

K.S. Institute of Technology, Bangalore - 560109

Department of Electronics and Communication Engineering

Programme Level Document:

Detailed Curriculum

2015 SCHEME

I SEMESTER B.E./B.TECH.

PHYSICS GROUP

SI.	Subject	hingt		Teaching		Theory /Lab/	Examination Marks			Credits
51. No.	Code	Subject		Department	Board	/Lab/ Drawing (Hrs/ Week)	Th./Pr.	I.A.	Total	
1	15MAT11	Engineering Maths-I	BS	Maths	Basic Sc.	4 (T)	80	20	100	4
2	15PHY12	Engineering Physics	BS	Physics	Basic Sc.	4 (T)	80	20	100	4
3	15CIV13	Elements of Civil Engg. & Mechanics	ES	Civil Engg.	Civil Engg.	4 (T)	80	20	100	4
4	15EME14	Elements of Mechanical Engg.	ES	Mech. Engg.	Mech. Engg.	4 (T)	80	20	100	4
5	15ELE15	Basic Electrical Engg.	ES	E & E	E & E	4 (T)	80	20	100	4
	15WSL16	Workshop Practice	ES	Mech., Auto,	Mech.	3(2 hrs lab+	80	20	100	2
6				IP, IEM, Mfg.	Engg.	1 hr				
				Engg.		instruction)				
7	15PHYL17	Engg. Physics Lab	BS	Physics	Basic Sc.	3(2 hrs lab+ 1 hr instruction)	80	20	100	2
8	15CPH18	Constitution of India, Professional Ethics and Human Rights (CPH)	MNC	Humanities		2 (Tutorial)	40	10	50	
9		Language (Kan.)	Mandatory Learning	Humanities		1 (T)	-	-	-	
						29	600	150	750	24

IISEMESTER B.E./B.TECH.

	<u>,, D. I ECII.</u>						РНҮ	SICS GRO	UP	
SI.					Theory /Lab/	Exan	nination Ma	rks	Credits	
51. No.	Subject Code	Subject		Teaching Department	Board	/Lab/ Drawing (Hrs/ Week)	Th./Pr.	I.A.	Total	
1	15MAT21	Engineering Maths-II	BS	Maths	Basic Sc.	4 (T)	80	20	100	4
2	15PHY22	Engineering Physics	BS	Physics	Basic Sc.	4 (T)	80	20	100	4
3	15CIV23	Elements of Civil Engg. & Mechanics	ES	Civil Engg.	Civil Engg.	4 (T)	80	20	100	4
4	15EME24	Elements of Mechanical Engg.	ES	Mech. Engg.	Mech. Engg.	4 (T)	80	20	100	4
5	15ELE25	Basic Electrical Engg.	ES	E & E	E & E	4 (T)	80	20	100	4
6	15WSL26	Workshop Practice	ES	Mech., Auto, IP, IEM, Mfg. Engg.	Mech. Engg.	3(2 hrs lab+ 1 hr instruction)	80	20	100	2
7	15PHYL27	Engg. Physics Lab	BS	Physics	Basic Sc.	3(2 hrs lab+ 1 hr instruction)	80	20	100	2
8	15CPH28	Constitution of India, Professional Ethics and Human Rights	MNC	Humanities		2 (Tutorial)	40	10	50	
9		Language (Kan.)	Mandatory Learning	Humanities		1 (T)	-	-	-	
						29	600	150	750	24

I SEMESTER B.E./B.TECH.

-		<u>b.r.e.n.</u>			СН	EMISTRY GROU	J P			
SI.	Subject	t Subject	Teaching	Board	Theory /Lab/ Drawing (Hrs/	Examination Marks			Credits	
No.	Code	Subject		Department	Doaru	Week)	Th./Pr.	I.A.	Total	
1	15MAT11	Engineering Maths-I	BS	Maths	Basic Sc.	4 (T)	80	20	100	4
2	15CHE12	Engineering Chemistry	BS	Chemistry	Basic Sc.	4 (T)	80	20	100	4
3	15PCD13	Programming in C & Data Structures	ES	Any Engineering Department	CSE	4 (T)	80	20	100	4
4	15CED14	Computer Aided Engineering Drawing	ES	Mech./IP/Auto/ Mfg.Engg./ IEM	Mech. Engg.	6 (2I+ 4P)	80	20	100	4
5	15ELN15	Basic Electronics	ES	E & C / E & E / TC / IT	E & C	4 (T)	80	20	100	4
6	15CPL16	Computer Programming Lab	ES	Any Engineering Department	CSE	3(2 hrs lab+ 1 hr Tutorial)	80	20	100	2
7	15CHEL17	Engg. Chemistry Lab	BS	Chemistry	Basic Sci.	3(2 hrs lab+ 1 hr Tutorial)	80	20	100	2
8	15CIV18	Environmental Studies	MNC	Civil / Environmental	Civil	2 (Tutorial)	40	10	50	
9		Language (Eng.)	Mandatory Learning	Humanities		1 (T)	-	-	-	
					Total	31	600	150	750	24

II SEMESTER B.E./B.TECH.

CHEMISTRY GROUP

SI.	Subject	oject Subject	Teaching Board	Deend	Theory /Lab/	Examination Marks			Credits	
No.	Code	Subject		Department	Боаго	Drawing (Hrs/ Week)	Th./Pr.	I.A.	Total	
1	15MAT21	Engineering Maths-II	BS	Maths	Basic Sc.	4 (T)	80	20	100	4
2	15CHE22	Engineering Chemistry	BS	Chemistry	Basic Sc.	4 (T)	80	20	100	4
3	15PCD23	Programming in C & Data Structures	ES	Any Engineering Department	CSE	4 (T)	80	20	100	4
4	15CED24	Computer Aided Engineering Drawing	ES	Mech./IP/Auto/ Mfg.Engg./ IEM	Mech. Engg.	6 (2I+ 4P)	80	20	100	4
5	15ELN25	Basic Electronics	ES	E & C / E & E / TC / IT	E & C	4 (T)	80	20	100	4
6	15CPL26	Computer Programming Lab	ES	Any Engineering Department	CSE	3(2 hrs lab+ 1 hr Tutorial)	80	20	100	2
7	15CHEL27	Engg. Chemistry Lab	BS	Chemistry	Basic Sc.	3(2 hrs lab+ 1 hr Tutorial)	80	20	100	2
8	15CIV28	Environmental Studies	MNC	Civil / Environmental	Civil	2 (Tutorial)	40	10	50	
9		Language (Eng.)	Mandatory Learning	Humanities		1 (T)	-	-	-	
					Total	31	600	150	750	24

[As per Choice Ba (Effective from	ECTRICAL ENGINEERI ased Credit System (CBC) the academic year 2015	S) scheme]			
	SEMESTER - I/II				
Subject Code	15ELE15/15ELE25	IA Marks	20		
Number of Lecture Hours/Week	04	Exam Marks	80		
Total Number of Lecture Hours	50	Exam Hours	03		
Credits - 04					

Course objectives:

- Impart a basic knowledge of electrical quantities such as current, voltage, power, energy and frequency to understand the impact of technology in a global and societal context.
- Provide working knowledge for the analysis of basic DC and AC circuits used in electrical and electronic devices.
- Develop selection skill to identify the type of generators or motors required for particular application.
- Highlight the importance of transformers in transmission and distribution of electric power.
- Emphasize the effects of electric shock and precautionary measures.
- Improve the ability to function on multi-disciplinary teams.

Module -1	Teaching Hours
D C circuits: Ohm's Law and Kirchhoff's Laws, analysis of series, parallel and	5 Hours
series- parallel circuits excited by independent voltage sources. Power and	
Energy. Illustrative examples.	
Electromagnetism:	5Hours
Review of field around a conductor and coil, magnetic flux and flux density,	
magnetomotive force and magnetic field intensity, reluctance and permeability,	
definition of magnetic circuit and basic analogy between electric and magnetic	
circuits. (These topics are not to be considered for setting the examination	
questions).	
Electromagnetic induction: Definition of Electromagnetic Induction, Faradays	
Laws, Fleming's right hand rule, Lenz's Law, Statically and dynamically	
induced emf. Self-inductance, mutual inductance and coefficient of coupling.	
Energy stored in magnetic field. Illustrative examples. Force on current carrying	
conductor placed in a magnetic field, Fleming's left hand rule.	

Module -2

Module -2	
DC Machines: Working principle of DC machine as a generator and a	7 Hours
motor. Types and constructional features. Types of armature windings, Emf	
equation of generator, relation between induced emf and terminal voltage with a	
mention of brush contact drop and drop due to armature reaction. Illustrative	
examples, neglecting armature reaction.	
Operation of DC motor, back emf, torque equation. Types of DC motors,	
characteristics and applications. Significance of back emf. Necessity of a starter	
for DC motor. Illustrative examples on back emf and torque.	
Measuring Instruments: Construction and Principle of operation of	3 Hours
dynamometer type wattmeterand single phase induction type energy meter.	
Module - 3	
Single-phase AC circuits: Generation of sinusoidal voltage, frequency of	7 Hours
generated voltage, definition and numerical values of average value, root	
mean square value, form factor and peak factor of sinusoidally varying	
quantities, phasor representation of alternating quantities. Analysis, with	
phasor diagrams, of R, L, C, R-L, R-C and R-L-C circuits and, parallel and	
series- parallel circuits. Real power, reactive power, apparent power and power	
factor. Illustrative examples.	
Domestic wiring:	3 Hours
Service mains, meter board and distribution board. Brief discussion on	
concealed conduit wiring. Two-way and three-way control. Elementary	
discussion on Circuit protective devices: fuse and Miniature Circuit Breaker	
(MCB's). Electric shock, precautions against shock, Objectives of Earthing,	
types of earthing; pipe and plate earthing, Residual current circuit breaker	
(RCCB).	
Module-4	
Three Phase Circuits: Necessity and advantages of three phase systems,	6 Hours
generation of three phase power. Definition of Phase sequence, balanced	
supply and balanced load. Relationship between line and phase values of	
balanced star and delta connections. Power in balanced three-phase circuits,	
measurement of power by two-wattmeter method. Determination power factor	
using wattmeter readings. Illustrative examples.	

Three PhaseSynchronous Generators: Principle of operation, Types and	4 Hours
constructional features, Advantages of rotating field type alternator,	
Synchronous speed, Frequency of generated voltage, Emf equation. Concept of	
winding factor (excluding the derivation of distribution and pitch factors).	
Illustrative examples on calculation of distribution factor, pitch factor and emf	
equation.	
Module-5	
Single Phase Transformers:	6 Hours
Necessity of transformer, Principle of operation and construction of single-	
phase transformers (core and shell types). Emf equation, losses, variation	
losses with respect to load, efficiency, Condition for maximum efficiency,	
Voltage regulation and its significance (Open Circuit and Short circuit tests,	
equivalent circuit and phasor diagrams are excluded). Illustrative problems on	
emf equation and efficiency only.	
Three Phase Induction Motors: Principle of operation, Concept and	4 Hours
production of rotating magnetic field, Synchronous speed, rotor speed, Slip,	
Frequency of the rotor induced emf, Types and Constructional features. Slip	
and its significance. Applications of squirrel - cage and slip - ring motors.	
Necessity of a starter, starting of motor using stars-delta starter. Illustrative	
examples on slip calculations.	
Course outcomes:	
After the completion of the course, the student should be able	
• To predict the behaviour of electrical and magnetic circuits.	
• Select the type of generator / motor required for a particular application.	
 Realize the requirement of transformers in transmission and distribution of electric power a 	and other
applications.	
Practice Electrical Safety Rules & standards.To function on multi-disciplinary teams.	

- The question paper will have ten questions.
- Each full Question consisting of 16 marks
- There will be **2** full questions(with a **maximum** of **four** sub questions) from

each module.

- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer **5** full questions, selecting one full question from each module.

