Kammavari Sangham (R) 1952,
K.S Group of Institutions

K.S INSTITUTE OF TECHNOLOGY

#14, Raghuvanahalli, Kanakapura Main Road, Bengaluru 560 109

Department of Computer Science and
Engineering

B8 IMAVITETr OF TECHNDLIOGY

[.ab Manual

Machine Learning Laboratory (17CS76)

Prepared by:

Dr Rekha B Venkatapur, Prof & HOD Mr Prashanth H S, Asst Prof
Mr Raghavendrachar S, Asst Prof Mrs Beena K, Asst Prof

Lac o
“" Head of the Department
Dept. of Computer Science & Engg.
K.S. Institute of Technology
Bengaluru -560 i09

K.S. INSTITUTE OF TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE ENGINEERING

Vision of the Institute

To impart quality technical education with ethical values, employable skills and
research to achieve excellence

Mission of the Institute

* To attract and retain highly qualified, experienced & committed
faculty.

70 create relevant infrastructure.,

* Network with industry & premier institutions to encourage emergence of

new ideas by providing research & development facilities to strive for
academic excellence.

* To inculcate the professional & ethical values among young students with
employable skills & knowledge acquired to transform the society.

Vision of the Department

To create competent professionals in Computer Science and Engineering with
adequate skills to drive the IT industry

Mission of the Department

* Impart sound technical knowledge and quest for continuous learning.

~* To equip students to furnish Computer Applications for the society
through experiential learning and research with professional ethics.

* Encourage team work through inter-disciplinary project and evolve as

leaders with social concerns,
O-\\J u.LCu.lfquA.

af the parfment

e

K.S. Institute of Techn2lagy
Bengaluru -560 109

Dent i a—

RS
S 2

R e S Saes sl

=

K.S. INSTITUTE OF TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE ENGINEERING

Program Educational Objectives

’ PEOI: Excel in professional career by acquiring knowledge in cutting
edge technology and contribute to the society as an excellent

Ji employee or as an entrepreneur in the field of Computer

Science & Engineering.

PEO2: Continuously enhance their knowledge on par with the
development in IT industry and pursue higher studies in

Computer Science & Engineering.

PEO3: Exhibit professionalism, cultural awareness, team work, ethics,
and effective communication skills with their knowledge in
solving social and environmental problems by applying

computer technology.

Program Specific Outcomes (PSO)

PSOI: Ability to understand, analyze problems and implement solutions

in programming languages, as well to apply concepts in core areas
of Computer Science in association with professional bodies and

clubs.

PSO2: Ability to use computational skills and apply software knowledge

to develop effective solutions and data to address real world

challenges. s P
M

Head of the Department
Dep:. of Computer Science & Engg.
K.S. Institute of Technology -

LEARS

PO1:

PO2:

PO3:

PO4:

PO5:

POG6:

PO7:

K.S. INSTITUTE OF TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE ENGINEERING

Program Outcomes

Engineering knowledge: Apply the knowledge of mathematics,
science, engineering fundamentals, and an engineering specialization
to the solution of complex engineering problems.

Problem analysis: Identify, formulate, review research literature,
and analyze complex engineering problems reaching substantiated
conclusions using first principles of mathematics, natural sciences,
and engineering sciences.

Design/development of solutions: Design solutions for
complex engineering problems and design system components Or
processes that meet the specified needs with appropriate
consideration for the public health and safety, and the cultural,
societal, and environmental considerations.

Conduct investigations of complex problems: Use research-
based knowledge and research methods including design of
experiments, analysis and interpretation of data, and synthesis of the
information to provide valid conclusions.

Modern tool usage: Create, select, and apply appropriate
techniques, resources, and modern engineering and IT tools including
prediction and modeling to complex engineering activities with an
understanding of the limitations.

The engineer and society: Apply reasoning informed by the
contextual knowledge to assess socictal, health, safety, legal and
cultural issues and the consequent responsibilities relevant to the

professional engineering practice.

Environment and sustainability: Understand the impact of the
professional engineering solutions in societal and environmental
contexts, and demonstrate the knowledge of, and need for sustaipable
development. ‘

POS:

PO9:

PO10:

PO11:

PO12:

Ethics: Apply ethical principles and commit to professional ethics
and responsibilities and norms of the engineering practice.

Individual and team work: Function effectively as an
individual, and as a member or leader in diverse teams, and In
multidisciplinary settings.

Communication: Communicate effectively on complex
engineering activities with the engineering community and with
society at large, such as, being able to comprehend and write
effective reports and design documentation, make effective
presentations, and give and receive clear instructions.

Project management and finance: Demonstrate knowledge
and understanding of the engineering and management principles and
apply these to one’s own work, as a member and leader in a team, to
manage projects and in multidisciplinary environments.

Life-long learning: Recognize the need for, and have the
preparation and ability to engage in independent and life-long
learning in the broadest context of technological change.

Head of the Deparntment
Dept. of Compnter Science & Engg
K.S Iretnic of Technolagy
Bzugalny <360 103

€@ K S.INSTITUTE OF TECHNOLOGY

(ST #14, Raghuvanahalli, Kanakapura Main Road, Bengaluru-560109
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Course: Machine Learning Laboratory

Type: Core | Course Code:17CSL76 [Academic Year:2020-2021
Name: Mr. Raghavendrachar S and Mrs.Beena K [Sem:7 | Section :A
No of Hours per week
Theory Practical/Field :
(Lecture Class) | Work/Allied Activities ol ecke SRR T TN
0 011 + 02P 3 40
Marks
Internal Assessment Examination Total Credits
40 60 100 2

Aim/Objective of the Course:

1. Get the practical exposures of several machine learning algorithms.

2. Ability to recognize and select suitable model parameters for different machine learning techniques.

Course Learning Outcomes:

After completing the course, the students will be able to,

Co# COURSE OUTCOMES K-LEVEL
Applying
17CSL76.1 | Select the implementation procedures for the machine learning (K3)
algorithms.
Applying
17CSL762 | Identify suitable data sets to implement learning algorithms. (K3)
Applying
17CSL76.3 | Design the Python programs for various learning algorithms. (K3)
Find different approaches to improve the accuracy of the learning Applying
17CSL76.4
model. (K3)
Applying
17CSL76.5 | Apply machine learning algorithms to solve problems (K3)
Syllabus Content:

1. Implement and demonstrate the FIND-S algorithm for finding the most specific hypothesis
based on a given set of training data samples. Read the training data from a .CSV file. 3hrs

2. For a given set of training data examples stored in a .CSV file, implement and demonstrate the com
Candidate-Elimination algorithm to output a description of the set of all hypotheses consistent | CO2

with the training examples. CO3

3. Write a program to demonstrate the working of the decision tree based ID3 algorithm. Use an co4
appropriate data set for building the decision tree and apply this knowledge to classify a new | COS5
sample.

4. Build an Artificial Neural Network by implementing the Back propagation algorithm and
test the same using appropriate data sets.

5. Write a program to implement the naive Bayesian classifier for a sample training data set

stored as a .CSV file. Compute the accuracy of the classifier, considering few test data sets.

6. Assuming a set of documents that need to be classified, use the naive Bayesian Classifier
model to perform this task. Built-in Java classes/API can be used to write the program. Calculate

the accuracy, precision, and recall for your data set.

7. Write a program to construct a Bayesian network considering medical data. Use this model to
demonstrate the diagnosis of heart patients using standard Heart Disease Data Set. You can use

Java/Python ML library classes/API.

8. Apply EM algorithm to cluster a set of data stored in a .CSV file. Use the same data set for
clustering using k-Means algorithm. Compare the results of these two algorithms and comment

on the quality of clustering. You can add Java/Python ML library classes/API in the program.

9.. Write a program to implement k-Nearest Neighbour algorithm to classify the iris data set.
Print both correct and wrong predictions. Java/Python ML library classes can be used for this

problem.

10. Implement the non-parametric Locally Weighted Regression algorithm in order to fit data

points. Select appropriate data set for your experiment and draw graphs.

