B Values represented

Figure 2.1. Binary, signed-integer representations.

Addition and Subtraction – 2’s Complement

KSIT9

4

+ 3

7

0100

0011

0111

-4

+ (-3)

-7

1100

1101

11001

4

- 3

1

0100

1101

10001

-4

+ 3

-1

1100

0011

1111

If carry-in to the high
order bit =
carry-out then ignore
carry

if carry-in differs from
carry-out then overflow

Simpler addition scheme makes twos complement the most common
choice for integer number systems within digital systems

Addition/subtraction of signed numbers

KSIT10

s
i =

c
i +1 =

13

7
+ Y

1

0

0

0

1

0

1

1

0

0

1

1

0

1

1

0

0

1

1

0

1

0

0

1

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

Example:

1
0= = 0

0
1 1

1
1 1 0 0

1

1 1 10

Legend for stage i

xi yi Carry-in ci Sumsi Carry-outci+1

X

Z

+ 6 0+
xi
yi

si

Carry-out
ci+1

Carry-in
ci

x
i
y
i
c
i

x
i
y
i
c
i

x
i
y
i
c
i

x
i
y
i
c
i xi yi ci =+ + +

y
i
c

i
x

i
c
i

x
i
y

i+ +

At the ith stage:

Input:

ci is the carry-in

Output:

si is the sum

ci+1 carry-out to (i+1)st

state

Addition logic for a single stage

KSIT11

Full adder
(FA)

c
i

c
i 1+

s
i

Sum Carry

y
i

x
i

c
i

y
i

x
i

c
i

y
i

x
i

x
i

c
i

y
i

s
i

c
i 1+

Full Adder (FA): Symbol for the complete circuit

for a single stage of addition.

n-bit adder

KSIT12

•Cascade n full adder (FA) blocks to form a n-bit adder.

•Carries propagate or ripple through this cascade, n-bit ripple carry adder.

FA c
0

y
1

x
1

s
1

FA

c
1

y
0

x
0

s
0

FA

c
n 1-

y
n 1-

x
n 1-

c
n

s
n 1-

Most significant bit
(MSB) position

Least significant bit
(LSB) position

Carry-in c0 into the LSB position provides a convenient way to

perform subtraction.

K n-bit adder

KSIT13

K n-bit numbers can be added by cascading k n-bit adders.

n-bit c
0

y
n

x
n

s
n

c
n

y
0

x
n 1-

s
0

c
kn

s
k 1-()n

x
0

y
n 1-

y
2n 1-

x
2n 1-

y
kn 1-

s
n 1-

s
2n 1-

s
kn 1-

x
kn 1-

adder
n-bit
adder

n-bit
adder

Each n-bit adder forms a block, so this is cascading of blocks.

Carries ripple or propagate through blocks, Blocked Ripple Carry Adder

n-bit adder/subtractor (contd..)

KSIT14

Add/Sub
control

n-bit adder

x
n 1-

x
1

x
0

c
n

s
n 1-

s
1

s
0

c
0

y
n 1-

y
1

y
0

•Add/sub control = 0, addition.

•Add/sub control = 1, subtraction.

Fast addition

KSIT15

Recall the equations:

iiiiiii

iiii

cycxyxc

cyxs





1

Second equation can be written as:

iiiiii cyxyxc)(1 

We can write:

iiiiii

iiii

yxPandyxGwhere

cPGc



1

•Gi is called generate function and Pi is called propagate function
•Gi and Pi are computed only from xi and yi and not ci, thus they can
be computed in one gate delay after X and Y are applied to the

inputs of an n-bit adder.

Carry lookahead

KSIT16

ci1  Gi  Pici

ci  Gi1  Pi1ci1

 ci1  Gi  Pi(Gi1  Pi1ci1)

continuing

 ci1  Gi  Pi(Gi1  Pi1(Gi 2  Pi 2ci2))

until

ci1 Gi  PiGi1  PiPi1Gi2  ..  PiPi1..P1G0  PiPi1...P0c0

•All carries can be obtained 3 gate delays after X, Y and c0 are applied.
-One gate delay for Pi and Gi

-Two gate delays in the AND-OR circuit for ci+1

•All sums can be obtained 1 gate delay after the carries are computed.
•Independent of n, n-bit addition requires only 4 gate delays.
•This is called Carry Lookahead adder.

Carry-lookahead adder

KSIT17

Carry-lookahead logic

B cell B cell B cell B cell

s
3

P
3

G
3

c
3

P
2

G
2

c
2

s
2

G
1

c
1

P
1

s
1

G
0

c
0

P
0

s
0

.
c

4

x
1

y
1

x
3

y
3

x
2

y
2

x
0

y
0

G
i

c
i

..

.

P
i

s
i

x
i

y
i

B cell

4-bit
carry-lookahead
adder

B-cell for a single stage

Carry lookahead adder (contd..)

KSIT18

 Performing n-bit addition in 4 gate delays independent of n is
good only theoretically because of fan-in constraints.

 Last AND gate and OR gate require a fan-in of (n+1) for a n-bit
adder.
 For a 4-bit adder (n=4) fan-in of 5 is required.
 Practical limit for most gates.

 In order to add operands longer than 4 bits, we can cascade 4-bit
Carry-Lookahead adders. Cascade of Carry-Lookahead adders is
called Blocked Carry-Lookahead adder.

c
i1

G
i
 P

i
G

i1
 P

i
P

i1
G

i2
 .. P

i
P

i1
..P

1
G

0
 P

i
P

i1
...P

0
c0

16 bit Carry-Lookahead adder

KSIT19

Carry-lookahead logic

4-bit adder 4-bit adder 4-bit adder 4-bit adder

s15-12

P3
IG3

I

c
12

P2
IG2

I

c
8

s11-8

G1
I

c
4

P1
I

s7-4

G
0
I

c0

P
0

I

s3-0

c16

x
15-12

y
15-12

x
11-8

y
11-8

x
7-4

y
7-4

x
3-0

y
3-0

.