Text	Books			
1	Basic Electrical Engineering	D. C. Kulshreshtha	TMH	1 st Edition,
				Revised
2	Electrical Technology	Edward Hughes	Pearson	10th Edition, 2014
	ReferenceBooks			
3	Fundamentals of Electrical	Rajendra Prasad	PHI	Third Edition 2014
	Engineering			
4	Basic Electrical Engineering	AbhijitChakrabarti,	TMH,	1st Edition
		Chandan Kumar Chanda,		2010
		Sudiptanath		
5	Fundamentals of Electrical	B. L. Theraja	S. Chand &	Reprint Edition 2013
	Engineering and Electronics		Company	
			Ltd	

IAs per Choice	BASIC ELECTRONICS e Based Credit System (CI	SCS) schemel		
• •	rom the academic year 20	, ,		
,	SEMESTER - I/II	, 1 1		
Subject Code	15ELN15 / 15ELN25	IA Marks	20	
Number of Lecture Hours/Week	04	Exam Marks	80	
Total Number of Lecture Hours	50	Exam Hours	03	
	CREDITS - 04			
Course objectives: The course objective is to	make students of all the	branches of Eng	ineerin	
to understand the efficac		C		
engineering applications	5 1 1	1		
Module -1			Teach	
			ing Hours	
Semiconductor Diodes	and Applications (Text-	1): p-n junction	06	
diode, Characteristics and	d Parameters, Diode app	roximations, DC	Hour	
load line analysis, Half-wave rectifier, Two-diode Full-wave rectifier,				
Bridge rectifier, Capacitor	r filter circuit (only qual	itative approch),		
Zener diode voltage regu	ulators: Regulator circuit	with no load,		
Loaded Regulator. Numeri	cal examples as applicabl	e.		
Bipolar Junction Transi	stors: BJT operation, B.	JT Voltages and		
Currents, BJT amplification	on, Common Base, Comn	non Emitter and	04	
Common Collector Cha	aracteristics, Numerical	examples as	Hour	
applicable.				
Module -2				
BJT Biasing (Text-1): DO	C Load line and Bias Po	oint, Base Bias,	04	
Voltage divider Bias, Num	erical examples as applica	ıble.	Hour	
Introduction to Operati	_ 、 ,			
Inverting and Non Inverti	0		06	
voltage follower, addition,	, subtraction, integration	, differentiation;	Hour	
Numerical examples as ap	plicable.			

Digital Electronics (Text-2): Introduction, Switching and Logic	10
Levels, Digital Waveform (Sections 9.1to 9.3). Number Systems:	Hours
Decimal Number System, Binary Number System, Converting	
Decimal to Binary, Hexadecimal Number System: Converting	
Binary to Hexadecimal, Hexadecimal to Binary, Converting	
Hexadecimal to Decimal, Converting Decimal to Hexadecimal, Octal	
Numbers: Binary to Octal Conversion. Complement of Binary	
Numbers. Boolean Algebra Theorems, De Morgan's theorem. Digital	
Circuits: Logic gates, NOT Gate, AND Gate, OR Gate, XOR Gate,	
NAND Gate, NOR Gate, X-NOR Gate. Algebraic Simplification,	
NAND and NOR Implementation (Sections 11.7 and 11.8): NAND	
Implementation, NOR Implementation. Half adder, Full adder.	
Module-4	
Flip-Flops (Text-2): Introduction to Flip-Flops (Section 12.1), NAND	05
Gate Latch/ NOR Gate Latch, RS Flip-Flop, Gated Flip-Flops:	Hours
Clocked RS Flip-Flop (Sections 12.3 to 12.5).	
Microcontrollers (Ref.1): Introduction to Microcontrollers, 8051	05
Microcontroller Architecture and an example of Microcontroller	Hours
based stepper motor control system (only Block Diagram approach).	
Module-5	
Communication Systems (Text-2): Introduction, Elements of	06
Communication Systems, Modulation: Amplitude Modulation,	Hours
Spectrum Power, AM Detection (Demodulation), Frequency and	
Phase Modulation. Amplitude and Frequency Modulation: A	
comparison.	
Transducers (Text-2): Introduction, Passive Electrical Transducers,	
Resistive Transducers, Resistance Thermometers, Thermistor.	04
	Hours
Linear Variable Differential Transformer (LVDT). Active Electrical	
Linear Variable Differential Transformer (LVDT). Active Electrical Transducers, Piezoelectric Transducer, Photoelectric Transducer.	

Course outcomes:

After studying this course, students will be able to:

- Appreciate the significance of electronics in different applications,
- Understand the applications of diode in rectifiers, filter circuits and wave shaping,
- Apply the concept of diode in rectifiers, filters circuits
- Design simple circuits like amplifiers (inverting and non inverting), comparators, adders, integrator and differentiator using OPAMPS,
- Compile the different building blocks in digital electronics using logic gates and implement simple logic function using basic universal gates, and
- Understand the functioning of a communication system, and different modulation technologies, and
- Understand the basic principles of different types of Transuducers.

Question paper pattern:

- The question paper will have ten questions.
- Each full Question consisting of 16 marks
- There will be **2** full questions(with a **maximum** of **four** sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer **5** full questions, selecting one full question from each module.

Text Books:

- David A. Bell, "Electronic Devices and Circuits", Oxford University Press, 5th Edition, 2008.
- D.P. Kothari, I. J. Nagrath, "Basic Electronics", McGraw Hill Education (India) Private Limited, 2014.

Reference Books: MuhammadAli Mazidi, "The 8051 Microcontroller and Embedded. Systems. Using Assembly and C." Second Edition, 2011, Pearson India.

DED ENGINEERING DE	RAWING	
ed Credit System (CBC	S) scheme]	
he academic year 2015	5 -2016)	
EMESTER - I/II		
15CED14/15CED24	IA Marks	20
6 (2T + 4L)	Exam Marks	80
84	Exam Hours	03
CREDITS - 04	1	<u></u>
	ed Credit System (CBC he academic year 2015 EMESTER - I/II 15CED14/15CED24 6 (2T + 4L) 84	15CED14/15CED24IA Marks6 (2T + 4L)Exam Marks84Exam Hours

Course objectives:

Engineering drawing is an important tool for all Engineers and for many others professionals. It is the language of Engineers. Engineering Drawing communicates all needed information from the engineer who designed a part to the workers who will manufacture it.

The aim of the subject is to equip students with the fundamentals of Computer Aided Engineering Drawing and to further the ability to communicate information by graphical means.

Module -1	Teaching
	Hours

Introduction to Computer Aided Sketching	06 Hours
Introduction to Computer Aided Sketching	UO HOUIS
Introduction, Drawing Instruments and their uses, BIS	
conventions, Lettering, Dimensioning and free hand practicing.	
Computer screen, layout of the software, standard tool	
bar/menus and description of most commonly used tool bars,	
navigational tools. Co-ordinate system and reference planes. of	
HP, VP, RPP & LPP. of 2D/3D environment. Selection of drawing	
size and scale. Commands and creation of Lines, Co-ordinate	
points, axes, poly-lines, square, rectangle, polygons, splines,	
circles, ellipse, text, move, copy, off-set, mirror, rotate, trim,	
extend, break, chamfer, fillet, curves, constraints viz. tangency,	
parallelism, inclination and perpendicularity. Dimensioning, line	
conventions, material conventions and lettering.	
Module -2	Teaching
Module -2	Teaching Hours
Module -2 Orthographic projections	•
	Hours
Orthographic projections Introduction, Definitions - Planes of projection, reference line and conventions employed, Projections of points in all the four	Hours
Orthographic projections Introduction, Definitions - Planes of projection, reference line and conventions employed, Projections of points in all the four quadrants, Projections of straight lines (located in First	Hours
Orthographic projections Introduction, Definitions - Planes of projection, reference line and conventions employed, Projections of points in all the four	Hours
Orthographic projections Introduction, Definitions - Planes of projection, reference line and conventions employed, Projections of points in all the four quadrants, Projections of straight lines (located in First quadrant/first angle only), True and apparent lengths, True and	Hours
Orthographic projections Introduction, Definitions - Planes of projection, reference line and conventions employed, Projections of points in all the four quadrants, Projections of straight lines (located in First quadrant/first angle only), True and apparent lengths, True and apparent inclinations to reference planes (No application problems). Orthographic Projections of Plane Surfaces (First Angle Projection	Hours
Orthographic projections Introduction, Definitions - Planes of projection, reference line and conventions employed, Projections of points in all the four quadrants, Projections of straight lines (located in First quadrant/first angle only), True and apparent lengths, True and apparent inclinations to reference planes (No application problems). Orthographic Projections of Plane Surfaces (First Angle Projection Only)	Hours
Orthographic projections Introduction, Definitions - Planes of projection, reference line and conventions employed, Projections of points in all the four quadrants, Projections of straight lines (located in First quadrant/first angle only), True and apparent lengths, True and apparent inclinations to reference planes (No application problems). Orthographic Projections of Plane Surfaces (First Angle Projection Only) Introduction, Definitions-projections of plane surfaces-triangle,	Hours
Orthographic projections Introduction, Definitions - Planes of projection, reference line and conventions employed, Projections of points in all the four quadrants, Projections of straight lines (located in First quadrant/first angle only), True and apparent lengths, True and apparent inclinations to reference planes (No application problems). Orthographic Projections of Plane Surfaces (First Angle Projection Only) Introduction, Definitions-projections of plane surfaces-triangle, square, rectangle, rhombus, pentagon, hexagon and circle,	Hours
Orthographic projections Introduction, Definitions - Planes of projection, reference line and conventions employed, Projections of points in all the four quadrants, Projections of straight lines (located in First quadrant/first angle only), True and apparent lengths, True and apparent inclinations to reference planes (No application problems). Orthographic Projections of Plane Surfaces (First Angle Projection Only) Introduction, Definitions-projections of plane surfaces-triangle,	Hours
Orthographic projections Introduction, Definitions - Planes of projection, reference line and conventions employed, Projections of points in all the four quadrants, Projections of straight lines (located in First quadrant/first angle only), True and apparent lengths, True and apparent inclinations to reference planes (No application problems). Orthographic Projections of Plane Surfaces (First Angle Projection Only) Introduction, Definitions–projections of plane surfaces–triangle, square, rectangle, rhombus, pentagon, hexagon and circle, planes in different positions by change of position method only	Hours
Orthographic projections Introduction, Definitions - Planes of projection, reference line and conventions employed, Projections of points in all the four quadrants, Projections of straight lines (located in First quadrant/first angle only), True and apparent lengths, True and apparent inclinations to reference planes (No application problems). Orthographic Projections of Plane Surfaces (First Angle Projection Only) Introduction, Definitions–projections of plane surfaces–triangle, square, rectangle, rhombus, pentagon, hexagon and circle, planes in different positions by change of position method only	Hours

Projections of Solids (First angle Projection only)	28 Hours
Introduction, Definitions – Projections of right regular tetrahedron, hexahedron (cube), prisms, pyramids, cylinders and cones in different positions (No problems on octahedrons and combination solid).	
Module-4	
Sections And Development of Lateral Surfaces of Solids	15Hours
Introduction, Section planes, Sections, Section views, Sectional views, Apparent shapes and True shapes of Sections of right regular prisms, pyramids, cylinders and cones resting with base on HP. (No problems on sections of solids)	
Development of lateral surfaces of above solids, their frustums and truncations. (No problems on lateral surfaces of trays, tetrahedrons, spheres and transition pieces).	
Module-5	
Isometric Projection (Using Isometric Scale Only)	
Introduction, Isometric scale, Isometric projection of simple plane figures, Isometric projection of tetrahedron, hexahedron(cube), right regular prisms, pyramids, cylinders, cones, spheres, cut spheres and combination of solids (Maximum of three solids).	15 Hours
Course outcomes:	
After studying this course,	
1. Students will be able to demonstrate the usage of CAD software.	
2. Students will be able to visualize and draw Orthographic project	ions,
Sections of solids and Isometric views of solids.	
3. Students are evaluated for their ability in applying various conce	epts to solv
practical problems related to engineering drawing.	