PO1-3
PO2-2
PO3 -2
POS-2
PO10-1
PO12-1
PSO1-3
PSO2-2

Text Books: -
1. Tom M. Mitchell, Machine Learning, India Edition 2013, McGraw Hill Education.

Reference Books:

1. Trevor Hastie, Robert Tibshirani, Jerome Friedman, h The Elements of Statistical Learning,
2™ edition, springer series in statistics.
2. Ethem Alpaydin, Introduction to machine learning, second edition, MIT press.

Useful Websites

» https://nptel.ac.in/courses/106105152/
s hggs:/lwww.coursera.org[lcamfmachine-lcaming

Useful Journals
o IEEE Transactions on Pattern Analysis and Machine Intelligence.
e Journal of Machine Learning Research.

Teaching and Learning Methods:
1. Lecture class: Nil
2. Self-study: Nil
3. Field visits/Group Discussions/Seminars: Nil
4, Practical classes: 3 hrs/week

Assessment:

Type of test/examination: Written examination
Continuous Internal Evaluation(CIE) : 40 marks
Semester End Exam(SEE) : 60 marks

Test duration: 3hrs

Examination duration: 3 hrs

CO to PO Mapping

POI: Science and engineering Knowledge | PO7:Environment and Society
PO2: Problem Analysis PO8:Ethics
PO3: Design & Development PO9:Individual & Team Work

ipati PO10; Communication
PO4:Investigations of Complex Problems . "
H Mngmt & Finance
POS5: Modern Tool Usage PO11:Project Mngm

PO12:Life long Learning
POG6: Engineer & Society

PSO1: Ability to understand, analyze problems and implement solutions in programming
languages, as well to apply concepts in core areas of Computer Science in association with
professional bodies and clubs.

PSO2: Ability to use computational skills and apply software knowledge to develop effective

solutions and data to address real world challenges.

co po1 | PO2 | PO3 | PO4 | POS | PO6 | PO7 | PO8 | PO9 PO10 | PO11 | POI12

17CSL76.1 3 2 2 - 2 - . . ” 1 - 1

17CSL762 | 3 2 2 = 2 - . . - 1 - 1

17CSL763 | 3 2) - 2 . - . - 1 - 1

17CSL764 | 3 2 2 . 2 - : - - 1 - 1

17CSL765 | 3 2 2 - 2 - . . - 1 : 1

17CSL76 3 | 2 2 -l 2| - . s . 1 . 1
cO PSO1 |PSO2 3 |Substantial (High) Correlation
17CsL761 | 3 2 2 | Moderate (Medium) Correlation
17csL76.2 | 3 2 1 | Slight (Low) Correlation
17CSL76.4 | 3 2
17CSL765 | 3 2
17CSL76 3 2
Q (1Y e ey oDV (0 D~ W ok o
Signature of Course In Charge Signature of Module Coordinator Signature of HOD

Head of the Department
Dept. of Computer Science &EnN
K.S. Institute of Technology
Bengaluru -560 109

RUBRICS

For 40 MARKS (2017 REVISED CBCS SCHEME)

SI No Description Marks
1 Continuous Evaluation 30
a. Observation Write up 10
b. Record Write up 10
¢. Viva voice 10
2 | Internal Test 10

NP - A~
6_\H\e)ad A riment

Dept. of Computer Science & Engg.
pK.S. Institute of Technology
Bengaluru -560 109

MACHINE LEARNING LABORATORY MANUAL 17CSL76

MACHINE LEARNING LABORATORY
[As per Choice Based Credit System (CBCS) scheme]

SEMESTER - VII Subject Code 17CSL76

Course objectives:
This course will enable students to

1. Get the practical exposures of implementation of machine learning algorithms.

2. Ability to recognize and implement various ways of selecting suitable model parameters for
different machine learning techniques

3. lllustrate solutions to Lab programs

Description (If any):

1. The programs can be implemented in either JAVA or Python.

2. For Problems 1 to 6 and 10, programs are to be developed without using the built-in classes
or APIs of Java/Python.

3. Data sets can be taken from standard repositories
(https://archive.ics.uci.edu/ml/datasets.html) or constructed by the students.

Lab Experiments:

1. Implement and demonstrate the FIND-S algorithm for finding the most specific
hypothesis based on a given set of training data samples. Read the training data from a
.CSVile.

2. For a given set of training data examples stored in a .CSV file, implement and
demonstrate the Candidate-Elimination algorithm to output a description of the set of
all hypotheses consistent with the training examples.

3. Write a program to demonstrate the working of the decision tree based 1D3 algorithm.
Use an appropriate data set for building the decision tree and apply this knowledge to
classify a new sample.

4. Build an Artificial Neural Network by implementing the Back propagation algorithm and
test the same using appropriate data sets.

5. Write a program to implement the naive Bayesian classifier for a sample training data set
stored as a .CSV file. Compute the accuracy of the classifier, considering few test data
sets.

6. Assuming a set of documents that need to be classified, use the naive Bayesian Classifier
model to perform this task. Built-in Java classes/APl can be used to write the
program. Calculate the accuracy, precision, and recall for your data set.

Department of CSE, KSIT Page 1

MACHINE LEARNING LABORATORY MANUAL 17CSL76

7. Write a program to construct a Bayesian network considering medical data. Use this
model to demonstrate the diagnosis of heart patients using standard Heart Disease Data
Set. You can use Java/Python ML library classes/API.

8. Apply EM algorithm to cluster a set of data stored ina .CSV file. Use the same data
set for clustering using k-Means algorithm. Compare the results of these two algorithms
and comment on the quality of clustering. You can add Java/Python ML library
classes/API in the program.

9. Write a program to implement k-Nearest Neighbour algorithm to classify the iris data
set. Print both correct and wrong predictions. Java/Python ML library classes can be used
for this problem.

10. Implement the non-parametric Locally Weighted Regression algorithm in order to fit data
points. Select appropriate data set for your experiment and draw graphs.

Conduction of Practical Examination:
o All laboratory experiments are to be included for practical examination.
e Students are allowed to pick one experiment from the lot.
e Strictly follow the instructions as printed on the cover page of answer script
e Marks distribution: Procedure + Conduction + Viva: 15 + 70 +15 (100)

Department of CSE, KSIT Page 2

MACHINE LEARNING LABORATORY MANUAL 17CSL76

Program1

Implement and demonstrate the FIND-S algorithm for finding the most specific
hypothesis based on a given set of training data samples. Read the training data from a
.CSVfile.

Task: Find-S algorithm is used to find a maximally specific hypothesis.

Dataset: Enjoy Sports Training Examples:

Example| Sky AirTemp| Humidity| Wind Water | Forecast| EnjoySport

1 Sunny | Warm Normal | Strong | Warm | Same Yes

2 Sunny | Warm High Strong | Warm | Same Yes

3 Rainy | Cold High Strong | Warm | Change | No

4 Sunny | Warm High Strong | Cool Change | Yes
Given:

e Instances X: Possible days, each described by the attributes

Sky (with possible values Sunny, Cloudy, and Rainy),

AirTemp (with values Warm and Cold),

Humidity (with values Normal and High),

Wind (with values Strong and Weak),

Water (with values Warm and Cool), and

Forecast (with values Same and Change).

e Hypotheses H: Each hypothesis is described by a conjunction of constraints on the
attributes Sky, AirTemp, Humidity, Wind, Water, and Forecast. The constraints may
be "?" (any value is acceptable), "0 (no value is acceptable), or a specific value.

e Target concept c: EnjoySport : X [1(0,l)

e Training examples D: Positive and negative examples of the target function

X/
X4

L)

K/ K/
L XA X4

X/
X4

X/
SR X R

o
A

Find-S Algorithm
Step 1: Initialize h to the most specific hypothesis in H.

Step 2: For each positive training instance x.
e For each attribute constraint aj in h
= |f the constraint ai is satisfied by x Then
do nothing
= Else replace ai in h by the next more general constraint that is satisfied by x.
Step 3: Output hypothesis h.