After xi, yi and c0 are applied as inputs:
- Gi and Pi for each stage are available after 1 gate delay.
- PI is available after 2 and GI after 3 gate delays.
- All carries are available after 5 gate delays.
- c16 is available after 5 gate delays.
- s15 which depends on c12 is available after 8 (5+3)gate delays

(Recall that for a 4-bit carry lookahead adder, the last sum bit is
available 3 gate delays after all inputs are available)

Multiplication

Multiplication of unsigned numbers

KSIT21

Product of 2 n-bit numbers is at most a 2n-bit number.

Unsigned multiplication can be viewed as addition of shifted

versions of the multiplicand.

Multiplication of unsigned numbers

(contd..)

KSIT22

 We added the partial products at end.

 Alternative would be to add the partial products at each stage.

 Rules to implement multiplication are:

 If the ith bit of the multiplier is 1, shift the multiplicand and add the

shifted multiplicand to the current value of the partial product.

 Hand over the partial product to the next stage

 Value of the partial product at the start stage is 0.

Multiplication of unsigned numbers

KSIT23

ith multiplier bit

carry incarry out

jth multiplicand bit

ith multiplier bit

Bit of incoming partial product (PPi)

Bit of outgoing partial product (PP(i+1))

FA

Typical multiplication cell

Combinatorial array multiplier

KSIT24

Multiplicand

m3 m2 m1 m00 0 0 0

q3

q2

q1

q0

0

p2

p1

p0

0

0

0

p3p4p5p6p7

PP1

PP2

PP3

(PP0)

,

Product is: p7,p6,..p0

Multiplicand is shifted by displacing it through an array of adders.

Combinatorial array multiplier

Combinatorial array multiplier (contd..)

KSIT25

 Combinatorial array multipliers are:
 Extremely inefficient.

 Have a high gate count for multiplying numbers of practical size such as 32-bit or 64-

bit numbers.

 Perform only one function, namely, unsigned integer product.

 Improve gate efficiency by using a mixture of combinatorial

array techniques and sequential techniques requiring less

combinational logic.

Sequential multiplication

KSIT26

 Recall the rule for generating partial products:
 If the ith bit of the multiplier is 1, add the appropriately shifted multiplicand to the

current partial product.

 Multiplicand has been shifted left when added to the partial product.

 However, adding a left-shifted multiplicand to an unshifted

partial product is equivalent to adding an unshifted

multiplicand to a right-shifted partial product.

Sequential Circuit Multiplier

KSIT27

q
n 1-

m
n 1-

n-bit
Adder

Multiplicand M

Control
sequencer

Multiplier Q

0

C

Shift right

Register A (initially 0)

Add/Noadd
control

a
n 1-

a
0

q
0

m
0

0

MUX

Sequential multiplication (contd..)

KSIT28

1 1 1 1

1 0 1 1

1 1 1 1

1 1 1 0

1 1 1 0

1 1 0 1

1 1 0 1

Initial configuration

Add

M

1 1 0 1

C

First cycle

Second cycle

Third cycle

Fourth cycle

No add

Shift

Shift
Add

Shift

Shift
Add

1 1 1 1

0

0

0

1

0

0

0

1

0

0 0 0 0

0 1 1 0

1 1 0 1

0 0 1 1

1 0 0 1

0 1 0 0

0 0 0 1

1 0 0 0

1 0 0 1

1 0 1 1

QA

Product

Signed Multiplication

Signed Multiplication

KSIT30

 Considering 2’s-complement signed operands, what will happen to (-13)(+11) if
following the same method of unsigned multiplication?

Sign extension of negative multiplicand.

1

0

11 11 1 1 0 0 1 1

110

110

1

0

1000111011

000000

1100111

00000000

110011111

13-()

143-()

11+()

Sign extension is
shown in blue

Signed Multiplication

KSIT31

 For a negative multiplier, a straightforward solution is to
form the 2’s-complement of both the multiplier and the
multiplicand and proceed as in the case of a positive
multiplier.

 This is possible because complementation of both operands
does not change the value or the sign of the product.

 A technique that works equally well for both negative and
positive multipliers – Booth algorithm.

Booth Algorithm

KSIT32

 Consider in a multiplication, the multiplier is positive 0011110,
how many appropriately shifted versions of the multiplicand are
added in a standard procedure?

0

0 0

1 0 1 1 0 1

0

0 0 0 0 0 0

1

0

011010

1011010

1011010

1011010

0000000

000000

011000101010

0

00

1+ 1+ 1+ 1+

Booth Algorithm

KSIT33

 Since 0011110 = 0100000 – 0000010, if we use the

expression to the right, what will happen?

0

1

0 1 0 1 1 1

0000

00000000000000

1 1 1 1 1 1 1 0 1 0 0 1

00

0

0 0 0 1 0 1 1 0 1

0 0 0 0 0 0 0 0

0110001001000 1

2's complement of

the multiplicand

0

0

0

0

1+ 1-

0

0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

Booth Algorithm

KSIT34

 In general, in the Booth scheme, -1 times the shifted multiplicand is selected
when moving from 0 to 1, and +1 times the shifted multiplicand is selected
when moving from 1 to 0, as the multiplier is scanned from right to left.

Booth recoding of a multiplier.

001101011100110100

00000000 1+ 1-1-1+1-1+1-1+1-1+

Booth Algorithm

KSIT35

Booth multiplication with a negative multiplier.

01

0

1 1 1 1 0 1 1

0 0 0 0 0 0 0 0 0

00

0110

0 0 0 0 1 1 0

1100111

0 0 0 0 0 0

01000 11111

1

10 1 1 0 1

1 1 0 1 0 6-()

13+()

X

78-()

+11- 1-

Booth Algorithm

KSIT36

Multiplier

Bit i Bit i 1-

Version of multiplicand
selected by biti

0

1

0

0

01

1 1

0 M

1+ M

1 M

0 M

Booth multiplier recoding table.

X

X

X

X

Booth Algorithm

KSIT37

 Best case – a long string of 1’s (skipping over 1s)

 Worst case – 0’s and 1’s are alternating

1

0

1110000111110000

001111011010001

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0

000000000000

00000000

1- 1- 1- 1- 1- 1- 1- 1-

1- 1- 1- 1-

1-1-

1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+

1+

1+1+1+

1+

Worst-case

multiplier

Ordinary
multiplier

Good
multiplier

Fast Multiplication

Bit-Pair Recoding of Multipliers

KSIT39

 Bit-pair recoding halves the maximum number of summands

(versions of the multiplicand).