Question paper pattern:

Module -1 is only for practice and Internal Assessment and not for examination.
 Question paper for each batch of students will be sent online by VTU and has to be downloaded before the commencement of Examination of each batch. The answer sheets will have to be jointly evaluated by the Internal & External examiners.

3. A maximum of **THREE** questions will be set as per the following pattern (*No mixing of questions from different Modules*).

	Q. No.	From Chapters		Mar Allot	-	
	1	Module 2(Choi (Points+Lines		25	5	
	2	Modul	e 3	30)	
	3	Module 4 or	Module 5	25	5	
		Total		80)	
Q. N	lo.	Solutions and Sketching in the Graph Book	Computer Disp Printout	•	Total	Marks
1	1 10		15			25
2	2 12		18		(°)	30
3	3 13		12			25
Total 35 Marks		45		3	30	

Students have to submit the computer printouts and the sketches drawn on the graph sheets at the end of the examination. Both Internal & External examiners have to jointly evaluate the solutions (sketches) and computer display & printouts of each student for 80 marks (35 marks for solutions & sketches + 45 marks for computer display and printouts) and submit the marks list along with the solution (sketches) on graph sheets & computer printouts in separate covers.

4. Each batch must consist of a minimum of 10 students and a maximum of 12 students.

5. Examination can be conducted in parallel batches, if necessary.

Text Books:

1) **Engineering Drawing** - N.D. Bhatt & V.M. Panchal, 48th edition, 2005-Charotar Publishing House, Gujarat.

2) "**Computer Aided Engineering Drawing**" by Dr. M H Annaiah, Dr C N Chandrappa and Dr B Sudheer Premkumar Fifth edition, New Age International Publishers.

Reference Books:

1) Computer Aided Engineering Drawing - S. Trymbaka Murthy, - I.K. International Publishing House Pvt. Ltd., New Delhi, 3rd revised edition- 2006.

2) Engineering Graphics - K.R. Gopalakrishna, 32nd edition, 2005- Subash Publishers Bangalore.

3) Fundamentals of Engineering Drawing with an Introduction to Interactive Computer Graphics for Design and Production- Luzadder Warren J., Duff John M., Eastern Economy Edition, 2005- Prentice-Hall of India Pvt. Ltd., New Delhi.

4) A Primer on Computer Aided Engineering Drawing-2006, Published by VTU, Belgaum.

	COMPUTER PROGRAMMII per Choice Based Credit System iffective from the academic yea SEMESTER - I/II	(CBCS) scheme]	
Laboratory Code	15CPL16 / 15CPL26	IA Marks	20
Number of Lecture Hours/Week	01Hr Tutorial (Instructions) + 02 Hours Laboratory	Exam Marks	80
Total Number of Lecture Hours	48	Exam Hours	03
CREDITS - 02			

Course objectives: To provide basic principles C programming language. To provide design & develop of C programming skills. To provide practical exposures like designing flowcharts, algorithms, how to debug programs etc.

Descriptions (if any):

Demonstration of Personal Computer and its Accessories: Demonstration and Explanation on Disassembly and Assembly of a Personal Computer by the faculty-in-charge. Students have to prepare a write-up on the same and include it in the Lab record and evaluated.

Laboratory Session-1: Write-up on Functional block diagram of Computer, CPU, Buses, Mother Board, Chip sets, Operating System & types of OS, Basics of Networking & Topology and NIC.
 Laboratory Session-2: Write-up on RAM, SDRAM, FLASH memory, Hard disks, Optical media, CD-ROM/R/RW, DVDs, Flash drives, Keyboard, Mouse, Printers and Plotters. Introduction to flowchart, algorithm and pseudo code.

Note: These **TWO Laboratory sessions** are used to fill the gap between theory classes and practical sessions. Both sessions are to be evaluated as lab experiments.

Laboratory Experiments:

Implement the following programs with WINDOWS / LINUX platform using appropriate C compiler.

- 1. Design and develop a flowchart or an algorithm that takes three coefficients (a, b, and c) of a Quadratic equation $(ax^2+bx+c=0)$ as input and compute all possible roots. Implement a C program for the developed flowchart/algorithm and execute the same to output the possible roots for a given set of coefficients with appropriate messages.
- 2. Design and develop an algorithm to find the *reverse* of an integer number **NUM** and check whether it is PALINDROME or NOT. Implement a C program for the developed algorithm that takes an integer number as input and output the reverse of the same with suitable messages. Ex: Num: **2014**, Reverse: **4102**, Not a Palindrome
- 3.

3a. Design and develop a flowchart to find the square root of a given number N. Implement a C program for the same and execute for all possible inputs with appropriate messages. Note: **Don't use library function** sqrt(n).

3b. Design and develop a C program to read a *year* as an input and find whether it is *leap year* or not. Also consider end of the centuries.

- 4. Design and develop an algorithm to evaluate polynomial $\mathbf{f}(\mathbf{x}) = \mathbf{a}_x \mathbf{x}^4 + \mathbf{a}_x \mathbf{x}^3 + \mathbf{a}_z \mathbf{x}^2 + \mathbf{a}_r \mathbf{x} + \mathbf{a}_{\phi}$, for a given value of \mathbf{x} and its coefficients using Horner's method. Implement a C program for the same and execute the program with different set of values of coefficients and \mathbf{x} .
- Draw the flowchart and Write a C Program to compute Sin(x) using Taylor series approximation given by Sin(x) = x (x³/3!) + (x⁵/5!) (x⁷/7!) +
 Compare your result with the built- in Library function. Print both the results with appropriate messages.
- 6. Develop an algorithm, implement and execute a C program that reads *N* integer numbers and arrange them in ascending order using *Bubble Sort*.
- 7. Develop, implement and execute a C program that reads two matrices A ($\mathbf{m} \times \mathbf{n}$) and B ($\mathbf{p} \times \mathbf{q}$) and Compute product of matrices A and B. Read matrix A and matrix B in row major order and in column major order respectively. Print both the input matrices and resultant matrix with suitable headings and output should be in matrix format only. Program must check the compatibility of orders of the matrices for multiplication. Report appropriate message in case of incompatibility.
- 8. Develop, implement and execute a C program to search a Name in a list of names using *Binary searching* Technique.
- 9. Write and execute a C program that

- i. Implements string copy operation **STRCOPY**(str1,str2) that copies a string *str1* to another string *str2* without using library function.
- ii. Read a *sentence* and print frequency of vowels and total count of consonants.

10.

a. Design and develop a C function RightShift(x, n) that takes two integers x and n as input and returns value of the integer x rotated to the right by n positions. Assume the integers are unsigned. Write a C program that invokes this function with different values for x and n and tabulate the results with suitable headings.

b. Design and develop a C function *isprime*(num) that accepts an integer argument and returns 1 if the argument is prime, a 0 otherwise. Write a C program that invokes this function to generate prime numbers between the given range.

- 11. Draw the flowchart and write a *recursive* C function to find the factorial of a number, *n*!, defined by *fact*(*n*)=1, if *n*=0. Otherwise *fact*(*n*)=*n***fact*(*n*-1). Using this function, write a C program to compute the binomial coefficient $_{n}C_{r}$. Tabulate the results for different values of *n* and *r* with suitable messages.
- 12. Given two university information files "**studentname.txt**" and "**usn.txt**" that contains students Name and USN respectively. Write a C program to create a new file called "**output.txt**" and copy the content of files "studentname.txt" and "usn.txt" into output file in the sequence shown below. Display the contents of output file "output.txt" on to the screen.

Student Name	USN 🔶	Heading
Name 1	USN1	
Name 2	USN2	

- 13. Write a C program to maintain a record of **n** student details using an array of structures with four fields (Roll number, Name, Marks, and Grade). Assume appropriate data type for each field. Print the marks of the student, given the student name as input.
- 14. Write a C program using pointers to compute the sum, mean and standard deviation of all elements stored in an array of **n** real numbers.

Course outcomes:

- Gaining Knowledge on various parts of a computer.
- Able to draw flowcharts and write algorithms
- Able design and development of C problem solving skills.
- Able design and develop modular programming skills.
- Able to trace and debug a program

Conduction of Practical Examination:

- **1.** All laboratory experiments (nos) are to be included for practical examination.
- **2**. Students are allowed to pick one experiment from the lot.
- **3.** Strictly follow the instructions as printed on the cover page of answer script for breakup of marks
- 4. Change of experiment is allowed only once and 15% Marks allotted to the procedure part to be made zero.

	COMPUTER PROGRAMMII per Choice Based Credit System iffective from the academic yea SEMESTER - I/II	(CBCS) scheme]	
Laboratory Code	15CPL16 / 15CPL26	IA Marks	20
Number of Lecture Hours/Week	01Hr Tutorial (Instructions) + 02 Hours Laboratory	Exam Marks	80
Total Number of Lecture Hours	48	Exam Hours	03
CREDITS - 02			

Course objectives: To provide basic principles C programming language. To provide design & develop of C programming skills. To provide practical exposures like designing flowcharts, algorithms, how to debug programs etc.

Descriptions (if any):

Demonstration of Personal Computer and its Accessories: Demonstration and Explanation on Disassembly and Assembly of a Personal Computer by the faculty-in-charge. Students have to prepare a write-up on the same and include it in the Lab record and evaluated.

Laboratory Session-1: Write-up on Functional block diagram of Computer, CPU, Buses, Mother Board, Chip sets, Operating System & types of OS, Basics of Networking & Topology and NIC.
 Laboratory Session-2: Write-up on RAM, SDRAM, FLASH memory, Hard disks, Optical media, CD-ROM/R/RW, DVDs, Flash drives, Keyboard, Mouse, Printers and Plotters. Introduction to flowchart, algorithm and pseudo code.

Note: These **TWO Laboratory sessions** are used to fill the gap between theory classes and practical sessions. Both sessions are to be evaluated as lab experiments.

Laboratory Experiments:

Implement the following programs with WINDOWS / LINUX platform using appropriate C compiler.

- 1. Design and develop a flowchart or an algorithm that takes three coefficients (a, b, and c) of a Quadratic equation $(ax^2+bx+c=0)$ as input and compute all possible roots. Implement a C program for the developed flowchart/algorithm and execute the same to output the possible roots for a given set of coefficients with appropriate messages.
- 2. Design and develop an algorithm to find the *reverse* of an integer number **NUM** and check whether it is PALINDROME or NOT. Implement a C program for the developed algorithm that takes an integer number as input and output the reverse of the same with suitable messages. Ex: Num: **2014**, Reverse: **4102**, Not a Palindrome
- 3.

3a. Design and develop a flowchart to find the square root of a given number N. Implement a C program for the same and execute for all possible inputs with appropriate messages. Note: **Don't use library function** sqrt(n).

3b. Design and develop a C program to read a *year* as an input and find whether it is *leap year* or not. Also consider end of the centuries.

- 4. Design and develop an algorithm to evaluate polynomial $\mathbf{f}(\mathbf{x}) = \mathbf{a}_x \mathbf{x}^4 + \mathbf{a}_x \mathbf{x}^3 + \mathbf{a}_z \mathbf{x}^2 + \mathbf{a}_r \mathbf{x} + \mathbf{a}_{\phi}$, for a given value of \mathbf{x} and its coefficients using Horner's method. Implement a C program for the same and execute the program with different set of values of coefficients and \mathbf{x} .
- Draw the flowchart and Write a C Program to compute Sin(x) using Taylor series approximation given by Sin(x) = x (x³/3!) + (x⁵/5!) (x⁷/7!) +
 Compare your result with the built- in Library function. Print both the results with appropriate messages.
- 6. Develop an algorithm, implement and execute a C program that reads *N* integer numbers and arrange them in ascending order using *Bubble Sort*.
- 7. Develop, implement and execute a C program that reads two matrices A ($\mathbf{m} \times \mathbf{n}$) and B ($\mathbf{p} \times \mathbf{q}$) and Compute product of matrices A and B. Read matrix A and matrix B in row major order and in column major order respectively. Print both the input matrices and resultant matrix with suitable headings and output should be in matrix format only. Program must check the compatibility of orders of the matrices for multiplication. Report appropriate message in case of incompatibility.
- 8. Develop, implement and execute a C program to search a Name in a list of names using *Binary searching* Technique.
- 9. Write and execute a C program that

- i. Implements string copy operation **STRCOPY**(str1,str2) that copies a string *str1* to another string *str2* without using library function.
- ii. Read a *sentence* and print frequency of vowels and total count of consonants.