Department of CSE, KSIT Page 3

MACHINE LEARNING LABORATORY MANUAL 17CSL76

Find-S Program in Python:
import numpy as np
import pandas as pd
data = pd.read_csv('1finds.csv')
print(data)
concepts=data.iloc[:,0:-1].values
print(" ")
print (concepts)
rnt(")
target = data.iloc[:,-1].values
print (target)
def train(concepts,target):
count=0
specific_h = concepts[0]
for i,h in enumerate(concepts):
print(i)
print(h)
if target[i] == "Yes":
for x in range(len(specific_h)):
if h[x] == specific_h[x]:
pass
else:
specific_h[x] ="?"
count = count + 1
print (f"Hypothesis after sample number:{count} processed: {specific_h}")
else:
pass
count = count + 1
print (f"Negative sample number:{count} Same Hypothesis: {specific_h}")

return specific_h

specific_h=train(concepts,target)

Department of CSE, KSIT Page 4

MACHINE LEARNING LABORATORY MANUAL 17CSL76

Input:
Finds.csv

Output:
[['"Sunny' 'Warm' 'Normal' 'Strong' 'Warm' 'Same']

['"Sunny' 'Warm' 'High' 'Strong' 'Warm' 'Same']
['"Cloudy' '"Cold' 'High' 'Strong' 'Warm' 'Change']
['"Sunny' '"Warm' 'High' 'Strong' 'Cool' 'Change']]

["Yes' '"Yes' 'No' 'Yes']

0

['Sunny' 'Warm' 'Normal' 'Strong' 'Warm' 'Same']

Hypothesis after sample Number2 is ['Sunny' 'Warm' 'Normal' 'Strong' 'Warm'
'Same']

1

['"Sunny' '"Warm' 'High' 'Strong' 'Warm' 'Same']

Hypothesis after sample Number3 is ['Sunny' 'Warm' '?' 'Strong' 'Warm' 'Sam
e']

2

['"Cloudy' 'Cold' 'High' 'Strong' 'Warm' 'Change']

Negative Hypothesis after sample Number4 is ['Sunny' 'Warm' '?' 'Strong' 'W
arm' 'Same']

3

['Sunny' 'Warm' 'High' 'Strong' 'Cool' 'Change']

Hypothesis after sample Number5 is ['Sunny' 'Warm' '?' 'Strong' '?' '?']

Department of CSE, KSIT Page 5

MACHINE LEARNING LABORATORY MANUAL 17CSL76

Program 2

For a given set of training data examples stored in a .CSV file, implement and
demonstrate the Candidate-Elimination algorithm to output a description of the set of
all hypotheses consistent with the training examples.

Task: The CANDIDATE-ELIMINATION algorithm computes the version space
containing all hypotheses from H that are consistent with an observed sequence of

training examples.

Dataset: Enjoy Sports Training Examples:

Example| Sky AirTemp| Humidity| Wind Water | Forecast| EnjoySport

Sunny | Warm Normal | Strong | Warm | Same Yes
Sunny | Warm High Strong | Warm | Same Yes
Rainy | Cold High Strong | Warm | Change | No

Sunny | Warm High Strong | Cool Change | Yes

BIWIN-

Candidate Elimination Algorithm:

Initialize G to the set of maximally general hypotheses in H
Initialize § to the set of maximally specific hypotheses in &
For each training example d, do
» If 4 is a positive example
o Remove from G any hypothesis inconsistent with 4 "
s For each hypothesis s in § that is not consistent with 4 .
¢ Remove 5 from §
« Add to § all minimal generalizations h of 5 such that
¢ h is consistent with 4, and some member of G is more general than &
+ Remove from § any hypothesis that is more general than another hypothesis in §

¢ If 4 is a negative example
e Remove from S any hypothesis inconsistent with 4
o For each hypothesis g in G that is not consistent with d
o Remove g from G
e Add to G all minimal specializations k of g such that
¢ h is consistent with d, and some member of § is more specific than A
¢ Remove from G any hypothesis that is less general than another hypothesis in G

Candidate Elimination Program:
import numpy as np
import pandas as pd

Department of CSE, KSIT Page 6

MACHINE LEARNING LABORATORY MANUAL 17CSL76
#Loading Data froma csv e ...
data = pd.DataFrame(data=pd.read_csv(‘finds.csv'))
Separating concept features from Target
concepts = np.array(data.iloc[:,0:-1])

Isolating target into a separate DataFrame
target = np.array(data.iloc[:,-1])

def learn(concepts, target):

learn() function implements the learning method of the Candidate elimination algorithm.

#Arguments:

#concepts - a data frame with all the features ,target - a data frame with corresponding output
values

Initialise SO with the first instance from concepts

.copy() makes sure a new list is created instead of just pointing to the same memory location

specific_h = concepts[0].copy()
general_h = [["?" for i in range(len(specific_h))] for i in range(len(specific_h))]

The learning iterations
for i, h in enumerate(concepts):

Checking if the hypothesis has a positive target
if target[i] == "Yes":
for x in range(len(specific_h)):

Change values in S & G only if values change
if h[x] !'= specific_h[x]:

specific_h[x] ="'

general_h[x][x] ="

Checking if the hypothesis has a positive target
if target[i] == "No":
for x in range(len(specific_h)):

For negative hyposthesis change values only in G
if h[x] != specific_h[x]:

general_h[x][x] = specific_h[X]
else:

general_h[x][x] =7

Department of CSE, KSIT Page 7

MACHINE LEARNING LABORATORY MANUAL 17CSL76
find indices where we have empty rows, meaning those that are unchanged
indices = [i for i,val in enumerate(general_h) if val == ['?", 2", "?","?", '?", '?"]]
for i in indices:
remove those rows from general_h
general_h.remove(['?', '?", '?",'?",'?","?"])

Return final values

return specific_h, general_h
s_final, g_final = learn(concepts, target)
print("Final S:", s_final, sep="\n")
print("Final G:", g_final, sep="\n")
out put
Final S:
['Sunny' 'Warm' '?" 'Strong' '?" '?']

Final G:
[['Sunny', 2", 2", 2", '2","?], ['?",'Warm', 7', '?','?", "?]]

Department of CSE, KSIT Page 8

MACHINE LEARNING LABORATORY MANUAL 17CSL76
Program 3

Write a program to demonstrate the working of the decision tree based ID3 algorithm.
Use an appropriate data set for building the decision tree and apply this knowledge to
classify a new sample.

Task: ID3 determines the information gain for each candidate attribute, then selects
the one with highest information gain as the root node of the tree. The informationgain
values for all four attributes are calculated using the following formula:

Entropy(S)=>_- P(I).log2P(1)

Gain(S,A)=Entropy(S)-Y[P(S/A).Entropy(S/A)]
Dataset: pima-indians-diabetes.csv

ID3 Algorithm:

ID3(Examples, Target_attribute, Attributes)
Examples are the training examples. Target attribute is the
attribute whose value is to be predicted by the tree. Attributes is
a list of other attributes that may be tested by the learned
decision tree. Returns a decision tree that correctly classifies the
given Examples.