1+1

(a) Example of bit-pair recoding derived from Booth recoding

0

000

1 1 0 1 0

Implied 0 to right of LSB

1

0

Sign extension

1

21 



Bit-Pair Recoding of Multipliers

KSIT40

i 1+ i 1

(b) Table of multiplicand selection decisions

selected at position i

MultiplicandMultiplier bit-pair

i

0

0

1

1

1

0

1

0

1

1

1

1

0

0

0

1

1

0

0

1

0

0

1

Multiplier bit on the right

0 0 X M

1+

1

1+

0

1

2

2+









X M

X M

X M

X M

X M

X M

X M

Bit-Pair Recoding of Multipliers

KSIT41

1-

0000

1 1 1 1 1 0

0 0 0 0 11

1 1 1 1 10 0

0 0 0 0 0 0

0000 111111

0 1 1 0 1

0

1 010011111

1 1 1 1 0 0 1 1

0 0 0 0 0 0

1 1 1 0 1 1 0 0 1 0

0

1

0 0

1 0

1

0 0

0

0 1

0

0 1

10

0

010

0 1 1 0 1

11

1-

6-()

13+()

1+

78-()

1- 2-

´

Figure 6.15. Multiplication requiring only n/2 summands.

Carry-Save Addition of Summands

KSIT
42

 CSA speeds up the addition process.

P7 P6 P5 P4 P3 P2 P1 P0

Carry-Save Addition of Summands(Cont.,)

KSIT43 P3 P2 P1 P0P5 P4P7 P6

Carry-Save Addition of Summands(Cont.,)

KSIT44

 Consider the addition of many summands, we can:
 Group the summands in threes and perform carry-save addition on each of

these groups in parallel to generate a set of S and C vectors in one full-adder
delay

 Group all of the S and C vectors into threes, and perform carry-save addition
on them, generating a further set of S and C vectors in one more full-adder
delay

 Continue with this process until there are only two vectors remaining

 They can be added in a RCA or CLA to produce the desired product

Carry-Save Addition of Summands

KSIT45

Figure 6.17. A multiplication example used to illustrate carry-save addition as shown in Figure 6.18.

100 1 11

100 1 11

100 1 11

11111 1

100 1 11 M

Q

A

B

C

D

E

F

(2,835)

X

(45)

(63)

100 1 11

100 1 11

100 1 11

000 1 11 111 0 00 Product

Figure 6.18. The multiplication example from Figure 6.17 performed using

carry-save addition.

00000101 0 10

10010000 1 11 1

+

1000011 1

10010111 0 10 1

0110 1 10 0

00011010 0 00

10001011 1 0 1

110001 1 0

00111100

00110 1 10

11001 0 01

100 1 11

100 1 11

100 1 11

00110 1 10

11001 0 01

100 1 11

100 1 11

100 1 11

11111 1

100 1 11 M

Q

A

B

C

S
1

C
1

D

E

F

S
2

C
2

S
1

C
1

S
2

S
3

C
3

C
2

S
4

C
4

Product

x

KSIT46

Integer Division

Manual Division

KSIT48

Longhand division examples.

1101

1

13

14

26

21

274 100010010

10101

1101

1

1110

1101

10000

13 1101

Longhand Division Steps

KSIT49

 Position the divisor appropriately with respect to the

dividend and performs a subtraction.

 If the remainder is zero or positive, a quotient bit of 1 is

determined, the remainder is extended by another bit of the

dividend, the divisor is repositioned, and another subtraction

is performed.

 If the remainder is negative, a quotient bit of 0 is determined,

the dividend is restored by adding back the divisor, and the

divisor is repositioned for another subtraction.

Circuit Arrangement

KSIT50 Figure 6.21. Circuit arrangement for binary division.

qn-1

Divisor M

Control

Sequencer

Dividend Q

Shift left

N+1 bit

adder

q0

Add/Subtract

Quotient

Setting

A

m00 mn-1

a0an
an-1

Restoring Division

KSIT51

 Shift A and Q left one binary position

 Subtract M from A, and place the answer back in A

 If the sign of A is 1, set q0 to 0 and add M back to A (restore

A); otherwise, set q0 to 1

 Repeat these steps n times

Examples

KSIT52

10111

Figure 6.22. A restoring-division example.

1 1 1 1 1

01111

0

0

0

1

0
0
0

0

0

0
0

0

0

0

0
0

0

1

0
0

0

0

0

1 01

11

1 1

01

0001

Subtract
Shift

Restore

1 0000
1 0000

1 1

Initially

Subtract

Shift

10111

10000
11000
00000

Subtract
Shift

Restore

10111
01000
10000

1 1

QuotientRemainder

Shift

10111

1 0000

Subtract

Second cycle

First cycle

Third cycle

Fourth cycle

0
0

0

0

0
0

1

0

1

10000

1 1
1 0000

11111
Restore

q0Set

q0Set

q0Set

q0Set

Nonrestoring Division

KSIT53

 Avoid the need for restoring A after an unsuccessful
subtraction.

 Any idea?

 Step 1: (Repeat n times)
 If the sign of A is 0, shift A and Q left one bit position and subtract

M from A; otherwise, shift A and Q left and add M to A.

 Now, if the sign of A is 0, set q0 to 1; otherwise, set q0 to 0.

 Step2: If the sign of A is 1, add M to A

Examples

KSIT54 A nonrestoring-division example.