10.

a. Design and develop a C function RightShift(x, n) that takes two integers x and n as input and returns value of the integer x rotated to the right by n positions. Assume the integers are unsigned. Write a C program that invokes this function with different values for x and n and tabulate the results with suitable headings.

b. Design and develop a C function *isprime*(num) that accepts an integer argument and returns 1 if the argument is prime, a 0 otherwise. Write a C program that invokes this function to generate prime numbers between the given range.

- 11. Draw the flowchart and write a *recursive* C function to find the factorial of a number, *n*!, defined by *fact*(*n*)=1, if *n*=0. Otherwise *fact*(*n*)=*n***fact*(*n*-1). Using this function, write a C program to compute the binomial coefficient $_{n}C_{r}$. Tabulate the results for different values of *n* and *r* with suitable messages.
- 12. Given two university information files "**studentname.txt**" and "**usn.txt**" that contains students Name and USN respectively. Write a C program to create a new file called "**output.txt**" and copy the content of files "studentname.txt" and "usn.txt" into output file in the sequence shown below. Display the contents of output file "output.txt" on to the screen.

Student Name	USN 🔶	Heading
Name 1	USN1	
Name 2	USN2	

- 13. Write a C program to maintain a record of **n** student details using an array of structures with four fields (Roll number, Name, Marks, and Grade). Assume appropriate data type for each field. Print the marks of the student, given the student name as input.
- 14. Write a C program using pointers to compute the sum, mean and standard deviation of all elements stored in an array of **n** real numbers.

Course outcomes:

- Gaining Knowledge on various parts of a computer.
- Able to draw flowcharts and write algorithms
- Able design and development of C problem solving skills.
- Able design and develop modular programming skills.
- Able to trace and debug a program

Conduction of Practical Examination:

- **1.** All laboratory experiments (nos) are to be included for practical examination.
- **2**. Students are allowed to pick one experiment from the lot.
- **3.** Strictly follow the instructions as printed on the cover page of answer script for breakup of marks
- 4. Change of experiment is allowed only once and 15% Marks allotted to the procedure part to be made zero.

CONSTITUTION OF INDIA, PROFESSIONAL ETHICS & HUMAN RIGHTS

Subject Code	15CPH18/15CPH28	IA Marks	10
Number of Lecture Hours/Week	02	Exam Marks	40
Total Number of Lecture Hours	25	Exam Hours	02

Course objectives:

- 1. To provide basic information about Indian constitution.
- 2. To identify individual role and ethical responsibility towards society.
- 3. To understand human rights and its implications

Module 1

Introduction to the Constitution of India, The Making of the Constitution and Salient features of the Constitution. 2 Hours
Preamble to the Indian Constitution Fundamental Rights & its limitations. 3 Hours

Module 2

Directive Principles of State Policy & Relevance of Directive Principles State Policy Fundamental Duties.

Union Executives – President, Prime Minister Parliament Supreme Court of India. **3 Hours**

Module 3

State Executives – Governor Chief Minister, State Legislature High Court of State.2 HoursElectoral Process in India, Amendment Procedures, 42nd, 44th, 74th, 76th, 86th &91st3 HoursAmendments.3 Hours

Module 4

Special Provision for SC & ST Special Provision for Women, Children & Backward ClassesEmergency Provisions. Human Rights –Meaning and Definitions, Legislation Specific Themes in
Human Rights- Working of National Human Rights Commission in India3 HoursPowers and functions of Municipalities, Panchyats and Co - Operative Societies.2 Hours

Module 5

Scope & Aims of Engineering Ethics, Responsibility of Engineers Impediments to Responsibility. 2 Hours

Risks, Safety and liability of Engineers, Honesty, Integrity & Reliability in Engineering.

3 Hours

Course outcomes:

After study of the course, the students are able to

- Have general knowledge and legal literacy and thereby to take up competitive examinations
- Understand state and central policies, fundamental duties
- Understand Electoral Process, special provisions
- Understand powers and functions of Municipalities, Panchayats and Co-operative Societies, and
- Understand Engineering ethics and responsibilities of Engineers.
- Have an awareness about basic human rights in India

Text Books:

- Durga Das Basu: "Introduction to the Constitution on India", (Students Edn.) Prentice

 Hall EEE, 19th / 20th Edn., 2001
- 2. Charles E. Haries, Michael S Pritchard and Michael J. Robins **"Engineering Ethics"** Thompson Asia, 2003-08-05.

Reference Books:

- 1. M.V.Pylee, "An Introduction to Constitution of India", Vikas Publishing, 2002.
- 2. M.Govindarajan, S.Natarajan, V.S.Senthilkumar, **"Engineering Ethics"**, Prentice –Hall of India Pvt. Ltd. New Delhi, 2004
- Brij Kishore Sharma, "Introduction to the Constitution of India", PHI Learning Pvt. Ltd., New Delhi, 2011.
- 4. Latest Publications of Indian Institute of Human Rights, New Delhi.

* * * * * *

ELEMENTS OF CIVIL ENGINEERING AND MECHANICS

[As per Choice Based Credit System (CBCS) scheme] (Effective from the academic year 2015 -2016) SEMESTER - I/II

Subject Code	15CIV13/23	IA Marks	20	
Number of Lecture Hours/Week	04	Exam Marks	80	
Total Number of Lecture Hours	50	Exam Hours	03	
CREDITS - 04				

COURSE OBJECTIVES:

The objectives of this course is to make students to learn basics of Civil Engineering concepts and infrastructure development, solve problems involving Forces, loads and Moments and know their applications in allied subjects. It is a pre-requisite for several courses involving Forces, Moments, Centroids, Moment of inertia and Kinematics.

Particulars	Hours
Module 1: Introduction to Civil Engineering & Engineering	10
Mechanics	
Introduction to Civil Engineering	
Scope of different fields of Civil Engineering - Surveying, Building	
Materials, Construction Technology, Geotechnical Engineering,	
Structural Engineering, Hydraulics, WaterResources and Irrigation	01
Engineering, Transportation Engineering, Environmental Engineering.	
Infrastructure: Types of infrastructure, Role of Civil Engineer in	01
theInfrastructural Development, Effect of the infrastructural facilities	
onsocio-economic development of a country.	
	0.1
Roads: Classification of Roads and their functions, Comparison of	01
Flexible and Rigid Pavements (Advantages and Limitations)	
	1

Bridges: Types of Bridges and Culverts, RCC, Steel and Composite	01
Bridges	
Dams: Different types of Dams based on Material, Structural behavior	01
and functionality with simple sketches.	_
Introduction to Engineering Mechanics:	
Basic idealizations - Particle, Continuum and Rigid body; Newton's	
lawsBForce and its characteristics, types of forces-Gravity, Lateral and	
its distribution on surfaces, Classification of force systems, Principle of	
physical independence, superposition, transmissibility of forces, ,	02
Introduction to SI units.	
Couple, Moment of a couple, Characteristics of couple, Moment of a	03
force, Equivalent force - Couple system; Numerical problems on	
moment of forces and couples, on equivalent force - couple system.	
Module 2: Analysis of Concurrent Force Systems	10
Concepts: Resultants and Equilibrium Composition of forces - Definition of Resultant; Composition of coplanar -concurrent force system, Parallelogram Law of forces, Principle of resolved parts;	03
Numerical problems on composition of coplanar concurrent force	03
systems.	
Equilibrium of forces - Definition of Equilibrant; Conditions of static	
equilibrium for different force systems, Lami's theorem; Numerical	
problems on equilibrium of coplanar – concurrent and non-concurrent	
force systems.	
Application- Static Friction in rigid bodies in contact	02
Types of friction, Laws of static friction, Limiting friction, Angle of	
friction, angle of repose; Impending motion on horizontal and inclined	02
planes;	
Numerical Problems on single and two blocks on inclined planes	
ivalienca i robiento on onigie ana two bioeno on memica planeo	

Module - 3 Analysis of Non-Concurrent Force Systems	10
Concepts: Resultants and Equilibrium	05
Composition of coplanar - non-concurrent force system, Varignon's	
principle of moments; Numerical problems on composition of coplanar	
non-concurrent Force system.	
Application-Support Reaction in beams Types of Loads and Supports, statically determinate beams, Numerical	05
problems onsupport reactions for statically determinate beams with	
Point load (Normal and inclined) and uniformly distributed and	
uniformly varying loads and Moments.	
Module 4 Centroids and Moments of Inertia of Engineering	10
Sections:	
Centroids	05
Introduction to the concept, centroid of line and area, centroid of basic	
geometrical figures, computing centroid for- T, L, I, Z and	
full/quadrant circular sections and their built up sections. Numerical	05
problems	
Moment of Inertia Introduction to the concept, Radius of gyration, Parallel axis theorem,	
Perpendicular axis theorem, Moment of Inertia of basic planar figures,	
computing moment of Inertia for – T, L, I, Z and full/quadrant circular	
sections and their built up sections. Numerical problems	
Module 5: Kinematics	10
Concepts and Applications	02
Definitions – Displacement – Average velocity – Instantaneous velocity	
- Speed - Acceleration - Average acceleration - Variable acceleration -	
Acceleration due to gravity – Newton's Laws of Motion.	
Rectilinear Motion–Numerical problems.	02
Curvilinear Motion - Super elevation - ProjectileMotion - Relative	03
motion – Numerical problems.	
Motion under gravity – Numerical problems.	03
COURSE OUTCOMES	
After a successful completion of the course, the student will be able to:	

- 1. Know basics of Civil Engineering, its scope of study, knowledge about Roads, Bridges and Dams;
- 2. Comprehend the action of Forces, Moments and other loads on systems of rigid bodies;
- 3. Compute the reactive forces and the effects that develop as a result of the external loads;
- 4. Locate the Centroid and compute the Moment of Inertia of regular crosssections.
- 5. Express the relationship between the motion of bodies and
- 6. Equipped to pursue studies in allied courses in Mechanics.

Question Paper Pattern:

- 10 Questions are to be set such that 2 questions are selected from each module.
- 2 Questions are to be set under respective modules.
- Intra module questions are to be set such that the questions should cover the entire module and further, should be answerable for the set marks.
- Each question should be set for 16 marks (Preferably 8 marks each)
- Not more than 3 sub questions are to be set under any main question
- Students should answer 5 full questions selecting at least 1 from each module.

TEXT BOOKS

- 1. Elements of Civil Engineering and Engineering Mechanics by M.N. Shesha Prakash and Ganesh. B. Mogaveer, PHI Learning, 3rd Revised edition (2014)
- 2. Engineering Mechanics-Statics and Dynamics by A Nelson, Tata McGraw Hill Education Private Ltd, New Delhi, 2009.
- 3. Elements of Civil Engineering (IV Edition) by S.S. Bhavikatti, New Age International Publisher, New Delhi, 3rd edition 2009.

REFERENCES

- 1. Engineering Mechanics by S.Timoshenko, D.H.Young, and J.V.Rao, TATA McGraw-Hill Book Company, New Delhi
- Beer FP and Johnson ER, "Mechanics for Engineers- Dynamics and Statics"- 3rd SI Metric edition, Tata McGraw Hill. - 2008
- 3. Shames IH, "Engineering Mechanics Statics & Dynamics"- PHI 2009

ELEMENTS OF MECHANICAL ENGINEERING

[As per Choice Based Credit System (CBCS) scheme] (Effective from the academic year 2015 -2016) SEMESTER - I/II			
Subject Code	15EME14/15EME24	IA Marks	20
Number of Lecture Hours/Week	04	Exam Marks	80
Total Number of Lecture Hours	50	Exam Hours	03
CREDITS - 04			

Course objectives:

Students belonging to all branches of Engineering are made to learn certain fundamental topics related to mechanical engineering so that they will have a minimum understanding of mechanical systems, equipment and process.