Create a Root node for the tree

If all Examples are positive, Return the single-node tree Root, with label = +
If all Examples are negative, Return the single-node tree Root, with label = -
If Attributes is empty, Return the single-node tree Root, with label = most
common value of Target_attribute in Examples

0 Otherwise Begin
< A < the attribute from Attributes that best* classifies Examples
% The decision attribute for Root <A
% For each possible value, vi, of A,
o Add a new tree branch below Root, corresponding to the test A = vi
e Let Examplesvi ,be the subset of Examples that have value vi for A
o If Examplesoi, is empty
¢+ Then below this new branch add a leaf node with label=most common value
of Target_attribute in Examples
¢ Else below this new branch add the subtree
ID3(Examplesyi, Target_attribute, Attributes—{A}))
End
Return Root

O O O O

Department of CSE, KSIT Page 9

MACHINE LEARNING LABORATORY MANUAL 17CSL76
ID3 Program:

import csv

import math

import random

Majority Function which tells which class has more entries in given data-set
def majorClass(attributes, data, target):
freq = {}
index = attributes.index(target)
for tuple in data:
if tuple[index] in freq:
freg[tuple[index]] +=1
else:
freg[tuple[index]] = 1
max =0
major =
for key in freq.keys():
if freq[key]>max:
max = freq[key]
major = key
return major

Calculates the entropy of the data given the target attribute
def entropy(attributes, data, targetAttr):
freq = {}
dataEntropy = 0.0
i=0
for entry in attributes:
if (targetAttr == entry):
break
i=i+1l
i=i-1
for entry in data:
if entry[i] in freq:
freg[entry[i]] +=1.0
else:
freg[entry[i]] =1.0
for freq in freq.values():
dataEntropy += (-freg/len(data)) * math.log(freg/len(data), 2)
return dataEntropy

Calculates the information gain (reduction in entropy) in the data when a particular attribute

Department of CSE, KSIT Page

MACHINE LEARNING LABORATORY MANUAL 17CSL76
def info_gain(attributes, data, attr, targetAttr):
freq = {}
subsetEntropy = 0.0
i = attributes.index(attr)
for entry in data:
if entry[i] in freq:
freg[entry[i]] +=1.0
else:
freg[entry[i]] =1.0
for val in freq.keys():
valProb = freq[val] / sum(freq.values())
dataSubset = [entry for entry in data if entry[i] == val]
subsetEntropy += valProb * entropy(attributes, dataSubset, targetAttr)
return (entropy(attributes, data, targetAttr) - subsetEntropy)

This function chooses the attribute among the remaining attributes which has the maximum
information gain.
def attr_choose(data, attributes, target):
best = attributes[0]
maxGain = 0;
for attr in attributes:
newGain = info_gain(attributes, data, attr, target)
if newGain>maxGain:
maxGain = newGain
best = attr
return best

This function will get unique values for that particular attribute from the given data
def get_values(data, attributes, attr):

index = attributes.index(attr)

values =[]

for entry in data:

if entry[index] not in values:
values.append(entry[index])
return values

This function will get all the rows of the data where the chosen "best" attribute has a value

"val

def get_data(data, attributes, best, val):
new_data = [[]]

Department of CSE, KSIT Page

MACHINE LEARNING LABORATORY MANUAL 17CSL76
for entry in data:
if (entry[index] == val):
newEntry =[]
for iin range(0,len(entry)):
if(i 1= index):
newEntry.append(entry[i])
new_data.append(newEntry)
new_data.remove([])
return new_data

This function is used to build the decision tree using the given data, attributes and the target
attributes. It returns the decision tree in the end.
def build_tree(data, attributes, target):
data = data[:]
vals = [record[attributes.index(target)] for record in data]
default = majorClass(attributes, data, target)
if not data or (len(attributes) - 1) <= 0:
return default
elif vals.count(vals[0]) == len(vals):
return vals[0]
else:
best = attr_choose(data, attributes, target)
tree = {best:{}}

for val in get_values(data, attributes, best):
new_data = get_data(data, attributes, best, val)
newAttr = attributes[:]
newAttr.remove(best)
subtree = build_tree(new_data, newAttr, target)
tree[best][val] = subtree

return tree

#Main function
def execute_decision_tree():
data =]

#load file
with open("weather.csv") as tsv:
for line in csv.reader(tsv):
data.append(tuple(line))

Department of CSE, KSIT Page

MACHINE LEARNING LABORATORY MANUAL 17CSL76
print("Number of records:",len(data))

#set attributes
attributes=['outlook’,'temperature’,'humidity','wind','play’]
target = attributes[-1]

#set training data

acc =[]

training_set = [x for i, X in enumerate(data)]

tree = build_tree(training_set, attributes, target)
print(tree)

#execute algorithm on test data
results =[]
test_set = [(‘rainy','mild",'high’,'strong")]
for entry in test_set:
tempDict = tree.copy()
result ="
while(isinstance(tempDict, dict)):
child=[]
nodeVal=next(iter(tempDict))
child=tempDict[next(iter(tempDict))].keys()
tempDict = tempDict[next(iter(tempDict))]
index = attributes.index(nodeVal)
value = entry[index]
if(value in tempDict.keys()):
result = tempDict[value]
tempDict =tempDict[value]

else:
result = "Null"
break
if result 1= "Null":

results.append(result == entry[-1])
print(result)

if _name__ ==" main_":
execute_decision_tree()

Department of CSE, KSIT Page

MACHINE LEARNING LABORATORY MANUAL 17CSL76
Input:
Weather.csv
Output:
Number of records: 15
{'wind": {'wind": 'play’, ‘weak’: {'humidity": {'high": {temperature’: {'hot": {'outlook’: {'sunny": 'no’, '
overcast": 'yes'}}, 'mild": {'outlook’: {'rainy": 'yes', 'sunny': 'no'}}}}, 'normal’: 'yes'}}, 'strong’: {'hu
midity": {'high": {'outlook’: {'sunny': 'no’, 'overcast’: 'yes', ‘rainy": 'no'}}, 'normal’; {'outlook’: {'rainy
".'no’, 'overcast’: 'yes', 'sunny'’: 'yes'}}}}}};
no

Department of CSE, KSIT Page

MACHINE LEARNING LABORATORY MANUAL 17CSL76

Program 4:

Build an Artificial Neural Network by implementing the Back propagation algorithm
and test the same using appropriate data set

The stochastic gradient descent version of the BACKPROPAGATION algorithm for feed
forward networks containing two layers of sigmoid units.

Step 1: begins by constructing a network with the desired number of hidden and output units
and initializing all network weights to small random values. . For each training example, it
applies the network to the example, calculates the error of the network output for this
example, computes the gradient with respect to the error on this example, then updates all
weights in the network. This gradient descent step is iterated (often thousands of times, using
the same training examples multiple times) until the network performs acceptably well.

Step 2: The gradient descent weight-update rule is similar to the delta training rule The only
difference is that the error (t - 0) in the delta rule is replaced by a more complex error term aj.

Step 3: updates weights incrementally, following the Presentation of each training example.
This corresponds to a stochastic approximation to gradient descent. To obtain the true
gradient of E one would sum the Sj, xji values over all training examples before altering
weight values.

Step 4: The weight-update loop in BACKPROPAGATION may be iterated thousands of
times in a typical application. A variety of termination conditions can be used to halt the
procedure.

One may choose to halt after a fixed number of iterations through the loop, or once the error
on the training examples falls below some threshold.

Dataset:

ANN Program:
from math import exp

from random import seed
from random import random

Initialize a network
def initialize_network(n_inputs, n_hidden, n_outputs):

network = list()

hidden_layer = [{'weights:[random() for i in range(n_inputs + 1)]} for i in
range(n_hidden)]

network.append(hidden_layer)

output_layer = [{'weights":[random() for i in range(n_hidden + 1)]} for i in

Dept. of CSE,KSIT Page 15

MACHINE LEARNING LABORATORY MANUAL 17CSL76

range(n_outputs)]
network.append(output_layer)
return network

Calculate neuron activation for an input
def activate(weights, inputs):
activation = weights[-1]
for i in range(len(weights)-1):
activation += weights[i] * inputs][i]
return activation

Transfer neuron activation
def transfer(activation):
return 1.0 / (1.0 + exp(-activation))

Forward propagate input to a network output
def forward_propagate(network, row):
inputs = row
for layer in network:
new_inputs = []
for neuron in layer:
activation = activate(neuron['weights'], inputs)
neuron[‘output’] = transfer(activation)
new_inputs.append(neuron[‘output’)
inputs = new_inputs
return inputs

Calculate the derivative of an neuron output
def transfer_derivative(output):
return output * (1.0 - output)

Backpropagate error and store in neurons
def backward_propagate_error(network, expected):
for i in reversed(range(len(network))):
layer = networkfi]
errors = list()
if i 1= len(network)-1:
for j in range(len(layer)):
error =0.0
for neuron in network([i + 1]:
error += (neuron['weights'][j] * neuron['delta’])
errors.append(error)
else:

Dept. of CSE,KSIT Page 16

MACHINE LEARNING LABORATORY MANUAL 17CSL76

for j in range(len(layer)):
neuron = layer][j]
errors.append(expected[j] - neuron['output])
for j in range(len(layer)):
neuron = layer][j]
neuron['delta’] = errors[j] * transfer_derivative(neuron['output')

Update network weights with error
def update_weights(network, row, |_rate):
for i in range(len(network)):
inputs = row[:-1]
ifi!=0:
inputs = [neuron['output] for neuron in network[i - 1]]
for neuron in networkfi]:
for j in range(len(inputs)):
neuron['weights'][j] +=|_rate * neuron['delta’] * inputs[j]
neuron['weights'][-1] +=|_rate * neuron['delta’]

Train a network for a fixed number of epochs
def train_network(network, train, |_rate, n_epoch, n_outputs):
for epoch in range(n_epoch):
sum_error =0
for row in train:
outputs = forward_propagate(network, row)
expected = [0 for i in range(n_outputs)]
expected[row[-1]] = 1
sum_error += sum([(expected[i]-outputs[i])**2 for i in
range(len(expected))])
backward_propagate_error(network, expected)
update_weights(network, row, |_rate)
print(">epoch=%d, Irate=%.3f, error=%.3f" % (epoch, |_rate, sum_error))

Test training backprop algorithm
seed(1)

dataset = [[2.7810836,2.550537003,0],
[1.465489372,2.362125076,0],
[3.396561688,4.400293529,0],
[1.38807019,1.850220317,0],
[3.06407232,3.005305973,0],
[7.627531214,2.759262235,1],
[5.332441248,2.088626775,1],
[6.922596716,1.77106367,1],

Dept. of CSE,KSIT Page 17

MACHINE LEARNING LABORATORY MANUAL 17CSL76

[8.675418651,-0.242068655,1],
[7.673756466,3.508563011,1]]
n_inputs = len(dataset[0]) - 1
n_outputs = len(set([row[-1] for row in dataset]))
network = initialize_network(n_inputs, 2, n_outputs)
print(network)
train_network(network, dataset, 0.5, 20, n_outputs)
for layer in network:
print(layer)

Output

>epoch=0, Irate=0.500, error=6.350

>epoch=1, Irate=0.500, error=5.531

>epoch=2, Irate=0.500, error=5.22147

>epoch=3, Irate=0.500, error=4.951

>epoch=4, Irate=0.500, error=4.519

>epoch=5, Irate=0.500, error=4.173

>epoch=6, Irate=0.500, error=3.835

>epoch=7, Irate=0.500, error=3.506

>epoch=8, Irate=0.500, error=3.192

>epoch=9, Irate=0.500, error=2.898

>epoch=10, Irate=0.500, error=2.626

>epoch=11, Irate=0.500, error=2.377

>epoch=12, Irate=0.500, error=2.153

>epoch=13, Irate=0.500, error=1.953

>epoch=14, Irate=0.500, error=1.774

>epoch=15, Irate=0.500, error=1.614

>epoch=16, Irate=0.500, error=1.472

>epoch=17, Irate=0.500, error=1.346

>epoch=18, Irate=0.500, error=1.233

>epoch=19, Irate=0.500, error=1.132

[{'weights": [-1.4688375095432327, 1.850887325439514, 1.0858178629550297], 'output':
0.029980305604426185, 'delta’: -0.0059546604162323625}, {'weights":
[0.37711098142462157, -0.0625909894552989, 0.2765123702642716], ‘output”:
0.9456229000211323, 'delta":

0.0026279652850863837}]

[{'weights": [2.515394649397849, -0.3391927502445985, -0.9671565426390275], ‘output":
0.23648794202357587, 'delta’: -0.04270059278364587}, {'weights": [-2.5584149848484263,
1.0036422106209202, 0.42383086467582715], ‘output': 0.7790535202438367, 'delta’:
0.03803132596437354}]

Dept. of CSE,KSIT Page 18

MACHINE LEARNING LABORATORY MANUAL 17CSL76

Program 5

Write a program to implement the naive Bayesian classifier for a sample training data
set stored as a .CSV file. Compute the accuracy of the classifier, considering few test
data sets.

Task: It is a classification technique based on Bayes™ Theorem with an assumption of
independence among predictors. In simple terms, a Naive Bayes classifier assumes that
the presence of a particular feature in a class is unrelated to the presence of any other
feature. For example, a fruit may be considered to be an apple if it is red, round, and
about 3 inches in diameter. Even if these features depend on each other or upon the
existence of the other features, all of these properties independently contribute to the
probability that this fruit is an apple and that is why it is known as, Naive".

Dataset : Pima-indians-diabetes.csv

It is a classification technique based on Bayes* Theorem with an assumption of
independence among predictors. In simple terms, a Naive Bayes classifier assumes that the
presence of a particular feature in a class is unrelated to the presence of any other feature.
For example, a fruit may be considered to be an apple if it is red, round, and about 3 inches
in diameter. Even if these features depend on each other or upon the existence of the other
features, all of these properties independently contribute to the probability that this fruit is an
apple and that is why it is known as ,,Naive".

Bayes theorem provides a way of calculating posterior probability P(c|x) from P(c), P(x) and
P(x|c). Look at the equation below:

1) Handling Of Data:
o Load the data from the CSV file and split in to training and test data set.
e Training data set can be used to by Naive Bayes to make predictions.
e And Test data set can be used to evaluate the accuracy of the model.
2) Summarize Data:
The summary of the training data collected involves the mean and the standard deviation for
each attribute, by class value.
= These are required when making predictions to calculate the probability of specific
attribute values belonging to each class value.
= Summary data can be break down into the following sub-tasks:

e Separate Data By Class: The first task is to separate the training dataset instances
by class value so that we can calculate statistics for each class. We can do that by
creating a map of each class value to a list of instances that belong to that class and
sort the entire dataset of instances into the appropriate lists.

e Calculate Mean:We need to calculate the mean of each attribute for a class value.

Dept. of CSE,KSIT Page 19

https://en.wikipedia.org/wiki/Bayes%27_theorem

MACHINE LEARNING LABORATORY MANUAL 17CSL76

The mean is the central middle or central tendency of the data, and we will use it as
the middle of our gaussian distribution when calculating probabilities.

e Calculate Standard Deviation: We also need to calculate the standard deviation of
each attribute for a class value. The standard deviation describes the variation of
spread of the data, and we will use it to characterize the expected spread of each
attribute in our Gaussian distribution when calculating probabilities.

e Summarize Dataset: For a given list of instances (for a class value) we can
calculate the mean and the standard deviation for each attribute.

e The zip function groups the values for each attribute across our data instances
into their own lists so that we can compute the mean and standard deviation values
for the attribute.

e Summarize Attributes By Class: We can pull it all together by first separating our
training dataset into instances grouped by class. Then calculate the summaries for
each attribute.

3) Make Predictions:

< Making predictions involves calculating the probability that a given data instance
belongs to each class,
then selecting the class with the largest probability as the prediction.
Finally, estimation of the accuracy of the model by making predictions for each
data instance in the test dataset.
4) Evaluate Accuracy: The predictions can be compared to the class values in the test
dataset and a classification\ accuracy can be calculated as an accuracy ratio between 0& and
100%.