Add

Restore

remainder

Remainder

0 0 0 01

1 1 1 1 1
0 0 0 1 1

1

Quotient

0 0 1 01 1 1 1 1

0 0 0 01 1 1 1 1

Shift 0 0 0

11000

01111

Add

0 0 0 1 1

0 0 0 0 1 0 0 0

1 1 1 0 1

Shift

Subtract

Initially 0 0 0 0 0 1 0 0 0

1 1 1 0 0000

1 1 1 0 0

0 0 0 1 1

0 0 0Shift

Add

0 0 10 0 0 01

1 1 1 0 1

Shift

Subtract

0 0 0 110000

Fourth cycle

Third cycle

Second cycle

First cycle

q
0Set

q
0

Set

q
0

Set

q
0

Set

Floating-Point Numbers

and

Operations

Fractions

KSIT56

If b is a binary vector, then we have seen that it can be interpreted as
an unsigned integer by:

V(b) = b31.2
31 + b30.2

30 + bn-3.2
29 + + b1.2

1 + b0.2
0

This vector has an implicit binary point to its immediate right:

b31b30b29....................b1b0. implicit binary point

Suppose if the binary vector is interpreted with the implicit binary point is
just left of the sign bit:

implicit binary point .b31b30b29....................b1b0

The value of b is then given by:

V(b) = b31.2
-1 + b30.2

-2 + b29.2
-3 + + b1.2

-31 + b0.2
-32

Range of fractions

KSIT57

The value of the unsigned binary fraction is:

V(b) = b31.2
-1 + b30.2

-2 + b29.2
-3 + + b1.2

-31 + b0.2
-32

The range of the numbers represented in this format is:

In general for a n-bit binary fraction (a number with an assumed binary

point at the immediate left of the vector), then the range of values is:

9999999998.021)(0 32  bV

nbV  21)(0

Scientific notation

KSIT58

•Previous representations have a fixed point. Either the point is to the

immediate right or it is to the immediate left. This is called Fixed point

representation.

•Fixed point representation suffers from a drawback that the representation

can only represent a finite range (and quite small) range of numbers.

A more convenient representation is the scientific representation, where

the numbers are represented in the form:

x m1.m2m3m4 b
e

Components of these numbers are:

Mantissa (m), implied base (b), and exponent (e)

Significant digits

KSIT59

A number such as the following is said to have 7 significant digits

x 0.m1m2m3m4m5m6m7  b
e

Fractions in the range 0.0 to 0.9999999 need about 24 bits of precision

(in binary). For example the binary fraction with 24 1’s:

111111111111111111111111 = 0.9999999404

Not every real number between 0 and 0.9999999404 can be represented

by a 24-bit fractional number.

The smallest non-zero number that can be represented is:

000000000000000000000001 = 5.96046 x 10-8

Every other non-zero number is constructed in increments of this value.

Sign and exponent digits

KSIT60

•In a 32-bit number, suppose we allocate 24 bits to represent a fractional

mantissa.

•Assume that the mantissa is represented in sign and magnitude format,

and we have allocated one bit to represent the sign.

•We allocate 7 bits to represent the exponent, and assume that the

exponent is represented as a 2’s complement integer.

•There are no bits allocated to represent the base, we assume that the

base is implied for now, that is the base is 2.

•Since a 7-bit 2’s complement number can represent values in the range

-64 to 63, the range of numbers that can be represented is:

0.0000001 x 2-64 < = | x | <= 0.9999999 x 263

•In decimal representation this range is:

0.5421 x 10-20 < = | x | <= 9.2237 x 1018

A sample representation

KSIT61

Sign Exponent Fractional mantissa

bit

1 7 24

•24-bit mantissa with an implied binary point to the immediate left

•7-bit exponent in 2’s complement form, and implied base is 2.

IEEE notation

KSIT62

IEEE Floating Point notation is the standard representation in use. There are two

representations:

- Single precision.

- Double precision.

Both have an implied base of 2.

Single precision:

- 32 bits (23-bit mantissa, 8-bit exponent in excess-127 representation)

Double precision:

- 64 bits (52-bit mantissa, 11-bit exponent in excess-1023 representation)

Fractional mantissa, with an implied binary point at immediate left.

Sign Exponent Mantissa
1 8 or 11 23 or 52

Exponent field

KSIT63

In the IEEE representation, the exponent is in excess-127 (excess-1023)

notation.

The actual exponents represented are:

-126 <= E <= 127 and -1022 <= E <= 1023
not
-127 <= E <= 128 and -1023 <= E <= 1024

This is because the IEEE uses the exponents -127 and 128 (and -1023 and

1024), that is the actual values 0 and 255 to represent special conditions:

- Exact zero

- Infinity

Floating point arithmetic

KSIT64

Addition:

3.1415 x 108 + 1.19 x 106 = 3.1415 x 108 + 0.0119 x 108 = 3.1534 x 108

Multiplication:

3.1415 x 108 x 1.19 x 106 = (3.1415 x 1.19) x 10(8+6)

Division:
3.1415 x 108 / 1.19 x 106 = (3.1415 / 1.19) x 10(8-6)

Biased exponent problem:

If a true exponent e is represented in excess-p notation, that is as e+p.

Then consider what happens under multiplication:

a. 10(x + p) * b. 10(y + p) = (a.b). 10(x + p + y +p) = (a.b). 10(x +y + 2p)

Representing the result in excess-p notation implies that the exponent

should be x+y+p. Instead it is x+y+2p.

Biases should be handled in floating point arithmetic.

Floating point arithmetic: ADD/SUB

rule

KSIT65

 Choose the number with the smaller exponent.

 Shift its mantissa right until the exponents of both the

numbers are equal.

 Add or subtract the mantissas.

 Determine the sign of the result.

 Normalize the result if necessary and truncate/round to the

number of mantissa bits.

Note: This does not consider the possibility of overflow/underflow.

Floating point arithmetic: MUL rule

KSIT66

 Add the exponents.

 Subtract the bias.

 Multiply the mantissas and determine the sign of the result.

 Normalize the result (if necessary).

 Truncate/round the mantissa of the result.

Floating point arithmetic: DIV rule

KSIT67

 Subtract the exponents

 Add the bias.

 Divide the mantissas and determine the sign of the result.

 Normalize the result if necessary.

 Truncate/round the mantissa of the result.

Note: Multiplication and division does not require alignment of the
mantissas the way addition and subtraction does.

Model Questions

KSIT68

1. Explain with figure the design and working of a 16 bit carry look ahead adder built
from 4 bit adders.

2. Explain booth algorithm. Apply booth algorithm to multiply the signed numbers
+13 x -6 and -13 x +9.

3. Write circuit arrangement for sequential binary multiplier, explain with example.

4. Differentiate between restoring and non - restoring division. Perform restoring
division for the given binary numbers 1000/11, show all cycles.