Module -1	Teaching Hours
Energy Resources :Non-renewable and renewable energy resources,	10
Petroleum based solid, liquid and gaseous fuels, Calorific values of	Hours
fuels, Combustion and combustion products of fuels, Solar Power :	
Solar Radiation,	
Solar constant (definition only), Solar Thermal energy harvesting, ex:	
liquid flat plate collectors, solar ponds (principle of operation only),	
Solar photovoltaic principle.WindPower :principle of operation of a	
typical windmill. Hydro Power :Principles of electric power generation	
from hydropowerplants, Nuclear Power : Principles of Nuclear power	
plants, Bio Fuels : introduction to bio fuels, examples of various	
biofuels used in engineering applications, Comparison of biofuels with	
petroleum fuels in terms of calorific value and emission. Steam	
Formation and Properties :	
Classification of boilers, Lancashire boiler, Babcock and Wilcox boiler,	
boiler mountings and accessories (No sketches for mountings and	
accessories), wet steam, saturated and superheated steam, specific	
volume, enthalpy and internal energy. (No numerical problems in this	
module)	

Module -2	
Turbines and IC Engines and Pumps Steam turbines : Classification,	10
Principle of operation of Impulse and reaction turbines, Delaval's	Hours
turbine, Parson's turbine. (No compounding of turbines).	
Gas turbines : Classification, Working principles and Operations of	
Open cycle and closed cycle gas turbines.	
Water turbines : Classification, Principles and operations of Pelton	
wheel, Francis turbine and Kaplan turbine	
Internal Combustion Engines : Classification, I.C. Engines parts, 2	
Stroke and 4 stroke Petrol engines, 4 stroke diesel engines. P-V	
diagrams of Otto and Diesel cycles. Problems on indicated power,	
brake power, indicated	
thermal efficiency, brake thermal efficiency, mechanical efficiency, and	
specific fuel consumption, [numericals on IC Engines].	
Module - 3	
	10
Machine Tools and Automation Machine Tools Operations :	10 Hours
	-
Machine Tools and Automation Machine Tools Operations : Turning, facing, knurling, Thread cutting, Taper Turning by swivelling	-
Machine Tools and Automation Machine Tools Operations : Turning, facing, knurling, Thread cutting, Taper Turning by swivelling the compound rest, Drilling, Boring, Reaming, Tapping, Counter	-
Machine Tools and Automation Machine Tools Operations : Turning, facing, knurling, Thread cutting, Taper Turning by swivelling the compound rest, Drilling, Boring, Reaming, Tapping, Counter Sinking, Counter Boring, -Plane milling, End milling, Slot milling. (No	-
Machine Tools and Automation Machine Tools Operations : Turning, facing, knurling, Thread cutting, Taper Turning by swivelling the compound rest, Drilling, Boring, Reaming, Tapping, Counter Sinking, Counter Boring, -Plane milling, End milling, Slot milling. (No sketches of Machine tools, sketches to be used only for explaining	-
Machine Tools and Automation Machine Tools Operations : Turning, facing, knurling, Thread cutting, Taper Turning by swivelling the compound rest, Drilling, Boring, Reaming, Tapping, Counter Sinking, Counter Boring, -Plane milling, End milling, Slot milling. (No sketches of Machine tools, sketches to be used only for explaining operations. Students to be shown the available machine tools in the	-
Machine Tools and Automation Machine Tools Operations : Turning, facing, knurling, Thread cutting, Taper Turning by swivelling the compound rest, Drilling, Boring, Reaming, Tapping, Counter Sinking, Counter Boring, -Plane milling, End milling, Slot milling. (No sketches of Machine tools, sketches to be used only for explaining operations. Students to be shown the available machine tools in the Machine Shop of the college before explaining the operations)	-
Machine Tools and Automation Machine Tools Operations : Turning, facing, knurling, Thread cutting, Taper Turning by swivelling the compound rest, Drilling, Boring, Reaming, Tapping, Counter Sinking, Counter Boring, -Plane milling, End milling, Slot milling. (No sketches of Machine tools, sketches to be used only for explaining operations. Students to be shown the available machine tools in the Machine Shop of the college before explaining the operations) Robotics and Automation :	-
 Machine Tools and Automation Machine Tools Operations : Turning, facing, knurling, Thread cutting, Taper Turning by swivelling the compound rest, Drilling, Boring, Reaming, Tapping, Counter Sinking, Counter Boring, -Plane milling, End milling, Slot milling. (No sketches of Machine tools, sketches to be used only for explaining operations. Students to be shown the available machine tools in the Machine Shop of the college before explaining the operations) Robotics and Automation : Robotics :Introduction, classification based on robots configuration; 	-
 Machine Tools and Automation Machine Tools Operations : Turning, facing, knurling, Thread cutting, Taper Turning by swivelling the compound rest, Drilling, Boring, Reaming, Tapping, Counter Sinking, Counter Boring, -Plane milling, End milling, Slot milling. (No sketches of Machine tools, sketches to be used only for explaining operations. Students to be shown the available machine tools in the Machine Shop of the college before explaining the operations) Robotics and Automation : Robotics :Introduction, classification based on robots configuration; Polar, cylindrical, Cartesian Coordinate and spherical. Application, 	-
 Machine Tools and Automation Machine Tools Operations : Turning, facing, knurling, Thread cutting, Taper Turning by swivelling the compound rest, Drilling, Boring, Reaming, Tapping, Counter Sinking, Counter Boring, -Plane milling, End milling, Slot milling. (No sketches of Machine tools, sketches to be used only for explaining operations. Students to be shown the available machine tools in the Machine Shop of the college before explaining the operations) Robotics and Automation : Robotics :Introduction, classification based on robots configuration; Polar, cylindrical, Cartesian Coordinate and spherical. Application, Advantages, and disadvantages 	-
 Machine Tools and Automation Machine Tools Operations : Turning, facing, knurling, Thread cutting, Taper Turning by swivelling the compound rest, Drilling, Boring, Reaming, Tapping, Counter Sinking, Counter Boring, -Plane milling, End milling, Slot milling. (No sketches of Machine tools, sketches to be used only for explaining operations. Students to be shown the available machine tools in the Machine Shop of the college before explaining the operations) Robotics and Automation : Robotics :Introduction, classification based on robots configuration; Polar, cylindrical, Cartesian Coordinate and spherical. Application, Advantages, and disadvantages Automation ::Definition, types –Fixed, Programmable & Flexible 	-

Engineering materials and joining processes :	10
Engineering Materials and Joining processes : Engineering Materials :Types and applications of Ferrous &	Hours
Nonferrous metals and alloys,	
Composites :Introduction: Definition, Classification and applications	
(Air craft and Automobiles)	
Soldering, Brazing and Welding :	
Definitions, classification and method of soldering, Brazing and	
welding. Differences between soldering, Brazing and Welding.	
Description of Electric Arc Welding and Oxy-Acetylene Welding.	
Module-5	1
Refrigeration, Air-Conditioning :	10
Refrigerants :properties of refrigerants, list of commonly used	Hours
refrigerants. Refrigeration -Definitions - Refrigerating effect, Ton of	
Refrigeration, Ice making capacity, COP, Relative COP, unit of	
Refrigeration. Principle and working of vapor compression refrigeration	
and vapour absorption refrigeration: Principles and applications of air	
conditioners, Room air conditioner.	
Course outcomes:	
Students shall demonstrate knowledge associated with,	
1. Various Energy sources, Boilers, Prime movers such as turbines a engines, refrigeration and air-conditioning systems	and IC
2. Metal removal process using Lathe, drilling, Milling Robotics and Automation.	
3. Fair understanding of application and usage of various engineerin materials.	ıg
Question paper pattern:	
 The question paper will have ten questions. 	
Each full Question consisting of 16 marks	•
• There will be 2 full questions(with a maximum of four sub questions)	lestions

from each module.

- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer **5** full questions, selecting one full question from each module.from each module.
- Each full question will have sub questions covering all the topics under a module.

Text Books:

- V.K.Manglik, "Elements of Mechanical Engineering", PHI Publications, 2013. (Module-1,2,4,5)
- MikellP.Groover, "Automation, Production Systems & CIM", 3rd Edition, PHI (Module -3)
- K.R.Gopalkrishna, "A text Book of Elements of Mechanical Engineering"- Subhash Publishers, Bangalore. (Module -1,2,3,4,5)

Reference Books:

- S.TrymbakaMurthy, "A Text Book of Elements of Mechanical Engineering", 4th Edition 2006, Universities Press (India) Pvt Ltd, Hyderabad.
- K.P.Roy, S.K.HajraChoudhury, Nirjhar Roy, "Elements of Mechanical Engineering", Media Promoters & Publishers Pvt Ltd,Mumbai,7th Edition,2012
- 3. Pravin Kumar, "Basic Mechanical Engineering", 2013 Edition, Pearson.

ENGINEERING CHEMISTRY			
[As per Choice Based Credit System (CBCS) scheme]			
(Effective from the academic year 2015 -2016)			
SEMESTER - I/II			
Subject Code	15CHE12/15CHE22	IA Marks	20
Number of Lecture Hours/Week	04	Exam Marks	80
Total Number of Lecture Hours	50	Exam Hours	03
CREDITS - 04			

Course objectives:

To provide students with knowledge of engineering chemistry for building technical competence in industries, research and development in the following fields

- Electrochemistry & Battery Technology.
- Corrosion & Metal Finishing.
- Fuels & Solar energy.
- Polymers.
- Water Technology & Nano Materials.

Module -1	Teaching Hours
Electrochemistry and Battery Technology	10 hours
Electrochemistry : Introduction, Derivation of Nernst equation for	
electrode potential. Reference electrodes: Introduction,	
construction, working and applications of calomel and Ag / AgCl	
electrodes. Measurement of electrode potential using calomel	
electrode. Ion selective electrode: Introduction; Construction and	
working of glass electrode, determination of pH using glass	
electrode. Concentration cells: Electrolyte concentration cells,	
numerical problems.	
Battery Technology: Introduction, classification - primary,	
secondary and reserve batteries. Characteristics - cell potential, current, capacity, electricity storage density, energy efficiency, cycle	

life and shelf life. Construction, working and applications of Zinc-Air, Nickel- metal hydride batteries. Lithium batteries: Introduction, construction, working and applications of Li-MnO₂ and Li-ion batteries.

Fuel Cells: Introduction, difference between conventional cell and fuel cell, limitations & advantages. Construction, working & applications of methanol-oxygen fuel cell with H₂SO₄ electrolyte.

Module -2

Corrosion and Metal Finishing:

Corrosion: Introduction, electrochemical theory of corrosion, galvanic series. Factors affecting the rate of corrosion: ratio of anodic to cathodic areas, nature of metal, nature of corrosion product, nature of medium – pH, conductivity, and temperature. Types of corrosion- Differential metal, differential aeration (Pitting and water line) and stress. Corrosion control: Inorganic coatings-Anodizing of Al and phosphating; Metal coatings-Galvanization and Tinning. Cathodic protection (sacrificial anodic and impressed current methods).

Metal Finishing: Introduction, Technological importance. Electroplating: Introduction, principles governing-Polarization, decomposition potential and overvoltage. Factors influencing the nature of electro deposit-current density, concentration of metal ion & electrolyte; pH, temperature & throwing power of plating bath; additives- brighteners, levellers, structure modifiers & wetting Electroplating of Nickel (Watt's agents. Bath) and Chromium(decorative and hard). Electro less plating: Introduction, distinction between electroplating and electro less plating, electro less plating of copper & manufacture of double sided Printed Circuit Board with copper.