7
0'0

X3

*

Naive Bayes Program:

import csv
import random
import math
def safe_div(x,y):
ify==0:
return 0
returnx/y
def loadCsv(filename):
lines = csv.reader(open(filename, "r"))
dataset = list(lines)
for i in range(len(dataset)):
dataset[i] = [float(x) for x in dataset[i]]
return dataset

def splitDataset(dataset, splitRatio):
trainSize = int(len(dataset) * splitRatio)
trainSet =[]

Dept. of CSE,KSIT Page 20

MACHINE LEARNING LABORATORY MANUAL 17CSL76

copy = list(dataset)
while len(trainSet) < trainSize:
index = random.randrange(len(copy))
trainSet.append(copy.pop(index))
return [trainSet, copy]

def separateByClass(dataset):
separated = {}
for i in range(len(dataset)):
vector = dataset[i]
if (vector[-1] not in separated):
separated[vector[-1]] =[]
separated[vector[-1]].append(vector)

return separated

def mean(numbers):
return sum(numbers)/float(len(numbers))

def stdev(numbers):
avg = mean(numbers)
variance = sum([pow(x-avg,2) for x in numbers])/float(len(numbers)-1)
return math.sqrt(variance)

def summarize(dataset):
summaries = [(mean(attribute), stdev(attribute)) for attribute in zip(*dataset)]
del summaries[-1]
return summaries

def summarizeByClass(dataset):
separated = separateByClass(dataset)
summaries = {}
for classValue, instances in separated.items():
summaries[classValue] = summarize(instances)
return summaries

def calculateProbability(x, mean, stdev):
exponent = math.exp(-(math.pow(x-mean,2)/(2*math.pow(stdev,2))))
return (1 / (math.sqrt(2*math.pi) * stdev)) * exponent

def calculateClassProbabilities(summaries, inputVector):
probabilities = {}
for classValue, classSummaries in summaries.items():

Dept. of CSE,KSIT Page 21

MACHINE LEARNING LABORATORY MANUAL 17CSL76

probabilities[classValue] = 1
for i in range(len(classSummaries)):
mean, stdev = classSummaries[i]
X = inputVector[i]
probabilities[classValue] *= calculateProbability(x, mean, stdev)
return probabilities

def predict(summaries, inputVector):
probabilities = calculateClassProbabilities(summaries, inputVVector)
bestLabel, bestProb = None, -1
for classValue, probability in probabilities.items():
if bestLabel is None or probability > bestProb:

bestProb = probability

bestLabel = classValue
return bestLabel

def getPredictions(summaries, testSet):
predictions =[]
for i in range(len(testSet)):
result = predict(summaries, testSet[i])
predictions.append(result)

return predictions

def getAccuracy(testSet, predictions):
correct =0
for i in range(len(testSet)):
#print(testSet[i][-1]," ",predictions[i])
if testSet[i][-1] == predictions[i]:
correct +=1

return (correct/float(len(testSet))) * 100.0

def main():
filename = 'pima-indians-diabetes.data.csv'
splitRatio = 0.67
dataset = loadCsv(filename)
trainingSet,testSet=splitDataset(dataset, splitRatio) #dividing into training and test data
#trainingSet = dataset #passing entire dataset as training data
#testSet=[[8.0,183.0,64.0,0.0,0.0,23.3,0.672,32.0]]
print(Split {0} rows into train={1} and test={2} rows'.format(len(dataset),
len(trainingSet), len(testSet)))
prepare model

Dept. of CSE,KSIT Page 22

MACHINE LEARNING LABORATORY MANUAL 17CSL76

summaries = summarizeByClass(trainingSet)

test model

predictions = getPredictions(summaries, testSet)

accuracy = getAccuracy(testSet, predictions)

print(‘Accuracy: {0}%'.format(accuracy))
main()

Input:

Pima-indians-diabetes.csv

OUTPUT:

Split 768 rows into train=576 and test=192 rows
Accuracy: 77.604 %

Dept. of CSE,KSIT Page 23

MACHINE LEARNING LABORATORY MANUAL 17CSL76

Program 6

Assuming a set of documents that need to be classified, use the naive Bayesian Classifier
model to perform this task. Built-in Java classes/API can be used to write the program.
Calculate the accuracy, precision, and recall for your data set.

LEARN_NAIVE_BAYES_TEXT(Examples, V)

Examples is a set of text documents along with their target values. V is the set of all possible target
values. This function learns the probability terms Pilwg|v;), describing the probability that a randomly
drawn word from a document in class v; will be the English word wy. It also learns the class prior
probabilities Plu;).
1. collect all words, puncteation, and other tokens that occur in Examples

« Vocabulary + the set of all distinct words and other tokens occurring in any text document

from Examples

2. calculore the reguired F(v;) and Plwilv;) probability terms

e For each target value vy in V do

s docs; + the subset of documents from Examples for which the target value is »;

P(u)) “ TEigmiten
Text; + a single docurnent created by concatenating all members of decs;
n «+— total namber of distinct word positions in Texry

for each word wy in Vocabuwlary

e n; < number of Hmes word wy ecours in Text;
—mtl
r| Vocabulary|

. Plwgfy)

CLASSIFY NAIVE_BAYES_TEXT{ Doc)

Retwrn the estimated target value for the document Doc. a; denotes the word found in the ith position
within Do,
s positions < all word positions in Dbe that contain tokens found in Vocabulary
e Return vy g, where
Ui E =HI‘E:I:;HKP{W) n Piag|vy)
Y

I posirfons
Dataset:

Program

import pandas as pd
msg=pd.read_csv('6pg.csv',names=['message’,'label’])
print('The dimensions of the dataset’,msg.shape)
msg['labelnum‘]=msg.label.map({'pos"1,neg"0})
X=msg.message

y=msg.labelnum

print(X)

print(y)

#splitting the dataset into train and test data

from sklearn.model_selection import train_test_split
xtrain,xtest,ytrain,ytest=train_test_split(X,y)
print(xtest.shape)

print(xtrain.shape)

Dept. of CSE,KSIT Page 24

MACHINE LEARNING LABORATORY MANUAL 17CSL76

print(ytest.shape)

print(ytrain.shape)

#output of count vectoriser is a sparse matrix

from sklearn.feature_extraction.text import CountVectorizer
count_vect = CountVectorizer()

xtrain_dtm = count_vect.fit_transform(xtrain)
xtest_dtm=count_vect.transform(xtest)
print(count_vect.get_feature_names())
df=pd.DataFrame(xtrain_dtm.toarray(),columns=count_vect.get feature_names())
print(df)#tabular representation

print(xtrain_dtm) #sparse matrix representation

Training Naive Bayes (NB) classifier on training data.
from sklearn.naive_bayes import MultinomialNB

clf = MultinomialNB().fit(xtrain_dtm,ytrain)

predicted = clf.predict(xtest_dtm)

#printing accuracy metrics

from sklearn import metrics

print('Accuracy metrics’)

print("Accuracy of the classifer is',metrics.accuracy_score(ytest,predicted))
print(‘Confusion matrix’)
print(metrics.confusion_matrix(ytest,predicted))

print('Recall and Precison ")
print(metrics.recall_score(ytest,predicted))
print(metrics.precision_score(ytest,predicted))

Dept. of CSE,KSIT Page 25

MACHINE LEARNING LABORATORY MANUAL 17CSL76

Output

2257

1502

['alt.atheism’, ‘comp.graphics’, 'sci.med’, 'soc.religion.christian']
From: sd345@city.ac.uk (Michael Collier)

Subject: Converting images to HP LaserJet 111?
Nntp-Posting-Host: hampton

Organization: The City University

Lines: 14

Does anyone know of a good way (standard PC application/PD utility) to
convert tif/img/tga files into LaserJet 111 format. We would also like to
do the same, converting to HPGL (HP plotter) files.
Please email any response.

Is this the correct group?

Thanks in advance. Michael.

Michael Collier (Programmer) The Computer Unit,
Email: M.P.Collier@uk.ac.city The City University,
Tel: 071 477-8000 x3769 London,

Fax: 071 477-8565 EC1V OHB.

1

Accuracy: 0.8348868175765646

precision recall f1-score support

alt.atheism 0.97 0.60 0.74 319

comp.graphics 0.96 0.89 0.92 389

sci.med 0.97 0.81 0.88 396

soc.religion.christian 0.65 0.99 0.78 398

avg / total 0.88 0.83 0.84 1502

confusion matrix is

[[192 26 119]

[2347 4 36]

[21132261]

[221393]]

Dept. of CSE,KSIT Page 26

mailto:sd345@city.ac.uk
mailto:M.P.Collier@uk.ac.city

MACHINE LEARNING LABORATORY MANUAL 17CSL76

Program 7

Write a program to construct a Bayesian network considering medical data. Use this
model to demonstrate the diagnosis of heart patients using standard Heart Disease
Data Set. You can use Java/Python ML library classes/API.