5. Design 4 bit carry look ahead logic and explain how it is faster than 4 bit ripple
adder.

6. Multiply 14 x -8 using booth's algorithm.

7. Explain normalization, excess exponent and special values with respect to IEEE
floating point representation.

8. With figure explain circuit arrangements for binary division.

9. IEEE standard for floating point numbers, explain

10. Design a logic circuit to perform addition/ subtraction of two 'n' bit numbers X
and Y.

11. Explain the different arithmetic operation on floating point numbers.

MODULE-5

BASIC PROCESSING UNIT

1

OBJECTIVE

o Basic Processing Unit:

o Execution of instructions by a processor

o The functional units of a processor and how they are

interconnected

o Hardware for generating control signals

o Microprogrammed control

 Embedded Systems and Large Computer

Systems

 Embedded applications

 Microcontrollers for embedded systems

 Different structure for implementing multiprocessors 2

 Text Books:

 Carl Hamacher, Zvonko Vranesic, Safwat Zaky:

Computer Organization, 5th Edition, Tata McGraw

Hill, 2002.

 Carl Hamacher, Zvonko Vranesic, Safwat Zaky,

Naraig Manjikian : Computer Organization and

Embedded Systems, 6th Edition, Tata McGraw Hill,

2012.

 Reference Books:

 William Stallings: Computer Organization &

Architecture, 9th Edition, Pearson, 2015.

3

BASIC PROCESSING UNIT

4

INTRODUCTION

 Instruction Set Processor (ISP)

 Central Processing Unit (CPU)

 A typical computing task consists of a series of

steps specified by a sequence of machine

instructions that constitute a program.

 An instruction is executed by carrying out a

sequence of more rudimentary operations.

5

SOME FUNDAMENTAL CONCEPTS

6

FUNDAMENTAL CONCEPTS

 Processor fetches one instruction at a time and

perform the operation specified.

 Instructions are fetched from successive memory

locations until a branch or a jump instruction is

encountered.

 Processor keeps track of the address of the

memory location containing the next instruction

to be fetched using Program Counter (PC).

 Instruction Register (IR) decodes the instruction

and informs control unit to generate required

signal.
7

EXECUTING AN INSTRUCTION

 Fetch phase and Execution phase

 Fetch the contents of the memory location pointed

to by the PC. The contents of this location are

loaded into the IR (Fetch phase).

IR ← [[PC]]

 Assuming that the memory is byte addressable,

increment the contents of the PC by 4 (fetch phase).

PC ← [PC] + 4

 Carry out the actions specified by the instruction in

the IR (execution phase).

8

PROCESSOR ORGANIZATION-1

 The registers, the

ALU, and the

interconnecting bus

are collectively

referred to as the data

path. 9

MDR HAS

TWO INPUTS

AND TWO

OUTPUTS

Figure 7.1. Single-bus organization of the datapath inside a processor.

lines
Data

Address

lines

bus

Memory

Carry-in

ALU

PC

MAR

MDR

Y

Z

Add

XOR

Sub

bus

IR

TEMP

R0

control
ALU

lines

Control signals

R n 1-()

Instruction

decoder and

Internal processor

control logic

A B

MUXSelect

Constant 4

EXECUTING AN INSTRUCTION

 Transfer a word of data from one processor
register to another or to the ALU.

 Perform an arithmetic or a logic operation and
store the result in a processor register.

 Fetch the contents of a given memory location
and load them into a processor register.

 Store a word of data from a processor register
into a given memory location.

10

REGISTER TRANSFERS

 The input and output of register Ri are connected to the bus via switches

controlled by the signals Riin and Riout respectively.

 When Riin is set to 1, the data on the bus are loaded into Ri.

 Riout, is set to 1, the contents of register Riout are placed on the bus.

 While Riout is equal to 0, the bus can be used for transferring data from

other registers.

 All operation coordinate by processor clock. That can be rising or falling edge

of the clock.

 E.g. Data transfer from R1 to R4

11Zout

Figure 7.2. Input and output gating for the registers in Figure 7.1.

BA

Z

ALU

Yin

Y

Zin

Riin

Ri

Riout

bus
Internal processor

Constant 4

MUXSelect

REGISTER TRANSFERS

 A two-input multiplexer is used to select the data applied to the input of an edge-triggered D flip-flop.

 When the control input Riin is equal to 1, the multiplexer selects the data on the bus. This data will be loaded into the flip-flop at the

rising edge of the clock.

 When Riin is equal to 0, the multiplexer feeds back the value currently stored in the flip-flop. The Q output of the flip-flop is

connected to the bus via a tri-state gate.

 When Riout, is equal to 0, the gate's output is in the high-impedance (electrically disconnected) state. This corresponds to the open-

circuit state of a switch.

 When Riout, = 1, the gate drives the bus to 0 or 1, depending on the value of Q.

12

Figure 7.3. Input and output gating for one register bit.

D Q

Q

Clock

1

0

Riout

Riin

Bus

PERFORMING AN ARITHMETIC OR LOGIC

OPERATION

 The ALU is a combinational circuit that has

no internal storage.

 ALU gets the two operands from MUX and

bus. The result is temporarily stored in

register Z.

 What is the sequence of operations to add

the contents of register R1 to those of R2

and store the result in R3?

1. R1out, Yin (1 Clock Cycle)

2. R2out, SelectY, Add, Zin (2 Clock Cycle)

3. Zout, R3in (3 Clock Cycle) 13

FETCHING A WORD FROM MEMORY

 Address into MAR; issue Read operation; data into MDR.

Figure 7.4. Connection and control signals for register MDR.

14

MDR

Memory-bus
data lines

Internal processor
b usMDR

out
MDR

outE

MDR
in

MDR
inE

 The response time of each memory access
varies (cache miss, memory-mapped I/O,…).

 To accommodate this, the processor waits
until it receives an indication that the
requested operation has been completed
(Memory-Function-Completed, MFC).

 Move (R1), R2
1. MAR ← [R1]

2. Start a Read operation on the memory bus

3. Wait for the MFC response from the memory

4. Load MDR from the memory bus

5. R2 ← [MDR]

15

Fetching a Word from Memory

TIMING

Assume MAR

is always available

on the address lines

of the memory bus.

R2 ← [MDR]

MAR ← [R1]

Start a Read operation on the memory bus

Wait for the MFC response from the memory

Load MDR from the memory bus

16

Figure 7.5. T iming of a memory Read operation.