Module - 3

Fuels and Solar Energy:

10 hours

Fuels: Introduction, classification, calorific value- gross and net calorific values, determination of calorific value of fuel using bomb calorimeter, numerical problems. Cracking: Introduction, fluidized catalytic cracking, synthesis of petrol by Fishcher-Tropsch process, reformation of petrol, octane and cetane numbers. Gasoline and diesel knocking and their mechanism, anti knocking agents, power alcohol & biodiesel.

Solar Energy: Introduction, utilization and conversion, photovoltaic cells- construction and working. Design of PV cells: modules, panels & arrays. Advantages & disadvantages of PV cells. Production of solar grade silicon: Union carbide process, purification of silicon (zone refining), doping of silicon-diffusion technique (n&p types).

Module - 4

Polymers:

Introduction, types of polymerization: addition and condensation, mechanism of polymerization- free radical mechanism taking vinyl chloride as an example. Molecular weight of polymers: number average and weight average, numerical problems. Glass transition temperature (Tg): Factors influencing Tg-Flexibility, inter molecular forces, molecular mass, branching & cross linking and stereo regularity. Significance of T_g. Structure property relationship: crystallinity, tensile strength, elasticity & chemical resistivity. Synthesis, properties and applications of PMMA (plexi glass), Polvurethane and polycarbonate. Elastomers: Introduction, synthesis, properties and applications of Silicone rubber. Adhesives: Introduction, synthesis, properties and applications of Polymer Composites: Introduction, epoxy resin. synthesis, properties and applications of Kevlar. Conducting polymers: Introduction, mechanism of conduction in Poly aniline and applications of conducting poly aniline.

Module-5

Water Technology and Nanomaterials:

Water Technology: Introduction, boiler troubles with disadvantages & prevention methods-scale and sludge formation, priming and foaming, boiler corrosion(due to dissolved O₂, CO₂ and MgCl₂). Determination of DO, BOD and COD, numerical problems on COD. Sewage treatment: Primary, secondary (activated sludge method) and tertiary methods. Softening of water by ion exchange process. Desalination of sea water by reverse osmosis & electro dialysis (ion selective)..

Nano Materials: Introduction, properties (size dependent). Synthesis-bottom up approach (sol-gel, precipitation, gas condensation & chemical vapour condensation processes). Nano scale materials- carbon nano tubes, nano wires, fullerenes, dendrimers, nano rods, & nano composites.

10 hours

Course outcomes:

On completion of this course, students will have knowledge in:

- Electrochemical and concentration cells. Classical & modern batteries and fuel cells.
- Causes & effects of corrosion of metals and control of corrosion. Modification of surface properties of metals to develop resistance to corrosion, wear, tear, impact etc. by electroplating and electro less plating.
- Production & consumption of energy for industrialization of country and living standards of people. Utilization of solar energy for different useful forms of energy.
- Replacement of conventional materials by polymers for various applications.
- Boiler troubles; sewage treatment and desalination of sea water, and
- Over viewing of synthesis, properties and applications of nanomaterials.

Question paper pattern:

- The question paper will have ten questions.
- Each full Question consisting of 16 marks
- There will be **2** full questions(with a **maximum** of **four** sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer **5** full questions, selecting one full question from each module.

Text Books:

 B.S.Jai Prakash, R.Venugopal, Sivakumaraiah & Pushpa Iyengar.,
 "Chemistry for Engineering Students", Subhash Publications, Bangalore.

- R.V.Gadag & A.Nityananda Shetty., "Engineering Chemistry", I K International Publishing House Private Ltd. New Delhi.
- P.C.Jain & Monica Jain., "Engineering Chemistry", Dhanpat Rai Publications, New Delhi.

Reference Books:

- O.G.Palanna, "Engineering Chemistry", Tata McGraw Hill Education Pvt. Ltd. New Delhi, Fourth Reprint.
- G.A.Ozin & A.C. Arsenault, "Nanochemistry A Chemical Approach to Nanomaterials", RSC publishing, 2005.
- 3. **"Wiley Engineering Chemistry"**, Wiley India Pvt. Ltd. New Delhi. Second Edition.
- V.R.Gowariker, N.V.Viswanathan & J.Sreedhar., "Polymer Science", Wiley-Eastern Ltd.
- M.G.Fontana., "Corrosion Engineering", Tata McGraw Hill Publishing Pvt. Ltd. New Delhi.

ENGINEERING CHEMISTRY LABORATORY

[As per Choice Based Credit System (CBCS) scheme]

(Effective from the academic year 2015 -2016)

SEMESTER - I/II

Laboratory Code	15CHEL17/15CHEL27	IA Marks	20
Number of Lecture Hours/Week	3 (1 hr Tutorial +2 hrs lab)	Exam Marks	80
Total Number of Lecture Hours	50	Exam Hours	03
CREDITS - 02			

Course objectives:

• To provide students with practical knowledge of quantitative analysis of materials by classical and instrumental methods for developing experimental skills in building technical competence.

Instrumental Experiments

- 1. Estimation of FAS potentiometrically using standard K₂Cr₂O₇ solution.
- 2. Estimation of Copper colorimetrically.
- 3. Estimation of Acids in acid mixture conductometrically.
- 4. Determination of pKa of weak acid using pH meter.
- 5. Determination of Viscosity co-efficient of the given liquid using Ostwald's viscometer.

6. Estimation of Sodium and Potassium in the given sample of water using Flame Photometer.

Volumetric Experiments

- 1. Estimation of Total hardness of water by EDTA complexometric method.
- 2. Estimation of CaO in cement solution by rapid EDTA method.
- 3. Determination of percentage of Copper in brass using standard sodium thiosulphate solution.
- Estimation of Iron in haematite ore solution using standard K₂Cr₂O₇ solution by External Indicator method.
- 5. Estimation of Alkalinity (OH⁻, CO₃⁻⁻ & HCO₃⁻) of water using standard HCl solution.
- 6. Determination of COD of waste water.

Course outcomes:

On completion of this course, students will have the knowledge in,

- Handling different types of instruments for analysis of materials using small quantities of materials involved for quick and accurate results, and
- Carrying out different types of titrations for estimation of concerned in materials using comparatively more quantities of materials involved for good results

Conduction of Practical Examination:

- 1. All experiments are to be included for practical examination.
- 2. One instrumental and another volumetric experiments shall be set.
- **3.** Different experiments shall be set under instrumental and a common experiment under volumetric.
- 4. Change of experiment is allowed only once and 15% Marks allotted to the procedure part to be made zero.

Reference Books:

- 1. G.H.Jeffery, J.Bassett, J.Mendham and R.C.Denney, "Vogel's Text Book of Quantitative Chemical Analysis"
- 2. O.P.Vermani & Narula, **"Theory and Practice in Applied Chemistry"**, New Age International Publisers.
- 3. Gary D. Christian, "Analytical chemistry", 6th Edition, Wiley India.

ENGINEERING MATHEMATICS-I

[As per Choice Based Credit System (CBCS) scheme] (Effective from the academic year 2015 -2016) SEMESTER - I/II

Subject Code	15MAT11	IA Marks	20
Number of Lecture Hours/Week	04	Exam Marks	80
Total Number of Lecture Hours	50	Exam Hours	03
CREDITS - 04			

To enable the students to apply the knowledge of Mathematics in various engineering fields by making them to learn the following:

- nth derivatives of product of two functions and polar curves.
- Partial derivatives
- Vector calculus

Course Objectives:

- Reduction formulae of integration; To solve First order differential equations.
- Solution of system of linear equations , quadratic forms.

Module - 1	Hours - 10
Differential Calculus -1: determination of n^{th} order derivatives of	
Standard functions - Problems. Leibnitz's theorem (without proof)	
- problems.	
Polar Curves - angle between the radius vector and tangent,	
angle between two curves, Pedal equation of polar curves.	
Derivative of arc length - Cartesian, Parametric and Polar forms	
(without proof) - problems. Curvature and Radius of	
Curvature – Cartesian, Parametric, Polar and Pedal forms	
(without proof) -problems	
Module -2	

Differential Calculus -2	Hours - 10
Taylor's and Maclaurin's theorems for function of one	
variable(statement only)- problems. Evaluation of Indeterminate	
forms.	
Partial derivatives – Definition and simple problems, Euler's	
theorem(without proof) - problems, total derivatives, partial	
differentiation of composite functions-problems. Definition and	
evaluation of Jacobians	
Module – 3	
Vector Calculus:	Hours - 10
Derivative of vector valued functions, Velocity, Acceleration and	
related problems, Scalar and Vector point functions. Definition of	
Gradient, Divergence and Curl-problems. Solenoidal and	
Irrotational vector fields. Vector identities - div(ϕA), curl (ϕA),	
curl(grad \$\phi), div(curl A).	
Module-4	
Integral Calculus:	Hours - 10
Reduction formulae - $\int Sin^n x dx$, $\int Cos^n x dx$, $\int Sin^m x Cos^n x dx$, (m	
and n are positive integers), evaluation of these integrals with	
standard limits (0 to $\pi/2$) and problems.	
Differential Equations ;	
Solution of first order and first degree differential equations	
- Exact, reducible to exact and Bernoulli's differential equations	
.Orthogonal trajectories in Cartesian and polar form. Simple	
problems on Newton's law of cooling.	
Module-5	

Linear Algebra	Hours - 10
Rank of a matrix by elementary transformations, solution	
of system of linear equations - Gauss-elimination method, Gauss	
–Jordan method and Gauss-Seidel method	
Eigen values and Eigen vectors, Rayleigh's power method to find	
the largest Eigen value and the corresponding Eigen vector.	
Linear transformation, diagonalisation of a square matrix .	
Reduction of Quadratic form to Canonical form	

Course outcomes:

On completion of this course, students are able to

- Use partial derivatives to calculate rates of change of multivariate functions.
- Analyze position, velocity, and acceleration in two or three dimensions using the calculus of vector valued functions.
- Recognize and solve first-order ordinary differential equations, Newton's law of cooling
- Use matrices techniques for solving systems of linear equations in the different areas of Linear Algebra.

Question paper pattern:

- The question paper will have ten questions.
- Each full Question consisting of 16 marks
- There will be **2** full questions(with a **maximum** of **four** sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer **5** full questions, selecting one full question from each module.

Text Books:

 B.S. Grewal, "Higher Engineering Mathematics", Khanna publishers, 42nd edition, 2013.

2. Erwin Kreyszig, "Advanced Engineering MathematicsI, Wiley, 2013

Reference Books:

- 1. B.V. Ramana, "Higher Engineering M athematics", Tata Mc Graw-Hill, 2006
- N.P.Bali and Manish Goyal, "A text book of Engineering mathematics", Laxmi publications, latest edition.
- H.K. Dass and Er. RajnishVerma, "Higher Engineerig Mathematics", S.Chand publishing, 1st edition, 2011.