Following steps are used to build the Bayesian network

Step 1: Identify the variables which is set of attributes specified in the dataset(ex Medical
Dataset)
Step2: Determine the domain of each variable that is set of values a variable may take
Step3: Create a directed graph network of nodes where each node represents the attribute and
edges
represent parent child relationship. Edge represents that the child variable is conditionally
dependent on the parent.
Step4 : determine the prior and conditional probability for each attribute
Stepb : perform the inference on the model and determine the marginal probabilities

Dataset: heart_disease_data.csv
Bayesian Network Program

import bayespy

as bp import

numpy as np

import csv

from colorama import init

from colorama import Fore, Back,
init()

Define Parameter Enum values

#Age

ageEnum = {'SuperSeniorCitizen".0, 'SeniorCitizen".1, ‘MiddleAged":2, "Youth":3,
Teen:4}

Gender

genderEnum = {'Male".0, 'Female":1}

FamilyHistory

familyHistoryEnum = {"Yes"0, 'No":1}

Diet(Calorie Intake)

dietEnum = {'High":0, 'Medium'.1, 'Low":2}

LifeStyle

lifeStyleEnum = {'Athlete".0, 'Active".1, 'Moderate":2, 'Sedetary':3}
Cholesterol

cholesterolEnum = {"High'":0, 'BorderLine":1, 'Normal':2}

Dept. of CSE,KSIT Page 27

MACHINE LEARNING LABORATORY MANUAL 17CSL76

HeartDisease
heartDiseaseEnum = {"Yes"0, 'No":1}
#heart_disease_data.csv
with open(‘heart_disease_data.csv') as csvfile: lines = csv.reader(csvfile)
dataset = list(lines) data =[]
for x in dataset:

data.append([ageEnum[x[0]],genderEnum[x[1]],familyHistoryEnum[x[2]],dietEnum[x[3]]
JifeStyl eEnum[x[4]],cholesterolEnum[x[5]],heartDiseaseEnum[x[6]]])

Training data for machine learning todo: should import from csv data = np.array(data)
N = len(data)

Input data column assignment
p_age = p.nodes.Dirichlet(1.0*np.ones(5))
age = bp.nodes.Categorical(p_age, plates=(N,)) age.observe(data[:,0])

p_gender = bp.nodes.Dirichlet(1.0*np.ones(2)) gender = bp.nodes.Categorical(p_gender,
plates=(N,)) gender.observe(datal[:,1])

p_familyhistory = bp.nodes.Dirichlet(1.0*np.ones(2)) familyhistory =
bp.nodes.Categorical(p_familyhistory, plates=(N,)) familyhistory.observe(data[:,2])

p_diet = bp.nodes.Dirichlet(1.0*np.ones(3)) diet = bp.nodes.Categorical (p_diet,
plates=(N,)) diet.observe(data[:,3])

p_lifestyle = bp.nodes.Dirichlet(1.0*np.ones(4)) lifestyle =
bp.nodes.Categorical(p_lifestyle, plates=(N,)) lifestyle.observe(data[:,4])

p_cholesterol = bp.nodes.Dirichlet(1.0*np.ones(3)) cholesterol =
bp.nodes.Categorical(p_cholesterol, plates=(N,)) cholesterol.observe(data[:,5])

Prepare nodes and establish edges

np.ones(2) -> HeartDisease has 2 options Yes/No

plates(5, 2, 2, 3, 4, 3) -> corresponds to options present for domain values
p_heartdisease = bp.nodes.Dirichlet(np.ones(2), plates=(5, 2, 2, 3, 4, 3))
heartdisease = bp.nodes.MultiMixture([age, gender, familyhistory, diet, lifestyle,
cholesterol], bp.nodes.Categorical, p_heartdisease)
heartdisease.observe(data[:,6]) p_heartdisease.update()

Sample Test with hardcoded values
#print(""Sample Probability")
#print("Probability(HeartDisease|Age=SuperSeniorCitizen, Gender=Female,

Dept. of CSE,KSIT Page 28

MACHINE LEARNING LABORATORY MANUAL 17CSL76

FamilyHistory=Yes, Dietintake=Medium, LifeStyle=Sedetary, Cholesterol=High)")
#print(bp.nodes.MultiMixture([ageEnum['SuperSeniorCitizen'], genderEnum['FemaleT,
familyHistoryEnum['Yes'], dietEnum['Medium'], lifeStyleEnum['Sedetary],
cholesterolEnum['High']], bp.nodes.Categorical,
p_heartdisease).get_moments()[0][heartDiseaseEnum['YesT])
Interactive Testm =0
while m==0:
print("\n")
res = bp.nodes.MultiMixture([int(input('Enter Age: ' + str(ageEnum))), int(input('Enter
Gender: '
+ str(genderEnum))), int(input('Enter FamilyHistory: ' + str(familyHistoryEnum))),
int(input('Enter dietEnum: ' + str(dietEnum))), int(input('Enter LifeStyle: ' +
str(lifeStyleEnum))), int(input('Enter Cholesterol: ' + str(cholesterolEnum)))],
bp.nodes.Categorical, p_heartdisease).get_moments()[0][heartDiseaseEnum['Yes']]
print("Probability(HeartDisease) =" + str(res))
#print(Style. RESET_ALL)
m = int(input("Enter for Continue:0, Exit :1 "))
Input:
heart_disease_data.csv
Output:

Enter Age: {'SuperSeniorCitizen": 0, 'SeniorCitizen": 1, 'MiddleAged': 2, "Youth": 3,
Teen":

431

Enter Gender: {'Male": 0, 'Female": 1}1

Enter FamilyHistory: {"Yes": 0, 'No" 1}1

Enter dietEnum: {"High": 0, 'Medium": 1, 'Low": 2}2

Enter LifeStyle: {'Athlete": O, 'Active’: 1, 'Moderate': 2, 'Sedetary": 3}2
Enter Cholesterol: {'High": 0, 'BorderLine": 1, 'Normal': 2}1
Probability(HeartDisease) = 0.5

Enter for Continue:0, Exit:1 0

Enter Age: {'SuperSeniorCitizen': 0, 'SeniorCitizen": 1, 'MiddleAged": 2, "Youth': 3, 'Teen":
430

Enter Gender: {'Male": 0, 'Female": 1}0

Enter FamilyHistory: {"Yes" 0, 'No": 1}0

Enter dietEnum: {'"High": 0, 'Medium": 1, 'Low": 2}0

Enter LifeStyle: {'Athlete": 0, 'Active". 1, 'Moderate": 2, 'Sedetary': 3}3

Enter Cholesterol: {'High": 0, 'BorderLine": 1, 'Normal': 2}0

Probability(HeartDisease) = 0.5

Enter for Continue:0, Exit :1

Dept. of CSE,KSIT Page 29

MACHINE LEARNING LABORATORY MANUAL 17CSL76

Program 8

Apply EM algorithm to cluster a set of data stored in a .CSV file. Use the same
data set for clustering using k-Means algorithm. Compare the results of these two
algorithms and comment on the quality of clustering. You can add Java/Python ML
library classes/API in the program.

Introduction to Expectation-Maximization (EM)

The EM algorithm tends to get stuck less than K-means algorithm. The idea is to assign data
points partially to different clusters instead of assigning to only one cluster. To do this partial
assignment, we model each cluster using a probabilistic distribution So a data point associates
with a cluster with certain probability and it belongs to the cluster with the highest probability
in the final assignment

Expectation-Maximization (EM) algorithm

Step 1: An initial guess is made for the model*s parameters and a probability
distribution is created. This is sometimes called the “E-Step” for the
“Expected” distribution.

Step 2: Newly observed data is fed into the model.

Step 3: The probability distribution from the E-step is drawn to include the new
data. This is sometimes called the “M-step.”
Step 4: Steps 2 through 4 are repeated until stability.