1 2

Clock

Address

MR

Data

MFC

Read

MDR
inE

MDR
out

Step 3

MAR
in

FETCHING A WORD FROM MEMORY

 The memory read operation requires three steps

described as follows:

1. R1out, MARin, Read

2. MDRinE, WMFC

3. MDRout, R2in

 Similar steps are for Write data into memory

(Store in memory)

17

EXECUTION OF A COMPLETE INSTRUCTION

 Add (R3), R1

1. Fetch the instruction

2. Fetch the first operand (the contents of the

memory location pointed to by R3)

3. Perform the addition

4. Load the result into R1

18

ARCHITECTURE

BA

Z

ALU

Yin

Y

Zin

Zout

Riin

Ri

Riout

bus
Internal processor

Constant 4

MUX

Figure 7.2. Input and output gating for the registers in Figure 7.1.

Select

19

EXECUTION OF A COMPLETE INSTRUCTION
Step Action

1 PCout , MAR in , Read,Select4,Add, Zin

2 Zout , PCin , Yin , WMF C

3 MDRout , IR in

4 R3out , MAR in , Read

5 R1out , Yin , WMF C

6 MDRout , SelectY,Add, Zin

7 Zout , R1in , End

Figure 7.6. Control sequencefor executionof the instruction Add (R3),R1.

Add (R3), R1

20

lines

Data

Address

lines

bus

Memory

Carry-in

ALU

PC

MAR

MDR

Y

Z

Add

XOR

Sub

bus

IR

TEMP

R0

control

ALU

lines

Control signals

R n 1-()

Instruction

decoder and

Internal processor

control logic

A B

MUXSelect

Constant 4

Yin step 2. There is no need to copy the updated contents of PC into register Y when

executing the Add instruction. But, in Branch instructions the updated value of the PC

is needed to compute the Branch target address.

EXECUTION OF BRANCH INSTRUCTIONS

 A branch instruction replaces the contents of PC

with the branch target address, which is usually

obtained by adding an offset X given in the

branch instruction.

 The offset X is usually the difference between the

branch target address and the address

immediately following the branch instruction.

 Conditional branch

21

EXECUTION OF BRANCH INSTRUCTIONS

Step Action

1 PCout , MAR in , Read,Select4,Add, Zin

2 Zout, PCin , Yin, WMFC

3 MDRout , IR in

4 Offset-field-of-IRout, Add, Zin

5 Zout, PCin , End

Figure 7.7. Control sequence for an unconditional branch instruction.

22

lines
Data

Address

lines

bus

Memory

Carry-in

ALU

PC

MAR

MDR

Y

Z

Add

XOR

Sub

bus

IR

TEMP

R0

control
ALU

lines

Control signals

R n 1-()

Instruction

decoder and

Internal processor

control logic

A B

MUXSelect

Constant 4

For Conditional branch Instruction

E.g.

Offset-field-of-IRout, Add, Zin, If N=0 then End

if N (Negative)=0 processor returns to step 1

immediately after step 4

if N (Negative)=1 step 5 is performed

MULTIPLE-BUS ORGANIZATION

 The resulting control sequences

shown are quite long because

only one data item can be

transferred over the bus in a

clock cycle.

 To reduce the number of steps

needed, most commercial

processors provide multiple

internal paths that enable

several transfers to take place

in parallel.

23Memory bus
data lines

Figure 7.8. Three-b us or g anization of the datapath.

Bus A Bus B Bus C

Instruction
decoder

PC

Re gister

file

Constant 4

ALU

MDR

A

B

R

M
U

X

Incrementer

Address
lines

MAR

IR

MULTIPLE-BUS ORGANIZATION

 Add R4, R5, R6

Step Action

1 PC
out

, R=B, MAR in , Read, IncPC

2 WMFC

3 MDRoutB, R=B, IR in

4 R4
outA

, R5
outB

, SelectA, Add, R6
in

, End

Control sequence for the instruction. Add R4,R5,R6,for the three-bus organization

24

Buses A and B are used to transfer the source operands to A and B inputs of

the ALU. The result of ALU (R) is transferred to the destination C.

R=B Bus B data transferred to the Bus C

HARDWIRED CONTROL

25

OVERVIEW

 To execute instructions, the processor must have

some means of generating the control signals

needed in the proper sequence.

 Two categories: hardwired control and

microprogrammed control

 Hardwired system can operate at high speed; but

with little flexibility.

26

CONTROL UNIT ORGANIZATION-1

Figure 7.10. Control unit organization.

CLK
Clock

Control step

IR
encoder

Decoder/

Control signals

codes

counter

inputs

Condition

External

27

CONTROL UNIT ORGANIZATION

 The sequence of control signals step is complete in

one clock period.

 A counter may be used to keep track of the control

steps, as shown in previous slide. Each state, or

count, of this counter corresponds to one control

step.

 The required control signals are determined by the

following information:

1. Contents of the control step counter

2. Contents of the instruction register

3. Contents of the condition code flags

4. External input signals, such as MFC and interrupt

requests
28

DETAILED BLOCK DESCRIPTION
BY SEPARATING THE DECODING AND ENCODING FUNCTIONS, WILL OBTAIN THE MORE

DETAILED BLOCK DIAGRAM

29

External
inputs

Figure 7.11. Separation of the decoding and encoding functions.

Encoder

Reset
CLK

Clock

Control signals

counter

Run End

Condition
codes

decoder

Instruction

Step decoder

Control step

IR

T
1

T
2

T
n

INS1

INS
2

INSm

DETAILED BLOCK DESCRIPTION

 The step decoder provides a separate signal line

for each step, or time slot, in the control

sequence.

 Similarly, the output of the instruction decoder

consists of a separate line for each machine

instruction. For any instruction loaded in the IR,

one of the output lines INS1 through INSm is set

to 1, and all other lines are set to 0.

 The input signals to the encoder block in diagram

combined to generate the individual control

signals Yin, PCout, Add, End, and so on.
30

GENERATING ZIN

 Zin = T1 + T6 • ADD + T4 • BR + …

 This signal is asserted during time slot T1 for all instructions, during T6 for an Add instruction,

during T4 for an unconditional branch instruction, and so on. The logic function for Zin is derived

from the control sequences

31

Figure 7.12. Generation of the Zin control signal for the processor in Figure 7.1.