ENGINEE	RING MATHEN	MATICS-II	
(Effective from	sed Credit Syste the academic ye SEMESTER - I/I	,	
Subject Code	15MAT21	IA Marks	20
Number of Lecture Hours/Week	04	Exam Marks	80
Total Number of Lecture Hours	50	Exam Hours	03
	CREDITS - 04		
Course objectives:			
To enable students to apply the l	knowledge of Ma	athematics in various er	ngineering
fields by making them to learn th	ne following'		
Ordinary differential equati	ons		
Partial differential equation	S		
• Double and triple integration	on		
Laplace transform			
Module – I			Teaching Hours
Linear differential equations w	vith constant o	coefficients: Solutions	10 Hours
of second and higher order diffe			
operator method, method of und	letermined coeff	ficients and method of	
variation of parameters.			
variation of parameters. Module -2			
-			10 Hours
Module -2	ith variable co	efficients: Solution of	10 Hours
Module -2 Differential equations-2:			10 Hours
Module -2 Differential equations-2: Linear differential equations w Cauchy's and Legendre's linear	differential equ		10 Hours
Module -2 Differential equations-2: Linear differential equations w Cauchy's and Legendre's linear	differential equ ions - Equat	ations. ions solvable for p,	10 Hours
Module -2 Differential equations-2: Linear differential equations w Cauchy's and Legendre's linear Nonlinear differential equat	differential equ ions - Equat ns solvable for 2	ations. ions solvable for p, x, general and singular	10 Hours

Module – 3

Partial Differential equations:	10 Hours
Formulation of Partial differential equations by elimination of	
arbitrary constants/functions, solution of non-homogeneous Partial	
differential equations by direct integration, solution of homogeneous	
Partial differential equations involving derivative with respect to one	
independent variable only.	
Derivation of one dimensional heat and wave equations and their	
solutions by variable separable method.	
Module-4	
Integral Calculus:	10 Hours
Double and triple integrals: Evaluation of double and triple	
integrals. Evaluation of double integrals by changing the order of	
integration and by changing into polar co-ordinates. Application of	
double and triple integrals to find area and volume Beta and	
Gamma functions: definitions, Relation between beta and gamma	
functions and simple problems.	
Module-5	
Laplace Transform	10 Hours
Definition and Laplace transforms of elementary functions.	
Laplace transforms of $e^{at}f(t)$, $t^nf(t)$ and $\frac{f(t)}{t}$ (without proof),	
periodic functions and unit-step function- problems	
Inverse Laplace Transform	
Inverse Laplace Transform - problems, Convolution theorem to	
find the inverse Laplace transforms(without proof) and problems,	

Course outcomes:

On completion of this course, students are able to,

- solve differential equations of electrical circuits, forced oscillation of mass spring and elementary heat transfer.
- solve partial differential equations fluid mechanics, electromagnetic theory and heat transfer.
- Evaluate double and triple integrals to find area, volume, mass and moment of inertia of plane and solid region.
- Use curl and divergence of a vector valued functions in various applications of electricity, magnetism and fluid flows.
- Use Laplace transforms to determine general or complete solutions to linear ODE

Question paper pattern:

- The question paper will have ten questions.
- Each full Question consisting of 16 marks
- There will be **2** full questions(with a **maximum** of **four** sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer **5** full questions, selecting one full question from each module.

Text Books:

- B. S. Grewal," Higher Engineering Mathematics", Khanna publishers, 42nd edition, 2013.
- Kreyszig, "Advanced Engineering Mathematics " Wiley, 2013

Reference Books:

- B.V.Ramana "Higher Engineering M athematics" Tata Mc Graw-Hill, 2006
- N P Bali and Manish Goyal, "A text book of Engineering mathematics", Laxmi publications, latest edition.

H. K Dass and Er. Rajnish Verma ,"Higher Engineerig Mathematics",S. Chand publishing, 1st edition, 2011.

ENGINEERING PHYSICS [As per Choice Based Credit System (CBCS) scheme] (Effective from the academic year 2015 -2016) SEMESTER - I/II			
Subject Code	15PHY12/15PHY22	IA Marks	20
Number of Lecture Hours/Week	04	Exam Marks	80
Total Number of Lecture Hours	50	Exam Hours	03
CREDITS - 04			

COURSE OBJECTIVES:

The Objective of this course is to make students learn and understand basic concepts and principles of physics to analyze practical engineering problems and apply its solutions effectively and meaningfully. To understand building up of models, design issues, practical oriented skills and problem solving challenges are the great task of the course. To know about shock waves and practical applications is the prime motto to introduce new technology at the initial stage of Engineering.

Module -1	Teaching Hours
Modern Physics and Quantum Mechanics	10 Hours
Black body radiation spectrum, Assumptions of quantum theory of	
radiation, Plank's law, Weins law and Rayleigh Jeans law, for shorter and	
longer wavelength limits. Wave Particle dualism, deBroglie hypothesis.	
Compton Effect. Matter waves and their Characteristic properties,	
Definition of Phase velocity and group velocity, Relation between phase	
velocity and group velocity, Relation between group velocity and particle	
velocity.	
Heisenberg's uncertainity principle and its application, (Non-existence of	
electron in the nucleus).Wave function, Properties and physical	
significance of wave function, Probability density and Normalization of	
wave function. Setting up of one dimensional time independent	
Schrodinger wave equation. Eigen values and Eigen functions.	
Application of Schrodinger wave equation for a particle in a potential well	
of infinite depth and for free particle.	

Module -2

Module -2	
Electrical Properties of Materials	10 Hours
Free-electron concept (Drift velocity, Thermal velocity, Mean collision time, Mean free path, relaxation time). Failure of classical free electron theory. Quantum free electron theory, Assumptions, Fermi factor, density of states (qualitative only) Fermi-Dirac Statistics. Expression for electrical conductivity based on quantum free electron theory, Merits of quantum free electron theory.	
Conductivity of Semi conducting materials, Concentration of electrons and holes in intrinsic semiconductors, law of mass action.	
Temperature dependence of resistivity in metals and superconducting materials. Effect of magnetic field (Meissner effect). Type I and Type II superconductors–Temperature dependence of critical field. BCS theory (qualitative). High temperature superconductors. Applications of superconductors –. Maglev vehicles.	
Module – 3	
Lasers and Optical Fibers	10 Hours
Einstein's coefficients (expression for energy density). Requisites of a Laser system. Condition for laser action. Principle, Construction and working of CO ₂ laser and semiconductor Laser. Applications of Laser – Laser welding, cutting and drilling. Measurement of atmospheric pollutants. Holography–Principle of Recording and reconstruction of images.	
Propagation mechanism in optical fibers. Angle of acceptance. Numerical aperture. Types of optical fibers and modes of propagation. Attenuation, Block diagram discussion of point to point communication, applications.	

Module-4

Space lattice, Bravais lattice–Unit cell, primitive cell. Lattice parameters. Crystal systems. Direction and planes in a crystal. Miller indices. Expression for inter – planar spacing. Co-ordination number. Atomic packing factors (SC,FCC,BCC). Bragg's law, Determination of crystal structure using Bragg's X–ray difractometer. Polymarphism and Allotropy. Crystal Structure of Diamond, qualitative discussion of Pervoskites. Module-5 Definition of Mach number, distinctions between- acoustic, ultrasonic, subsonic and supersonic waves. Description of a shock wave and its applications. Basics of conservation of mass, momentum and energy. Normal shock equations (Rankine-Hugonit equations). Method of creating check mayes in the laboratory wing a check type, description of hand	Iours
Expression for inter – planar spacing. Co-ordination number. Atomic packing factors (SC,FCC,BCC). Bragg's law, Determination of crystal structure using Bragg's X–ray difractometer. Polymarphism and Allotropy. Crystal Structure of Diamond, qualitative discussion of Pervoskites. Module-5 Shock waves and Science of Nano Materials Definition of Mach number, distinctions between- acoustic, ultrasonic, subsonic and supersonic waves. Description of a shock wave and its applications. Basics of conservation of mass, momentum and energy. Normal shock equations (Rankine-Hugonit equations). Method of creating	Iours
packing factors (SC,FCC,BCC). Bragg's law, Determination of crystal structure using Bragg's X-ray difractometer. Polymarphism and Allotropy. Crystal Structure of Diamond, qualitative discussion of Pervoskites. Module-5 Shock waves and Science of Nano Materials Definition of Mach number, distinctions between- acoustic, ultrasonic, subsonic and supersonic waves. Description of a shock wave and its applications. Basics of conservation of mass, momentum and energy. Normal shock equations (Rankine-Hugonit equations). Method of creating	Iours
structure using Bragg's X-ray difractometer. Polymarphism and Allotropy. Crystal Structure of Diamond, qualitative discussion of Pervoskites. Module-5 Shock waves and Science of Nano Materials Definition of Mach number, distinctions between- acoustic, ultrasonic, subsonic and supersonic waves. Description of a shock wave and its applications. Basics of conservation of mass, momentum and energy. Normal shock equations (Rankine-Hugonit equations). Method of creating	lours
Crystal Structure of Diamond, qualitative discussion of Pervoskites. Module-5 Shock waves and Science of Nano Materials Definition of Mach number, distinctions between- acoustic, ultrasonic, subsonic and supersonic waves. Description of a shock wave and its applications. Basics of conservation of mass, momentum and energy. Normal shock equations (Rankine-Hugonit equations). Method of creating	lours
Module-5 Shock waves and Science of Nano Materials Definition of Mach number, distinctions between- acoustic, ultrasonic, subsonic and supersonic waves. Description of a shock wave and its applications. Basics of conservation of mass, momentum and energy. Normal shock equations (Rankine-Hugonit equations). Method of creating	lours
Shock waves and Science of Nano Materials10 HeDefinition of Mach number, distinctions between- acoustic, ultrasonic, subsonic and supersonic waves. Description of a shock wave and its applications. Basics of conservation of mass, momentum and energy. Normal shock equations (Rankine-Hugonit equations). Method of creating10 He	Iours
Shock waves and Science of Nano Materials10 HeDefinition of Mach number, distinctions between- acoustic, ultrasonic, subsonic and supersonic waves. Description of a shock wave and its applications. Basics of conservation of mass, momentum and energy. Normal shock equations (Rankine-Hugonit equations). Method of creating10 He	lours
Shock waves and Science of Nano Materials Definition of Mach number, distinctions between- acoustic, ultrasonic, subsonic and supersonic waves. Description of a shock wave and its applications. Basics of conservation of mass, momentum and energy. Normal shock equations (Rankine-Hugonit equations). Method of creating	lours
subsonic and supersonic waves. Description of a shock wave and its applications. Basics of conservation of mass, momentum and energy. Normal shock equations (Rankine-Hugonit equations). Method of creating	
applications. Basics of conservation of mass, momentum and energy. Normal shock equations (Rankine-Hugonit equations). Method of creating	
Normal shock equations (Rankine-Hugonit equations). Method of creating	
should more in the lebenstern using a litely table description of the 1	
shock waves in the laboratory using a shock tube, description of hand	
operated Reddy shock tube and its characteristics.	
Introduction to Nano Science, Density of states in 1D, 2D and 3D	
structures. Synthesis : Top-down and Bottom-up approach, Ball Milling	
and Sol–Gel methods.	
CNT – Properties, synthesis: Arc discharge, Pyrolysis methods,	
Applications.	
Scanning Electron microscope: Principle, working and applications.	

Course outcomes:

On Completion of this course, students are able to –

- Learn and understand more about basic principles and to develop problem solving skills and implementation in technology.
- Gain Knowledge about Modern physics and quantum mechanics will update the basic concepts to implement the skills.
- Study of material properties and their applications is the prime role to understand and use in engineering applications and studies.
- Study Lasers and Optical fibers and its applications are to import knowledge and to develop skills and to use modern instruments in the engineering applications.
- Understand Crystal structure and applications are to boost the technical skills and its applications.
- Expose shock waves concept and its applications will bring latest technology to the students at the first year level to develop research orientation programs at higher semester level.
- Understand basic concepts of nano science and technology.

Question paper pattern:

- The question paper will have ten questions.
- Each full Question consisting of 16 marks
- There will be **2** full questions(with a **maximum** of **four** sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer **5** full questions, selecting one full question from each module.