Dataset:

EM algorithm Programs:

import matplotlib.pyplot as plt

from sklearn import datasets

from sklearn.cluster import KMeans
import pandas as pd

import numpy as np

import some data to play with

iris = datasets.load_iris()

X = pd.DataFrame(iris.data)

X.columns = ['Sepal_Length','Sepal_Width','Petal_Length','Petal_Width']
y = pd.DataFrame(iris.target)

y.columns = [Targets']

Build the K Means Model
model = KMeans(n_clusters=3)

Dept. of CSE,KSIT Page 30

MACHINE LEARNING LABORATORY MANUAL 17CSL76

model.fit(X) # model.labels_ : Gives cluster no for which samples belongs to

Visualise the clustering results

plt.figure(figsize=(14,14))

colormap = np.array(['red’, 'lime’, 'black’])

Plot the Original Classifications using Petal features

plt.subplot(2, 2, 1)

plt.scatter(X.Petal _Length, X.Petal Width, c=colormap[y.Targets], s=40)
plt.title('Real Clusters’)

plt.xlabel('Petal Length")

plt.ylabel('Petal Width")

Plot the Models Classifications

plt.subplot(2, 2, 2)

plt.scatter(X.Petal _Length, X.Petal Width, c=colormap[model.labels_], s=40)
plt.title('K-Means Clustering’)

plt.xlabel('Petal Length’)

plt.ylabel('Petal Width")

General EM for GMM

from sklearn import preprocessing

transform your data such that its distribution will have a
mean value 0 and standard deviation of 1.

scaler = preprocessing.StandardScaler()

scaler.fit(X)

xsa = scaler.transform(X)

xs = pd.DataFrame(xsa, columns = X.columns)

from sklearn.mixture import GaussianMixture
gmm = GaussianMixture(n_components=3)
gmm.fit(xs)

gmm_y = gmm.predict(xs)

plt.subplot(2, 2, 3)

plt.scatter(X.Petal _Length, X.Petal Width, c=colormap[gmm_y], s=40)
plt.title(GMM Clustering’)

plt.xlabel('Petal Length")

plt.ylabel('Petal Width")

print('Observation: The GMM using EM algorithm based clustering matched the true labels
more closely than the Kmeans.")

Dept. of CSE,KSIT Page 31

MACHINE LEARNING LABORATORY MANUAL 17CSL76

Output

Dept. of CSE,KSIT Page 32

MACHINE LEARNING LABORATORY MANUAL 17CSL76

Program 9

Write a program to implement k-Nearest Neighbor algorithm to classify the iris data
set. Print both correct and wrong predictions. Java/Python ML library classes can be
used for this problem.

TASK: The task of this program is to classify the IRIS data set examples by using the k-
Nearest Neighbour algorithm. The new instance has to be classified based on its k nearest
neighbors.

Dataset: iris.csv

ALGORITHM
Let m be the number of training data samples. Let p be an unknown point.
1. Store the training samples in an array of data points arr[]. This means each element of
this array represents a tuple (X, y).
2. fori=0tom:
Calculate Euclidean distance d(arr[i], p).
3. Make set S of K smallest distances obtained. Each of these distances correspond to
an already classified data point.
4. Return the majority label among S.

KNN Program
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
Step 2 : Load the inbuilt data or the csv/excel file into pandas dataframe and clean the
data # In[66]:
from sklearn.datasets import load_iris
data = load _iris()
df = pd.DataFrame(data.data, columns=data.feature_names)
df['Class] = data.target_names[data.target]
df.head()
x = df.iloc[:, :-1].values
y = df.Class.values
print(x[:5])
print(y[:5])
from sklearn.model_selection import train_test_split
X_train, x_test, y_train, y_test =train_test_split(x, y, test_size =0.2)
from sklearn.neighbors import KNeighborsClassifier
knn_classifier = KNeighborsClassifier(n_neighbors=5)
knn_classifier.fit(x_train, y_train)
predictions = knn_classifier.predict(x_test)
print(predictions)

Dept. of CSE,KSIT Page 33

MACHINE LEARNING LABORATORY MANUAL 17CSL76

from sklearn.metrics import accuracy_score, confusion_matrix

print("Training accuracy Score is : ", accuracy_score(y_train,
knn_classifier.predict(x_train)))

print("Testing accuracy Score is : ", accuracy_score(y_test, knn_classifier.predict(x_test)))
print("Training Confusion Matrix is : \n", confusion_matrix(y_train,
knn_classifier.predict(x_train)))

print("Testing Confusion Matrix is : \n", confusion_matrix(y_test,
knn_classifier.predict(x_test)))

Input:
Iris.csv

Output:
0.9666666666666667

Dept. of CSE,KSIT Page 34

MACHINE LEARNING LABORATORY MANUAL 17CSL76

Program 10

Implement the non-parametric Locally Weighted Regression algorithm in order to fit
data points. Select appropriate data set for your experiment and draw graphs.
Locally Weighted Regression —

1. Nonparametric regression is a category of regression analysis in which the predictor
does not take a predetermined form but is constructed according to information
derived from the data(training examples).

2. Nonparametric regression requires larger sample sizes than regression based on
parametric models. Because larger the data available ,accuracy will be high.

Locally Weighted Linear Rearession —

“1JLocally weighted regression is called local because the function is approximated
based a only on data near the query point, weighted because the contribution of
each training example is weighted by its distance from the query point.

C1[JQuery point is nothing but the point nearer to the target function , which will help in
finding the actual position of the target function.

Let us consider the case of locally weighted regression in which the target function f is
approximated near x, using a linear function of the form

1. Minimize the squared error over just the k nearest neighbors:

1 a
Ex(xg) = 5 b (f(x) = f(x))
X k mearest nbrs of x,
2, Minimize the squared error over the entire set D of training examples, while

weighting the error of each training example by some decreasing function
K of its distance from x,:

1 A .
Ex(xg) = 5) _(f(x) = f))* K@(xg, x)

x€D

3. Combine 1 and 2:

1 A
Es(xg) = 5 > (f(x) = [())* K(d(xg, x))

XE k nearest nbrs of x;

program

import matplotlib.pyplot as plt
import pandas as pd

import numpy as np

def kernel(point,xmat, k):
m,n = np.shape(xmat)
weights = np.mat(np.eye((m))) # eye - identity matrix

Dept. of CSE,KSIT Page 35

MACHINE LEARNING LABORATORY MANUAL 17CSL76

for j in range(m):

diff = point - X[j]

weights[j,j] = np.exp(diff*diff. T/(-2.0*k**2))
return weights

def localWeight(point,xmat,ymat,k):
wei = kernel(point,xmat,k)
W = (X.T*(wei*X)).I*(X.T*(wei*ymat.T))
return W
def localWeightRegression(xmat,ymat,k):
m,n = np.shape(xmat)
ypred = np.zeros(m)
for i in range(m):
ypred[i] = xmat[i]*localWeight(xmat[i],xmat,ymat,k)
return ypred

def graphPlot(X,ypred):
sortindex = X[:,1].argsort(0) #argsort - index of the smallest
xsort = X[sortindex][:,0]
fig = plt.figure()
ax = fig.add_subplot(1,1,1)
ax.scatter(bill tip, color="green’)
ax.plot(xsort[:,1],ypred[sortindex], color = 'red’, linewidth=5)
plt.xlabel('Total bill")
plt.ylabel('Tip")
plt.show();
load data points
data = pd.read_csv('10data_tips.csv’)
bill = np.array(data.total_bill) # We use only Bill amount and Tips data
tip = np.array(data.tip)
mbill = np.mat(bill) # .mat will convert nd array is converted in 2D array
mtip = np.mat(tip)
m= np.shape(mbill)[1]
one = np.mat(np.ones(m))
X = np.hstack((one.T,mbill.T)) # 244 rows, 2 cols
ypred = localWeightRegression(X,mtip,8) # increase k to get smooth curves
graphPlot(X,ypred)

Dept. of CSE,KSIT Page 36

MACHINE LEARNING LABORATORY MANUAL

17CSL76

Output

1.0

0.5 4

0.0

—0.5 4

-1.0 4

b O

—— ¥ noisy
—— y pred

Dept. of CSE,KSIT

Page 37