T1

AddBranch

T4 T6

Zin

GENERATING END
 End = T7 • ADD + T5 • BR + (T5 • N + T4 • N) • BRN +…

 The End signal starts a new instruction fetch cycle by resetting the control step counter to its starting value.

 Set to 1, RUN causes the counter to be incremented by one at the end of every clock cycle. When RUN is equal to 0, the

counter stops counting.

 This is needed whenever the WMFC signal is issued, to cause the processor to wait for the reply from the memory.

32

Figure 7.13. Generation of the End control signal.

T 7

Add Branch
Branch<0

T 5

End

NN

T 4T 5

A COMPLETE PROCESSOR

33

Instruction
unit

Inte ger

unit

Floating-point

unit

Instruction
cache

Data
cache

Bus interf ace

Main
memory

Input/
Output

System bus

Pr ocessor

Block diagram of a complete processor

.

MICROPROGRAMMED CONTROL

34

OVERVIEW

Step Action

1 PCout , MAR in , Read,Select4,Add, Zin

2 Zout , PCin , Yin , WMF C

3 MDRout , IR in

4 R3out , MAR in , Read

5 R1out , Yin , WMF C

6 MDRout , SelectY,Add, Zin

7 Zout , R1in , End

Figure 7.6. Control sequencefor executionof the instruction Add (R3),R1.

35

OVERVIEW

 Control signals are generated by a program similar to machine
language programs.

 Control Word (CW); microroutine; microinstruction

36

P
C

in

P
C

o
u
t

M
A

R
in

R
ea

d

M
D

R
o
u
t

IR
in

Y
in

S
el

ec
t

A
d
d

Z
in

Z
o
u
t

R
1 o

u
t

R
1 i

n

R
3 o

u
t

W
M

F
C

E
n
d

0

1

0

0

0

0

0

0

0

0

0

0

0

1

1

0

0

0

0

0

0

1

0

0

1

0

0

0

1

0

0

1

0

0

0

0

0

1

0

0

1

0

0

0

1

0

0

0

0

0

1

0

0

1

0

0

1

0

0

0

0

0

0

1

0

0

0

0

1

0

1

0

0

0

0

1

0

0

1

0

0

0

0

1

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

1

0

0

0

0

1

0

0

1

0

0

Micro -
instruction

1

2

3

4

5

6

7

Figure 7.15 An e xample of microinstructions for Figure 7.6.

OVERVIEW

 Control store

One function

cannot be carried

out by this simple

organization.

37

Figure 7.16.Basic organization of a microprogrammed control unit.

store CW
Control

generator

Starting
address

Clock mPC

IR

OVERVIEW

 A control word (CW) is a word whose

individual bits represent the various control

signals. Each of the control steps in the control

sequence of an instruction defines a unique

combination of 1s and 0s in the CW.

 A sequence of CWs corresponding to the control

sequence of a machine instruction constitutes the

microroutine for that instruction, and the

individual control words in this micro routine are

referred to as microinstructions.

38

OVERVIEW

 The micro routines for all instructions in the instruction set of a computer are stored in a

special memory called the control store.

 The control unit can generate the control signals for any instruction by sequentially

reading the CWs of the corresponding micro routine from the control store.

 To read the control words sequentially from the control store, a micro program counter

(μPC) is used. Every time a new instruction is loaded into the IR, the output of the block

labeled "starting address generator" is loaded into the μPC.

 The μPC is then automatically incremented by the clock, causing successive

microinstructions to be read from the control store.

 Hence, the control signals are delivered to various parts of the processor in the correct

sequence.

39

OVERVIEW

 The previous organization cannot handle the situation when the
control unit is required to check the status of the condition codes or
external inputs to choose between alternative courses of action.

 Use conditional branch microinstruction.

AddressMicroinstruction

0 PCout , MAR in , Read,Select4,Add, Zin

1 Zout , PCin , Yin , WMFC

2 MDRout , IRin

3 Branch to startingaddressofappropriatemicroroutine

. .

25 If N=0, then branchto microinstruction0

26 Offset-field-of-IRout , SelectY, Add, Zin

27 Zout , PCin , End

Figure 7.17. Microroutine for the instruction Branch<0.

40

OVERVIEW

 The instruction Branch <0 loading this

instruction into IR, a branch microinstruction

transfers control to the corresponding micro

routine, which is assumed to start at location 25

in the control store. This address is the output of

staring address generator block codes.

 If this bit is equal to 0, a branch takes place to

location 0 to fetch a new machine instruction.

Otherwise, the microinstruction at location 0 to

fetch a new machine instruction.

 Otherwise the microinstruction at location 27

loads this address into the PC. 41

OVERVIEW

Figure 7.18. Organization of the control unit to allow

conditional branching in the microprogram.

Control
store

Clock

generator

Starting and
branch address Condition

codes

inputs
External

CW

IR

mPC

42

MICROINSTRUCTIONS

 A straightforward way to structure microinstructions is to assign one
bit position to each control signal.

 However, this is very inefficient.

 The length can be reduced: most signals are not needed
simultaneously, and many signals are mutually exclusive.

 All mutually exclusive signals are placed in the same group in binary
coding.

 Assigning individual bits to each control signal results in long

microinstructions because the number of required signals is usually

large.

 Moreover, only a few bits are set to 1 (to be used for active gating) in

any given microinstruction, which means the available bit space is

poorly used.

43

What is the price paid for

this scheme?

PARTIAL FORMAT FOR THE

MICROINSTRUCTIONS

44

F2 (3 bits)

000: No transfer

001: PC
in

010: IRin
011: Zin

100: R0in
101: R1

in

110: R2in
111: R3in

F1 F2 F3 F4 F5

F1 (4 bits) F3 (3 bits) F4 (4 bits) F5 (2 bits)

0000: No transfer

0001: PC
out

0010: MDRout

0011: Zout

0100: R0out

0101: R1
out

0110: R2out

0111: R3out

1010: TEMPout

1011: Offsetout

000: No transfer

001: MAR
in

010: MDRin

011: TEMPin

100: Yin

0000: Add

0001: Sub

1111: XOR

16 ALU
functions

00: No action

01: Read

10: Write

F6 F7 F8

F6 (1 bit) F7 (1 bit) F8 (1 bit)

0: SelectY

1: Select4

0: No action

1: WMFC

0: Continue

1: End

Figure 7.19. An example of a partial format for field-encoded microinstructions.

Microinstruction

PARTIAL FORMAT FOR THE

MICROINSTRUCTIONS

 The length of the microinstructions can be reduced easily.

 Most signals are not needed simultaneously, and many signals are

mutually exclusive. For e.g., only one function of the ALU can be activated

at a time.

 The source for a data transfer must be unique because it is not possible to

gate the contents of two different registers onto the bus at the same time.

 Read and Write signals to the memory cannot be active simultaneously.

 This suggests that signals can be grouped so that all mutually exclusive

signals are placed in the same group. Thus, at most one micro operation

per group is specified in any microinstruction.

45

PARTIAL FORMAT FOR THE

MICROINSTRUCTIONS

 Then it is possible to use a binary coding scheme

to represent the signals within a group.

 For example, four bits suffice to represent the 16

available functions in the ALU. Register output

control signals can be placed in a group

consisting of PCout, MDRout, Zout, Offsetout,

R0out Rlout, R2out, R3out, and TEMPout. Any

one of these can be selected by a unique 4-bit

code.

46

FURTHER IMPROVEMENT

 Enumerate the patterns of required signals in all

possible microinstructions. Each meaningful

combination of active control signals can then be

assigned a distinct code.

 Vertical organization

 Horizontal organization

47

FURTHER IMPROVEMENT

 Highly encoded schemes that use compact codes to specify only a small number of control functions in each microinstruction are

referred to as a vertical organization.

 On the other hand, the minimally encoded scheme, in which many resources can be controlled with a single microinstruction, is

called a horizontal organization.

 The horizontal approach is useful when a higher operating speed is desired and when the machine structure allows parallel use of

resources.

 The vertical approach results in considerably slower operating speeds because more microinstructions are needed to perform the

desired control functions. Although fewer bits are required for each microinstruction, this does not imply that the total number of

bits in the control store is smaller. The significant factor is that less hardware is needed to handle the execution of

microinstructions.

 Horizontal and vertical organizations represent the two organizational extremes in micro programmed control.

48

MICROPROGRAM SEQUENCING

 If all microprograms require only straightforward
sequential execution of microinstructions except for
branches, letting a μPC governs the sequencing would
be efficient.

 However, two disadvantages:
 Having a separate microroutine for each machine instruction results

in a large total number of microinstructions and a large control store.

 Longer execution time because it takes more time to carry out the
required branches.

 Example: Add src, Rdst

 Four addressing modes: register, autoincrement,
autodecrement, and indexed (with indirect forms).

49

- Bit-ORing

- Wide-Branch Addressing

- WMFC

50

OP code 0 1 0 Rsrc Rdst

Mode

Contents of IR

034781011

Figure 7.21. Microinstruction for Add (Rsrc)+,Rdst.

Note: Microinstruction at location 170 is not executed for this addressing mode.

Address Microinstruction

(octal)

000 PCout, MARin , Read, Select 4, Add, Z in

001 Zout , PCin, Yin, WMFC

002 MDRout, IRin

003 mBranch {m PC 101 (from Instruction decoder);

mPC5,4  [IR10,9]; mPC3 

121 Rsrcout, MARin , Read, Select4, Add, Zin

122 Zout , Rsrcin

123

170 MDRout, MARin , Read, WMFC

171 MDRout, Yin

172 Rdstout , SelectY, Add, Zin

173 Zout , Rdstin , End

[IR10] ×[IR9] ×[IR8]}

mBranch {mPC 170;mPC0  [IR8]}, WMFC

51

MICROINSTRUCTIONS WITH NEXT-

ADDRESS FIELD

 The microprogram we discussed requires
several branch microinstructions, which
perform no useful operation in the datapath.

 A powerful alternative approach is to include
an address field as a part of every
microinstruction to indicate the location of
the next microinstruction to be fetched.

 Pros: separate branch microinstructions are
virtually eliminated; few limitations in
assigning addresses to microinstructions.

 Cons: additional bits for the address field
(around 1/6)

52

MICROINSTRUCTIONS WITH NEXT-

ADDRESS FIELD

53

Figure 7.22. Microinstruction-sequencing organization.

Condition
codes

IR

Decoding circuits

Control store

Next address

Microinstruction decoder

Control signals

Inputs
External

mAR

mI R

54

F1 (3 bits)

000: No transfer

001: PCout

010: MDR
out

011: Z
out

100: Rsrc
out

101: Rdst
out

110: TEMP
out

F0 F1 F2 F3

F0 (8 bits) F2 (3 bits) F3 (3 bits)

000: No transfer

001: PCin

010: IR
in

011: Z
in

100: Rsrc
in

000: No transfer

001: MARin

F4 F5 F6 F7

F5 (2 bits)F4 (4 bits) F6 (1 bit)

0000: Add

0001: Sub

0: SelectY

1: Select4

00: No action

01: Read

Microinstruction

Address of next

microinstruction

101: Rdst
in

010: MDR
in

011: TEMP
in

100: Y
in

1111: XOR

10: Write

F8 F9 F10

F8 (1 bit)

F7 (1 bit)

F9 (1 bit) F10 (1 bit)

0: No action

1: WMFC

0: No action

1: OR
indsrc

0: No action

1: OR
mode

0: NextAdrs

1: InstDec

Figure 7.23. Format for microinstructions in the example of Section 7.5.3.

IMPLEMENTATION OF THE MICROROUTINE

55

decoder

Microinstruction

Control store

Next address F1 F2

Other control signals

F10F9F8

Decoder

Decoder

circuits
Decoding

Condition

External

codes

inputs

Rsrc RdstIR

Rdstout

Rdstin

Rsrcout

Rsrcin

mAR

InstDecout

ORmode

ORindsrc

R15in R15out R0in R0out

Figure 7.25. Some details of the control-signal-generating circuitry.

56

BIT-ORING

57

FURTHER DISCUSSIONS

 Prefetching Microinstruction

 To make faster the operation

 Emulation

 Instruction set of computer M2 is can run on

Computer M2 i.e. M1 emulated M2.

 Emulate allows to replace outdated equipment with

more up to data machines.

 If replacement computer fully emulate the original

one then no software change have to be made to run

existing program.

58