Text Books:

- Wiley precise Text, Engineering Physics, Wiley India Private Ltd., New Delhi. Book series - 2014,
- 2. Dr. M.N. Avadhanulu, Dr. P.G.Kshirsagar, **Text Book of Engineering Physics**, S Chand Publishing, New Delhi - 2012

Reference Books:

- 1. S.O.Pillai, **Solid State Physics, New** Age International. Sixth Edition.
- 2. Chintoo S Kumar ,K Takayana and K P J Reddy, **Shock waves made** simple, Willey India Pvt. Ltd. New Delhi,2014
- 3. A Marikani, **Engineering Physics**, PHI Learning Private Limited, Delhi 2013
- 4. Prof. S. P. Basavaraju, **Engineering Physics**, Subhas Stores, Bangalore 2
- V Rajendran ,Engineering Physics, Tata Mc.Graw Hill Company Ltd., New Delhi -2012
- 6. S Mani Naidu, Engineering Physics, Pearson India Limited 2014

ENGINEERING PHYSICS LAB

Laboratory Code	15PHYL17 / 15PHYL27	IA Marks	20
Labs / Instructions	3 (1 hr Tutorial +2 hrs lab)	Exam	80
Hours/Week		Marks	80
Total Number of Lecture	48	Exam	0.2
Hours		Hours	03
CREDITS - 02			

Course Objectives:

- The Objective of this course is to make the students gain practical knowledge to co-relate with the theoretical studies. To achieve perfectness in experimental skills and the study of practical applications will bring more confidence and ability to develop and fabricate engineering and technical equipments.
- Design of circuits using new technology and latest components and to develop practical applications of engineering materials and use of principle in the right way to implement the modern technology.

EXPERIMENTS:

- 1. Black box experiment; Identification of unknown passive electrical components and determine the value of Inductance and Capacitance
- 2. Series and parallel LCR Circuits (Determination of resonant frequency and quality factor)
- 3. I–V Characteristics of Zener Diode. (determination of knee voltage, zener voltage and forward resistance)
- 4. Characteristics of Transistor (Study of Input and Output characteristics and calculation of input resistance, output resistance and amplification factor)
- 5. Photo Diode Characteristics (Study of I–V characteristics in reverse bias and variation of photocurrent as a function of reverse voltage and intensity).
- 6. Dielectric constant (Measurement of dielectric constant).
- 7. Diffraction (Measurement of wavelength of laser source using diffraction grating).
- 8. Torsional pendulum (Determination of M.I. of wire and Rigidity modulus).
- 9. Determination of Fermi energy. (Measurement of Fermi energy in copper).
- 10. Uniform Bending Experiment (Determination of Youngs modulus of material bar).
- 11. Newtons Rings, (Determination of radius of curvature of plano convex lens).

12. Verification of Stefan's Law.

Course Outcomes:

On Completion of this course, students are able to –

- Develop skills to impart practical knowledge in real time solution.
- Understand principle, concept, working and application of new technology and comparison of results with theoretical calculations.
- Design new instruments with practical knowledge.
- Gain knowledge of new concept in the solution of practical oriented problems and to understand more deep knowledge about the solution to theoretical problems.
- Understand measurement technology, usage of new instruments and real time applications in engineering studies.

Note: 1) All the above twelve experiments are to be conducted

2) Two experiments are to be performed by the students in the examination

ENVIRONMENTAL STUDIES

[As per Choice Based Credit System (CBCS) scheme]

(Effective from the academic year 2015 - 2016)

SEMESTER - I/II

Subject Code	15CIV18/15CIV28	IA Marks	10					
Number of Lecture Hours/Week	02	Exam Marks	40					
Total Number of Lecture Hours	25	Exam Hours	02					

Course Objectives:

- 1. To identify the major challenges in environmental issues and evaluate possible solutions.
- 2. Develop analytical skills, critical thinking and demonstrate socio-economic skills for sustainable development.
- 3. To analyze an overall impact of specific issues and develop environmental management plan.

Module - 1

Introduction: Environment - Components of Environment Ecosystem: Types & Structure of Ecosystem, Balanced ecosystem Human Activities – Food, Shelter, And Economic & Social Security. 2 Hours

Impacts of Agriculture & Housing Impacts of Industry, Mining & TransportationEnvironmental Impact Assessment, Sustainable Development.3 Hours

Module - 2

Natural Resources, Water resources – Availability & Quality aspects, Water borne diseases & water induced diseases, Fluoride problem in drinking water Mineral resources, Forest Wealth Material Cycles – Carbon Cycle, Nitrogen Cycle & Sulphur Cycle. **2 Hours** Energy – Different types of energy, Conventional sources & Non Conventional sources of energy Solar energy, Hydro electric energy, Wind Energy, Nuclear energy, Biomass & Biogas Fossil Fuels, Hydrogen as an alternative energy. **3 Hours**

Module -3

Environmental Pollution – Water Pollution, Noise pollution, Land Pollution, Public Health Aspects. 2 Hours

Global Environmental Issues: Population Growth, Urbanization, Land Management, Water& Waste Water Management.3 Hours

Module -4

Air Pollution & Automobile Pollution: Definition, Effects – Global Warming, Acid rain &Ozone layer depletion, controlling measures.**3 Hours**Solid Waste Management, E - Waste Management & Biomedical Waste Management -Sources, Characteristics & Disposal methods.**2 Hours**

Module - 5

Introduction to GIS & Remote sensing, Applications of GIS & Remote Sensing in Environmental Engineering Practices. 2 Hours

Environmental Acts & Regulations, Role of government, Legal aspects, Role of Nongovernmental Organizations (NGOs), Environmental Education & Women Education.

3 Hours

Course Outcome:

Students will be able to,

- 1. Understand the principles of ecology and environmental issues that apply to air, land, and water issues on a global scale,
- 2. Develop critical thinking and/or observation skills, and apply them to the analysis of a problem or question related to the environment,
- 3. Demonstrate ecology knowledge of a complex relationship between biotic and abiotic components
- 4. Apply their ecological knowledge to illustrate and graph a problem and describe the realities that managers face when dealing with complex issues

Text Books:

- Benny Joseph (2005), "Environmental Studies", Tata McGraw Hill Publishing Company Limited.
- R.J.Ranjit Daniels and Jagadish Krishnaswamy, (2009), "Environmental Studies", Wiley India Private Ltd., New Delhi.
- R Rajagopalan, "Environmental Studies From Crisis to Cure", Oxford University Press, 2005,
- Aloka Debi, "Environmental Science and Engineering", Universities Press (India) Pvt. Ltd. 2012.

Reference Books:

- Raman Sivakumar, "Principals of Environmental Science and Engineering", Second Edition, Cengage learning Singapore, 2005
- P. Meenakshi, "Elements of Environmental Science and Engineering", Prentice Hall of India Private Limited, New Delhi, 2006
- 3. S.M. Prakash, "Environmental Studies", Elite Publishers Mangalore, 2007
- 4. Erach Bharucha, **"Text Book of Environmental Studies"**, for UGC, University press, 2005
- 5. G.Tyler Miller Jr., **"Environmental Science working with the Earth"**, Tenth Edition, Thomson Brooks /Cole, 2004
- 6. G.Tyler Miller Jr., **"Environmental Science working with the Earth"**, Eleventh Edition, Thomson Brooks /Cole, 2006
- Dr.Pratiba Sing, Dr.AnoopSingh and Dr.Piyush Malaviya, "Text Book of Environmental and Ecology", Acme Learning Pvt. Ltd. New Delhi.

Functional English

Introduction	Importance of Languages	
Grammer	nmer Parts of Speech, Usage of Preposition and Article, Punctuation	
Tenses & Degrees of Comparison		3 Hours
Transformation of Sentences	Active-Passive, Affirmative-Negative, Exclamatory-Assertive, Interrogative-	5 Hours
Direct-Indirect Speech	Assertive, Kinds of sentences	5 Hours
Vocabulary Usage	Homonyms, Correcting Spelling, One-word equivalents	7 Hours
Precis Writing		3 Hours
Essay/Report Writing		5 Hours
Letter Writing	Personal, Official, Applications	5 Hours
Idioms & Phrases	Meaning & Usage in sentences	5 Hours
Comprehension	Of an unseen passage	2 Hours
Elaboration	Expansion of ideas, proverbs	2 Hours
Presentation	Preparation of materials and presentation – step	3 Hours

Suggested Text Books:

- 1) SLN Sharma & K Shankaranarayana **"Basic Grammar"**, Navakarnataka Publications.
- 2) Jones **"New International Business English"**, published by Cambridge University Press.

Reference Books:

- 1) G. Sankaran, **"English Rank Scorer"**, Addone Publishing group, Thiruvanantapuram, Kerala
- 2) Wren & Martin "English Grammar".
- 3) John Seely, "Oxford Guide to Speaking and Writing", 2000

Kannada Kali

Lesson 1 :	Introducing each other – 1. Personal Pronouns, Possessive forms, Interrogative words.
Lesson 2 :	Introducing each other – 2. Personal Pronouns, Possessive forms, Yes/No Type Interrogation
Lesson 3 :	About Ramanaya. Possessive forms of nons, dubitive question, Relative nouns
Lesson 4 :	Enquiring about a room for rent. Qualitative and quantitative adjectives.
Lesson 5 :	Enquiring about the college. Predicative forms, locative case.
Lesson 6 :	In a hotel Dative case defective verbs.
Lesson 7 :	Vegetable market. Numeral, plurals.
Lesson 8 :	Planning for a picnic. Imperative, Permissive, hortative.
Lesson 9 :	Conversation between Doctor and the patient. Verb- iru, negation – illa, non – past tense.
Lesson 10:	Doctors advise to Patient. Potential forms, no – past continuous.
Lesson 11:	Discussing about a film. Past tense, negation.
Lesson 12:	About Brindavan Garden. Past tense negation.

Lesson 13:	About routine activities of a student. Verbal Participle, reflexive form, negation.
Lesson 14:	Telephone conversation. Past and present perfect past continuous and their negation.
Lesson 15:	About Halebid, Belur. Relative participle, negation.
Lesson 16:	Discussing about examination and future plan. Simple conditional and negative
Lesson 17:	Karnataka (Lesson for reading)
Lesson 18:	Kannada Bhaashe (Lesson for reading)
Lesson 19:	Mana taruva Sangati alla (Lesson for reading)

bEku bEDagaLu (lesson for reading)

Lesson 20:

ಕನ್ನಡ ಮನಸು

- 1. ಶ್ರಾವಣ (ಕವನ) ದ.ರಾ.ಬೇಂದ್ರೆ
- ಡಾ. ವಿಶ್ವೇಶ್ವರಯ್ಯ ವ್ಯಕ್ತಿ ಮತ್ತು ಐತಿಹ್ಯ (ವ್ಯಕ್ತಿಚಿತ್ರ) ಎ.ಎನ್. ಮೂರ್ತಿರಾವ್
- 3. ದೋಣಿ ಹರಿಗೋಲುಗಳಲ್ಲಿ (ಪ್ರವಾಸ ಕಥನ) ಶಿವರಾಮ ಕಾರಂತ
- 4. ಅಣ್ಣಪ್ಪನ ರೇಷ್ಮೆ ಕಾಯಿಲೆ (ಪ್ರಬಂಧ) ಕುವೆಂಪು
- ನಮ್ಮ ಎಮ್ಮೆಗೆ ಮಾತು ತಿಳಿಯುವುದೇ (ವಿನೋದ) ಗೋರೂರು ರಾಮಸ್ವಾಮಿ ಅಯ್ಯಂಗಾರ್
- 6. ಆನೆಹಳ್ಳದಲ್ಲಿ ಹುಡುಗಿಯರು(ವಿಜ್ಞಾನ ಲೇಖನ) ಬಿ.ಜಿ.ಎಲ್ ಸ್ವಾಮಿ
- 7. ಬೆಡ್ ನಂ. ಏಳು (ಕತೆ) ತ್ರಿವೇಣಿ
- 8. ರೊಟೈ ಮತ್ತು ಕೋವಿ (ಕವನ) ಸು.ರಂ.ಎಕ್ಯುಂಡಿ
- 9. ಗುಬ್ಬಚ್ಚಿ ಗೂಡು (ಅಂಕಂ ಬರಹ) ಲಂಕೇಶ್
- 10. ಚೀಂಕ್ರ ಮೇಸ್ತ್ರಿ ಮತ್ತು ಹಾವುಮೀನು (ಪರಿಸರ ಲೇಖನ) ಕೆ.ಪೂರ್ಣಚಂದ್ರ ತೇಜಸ್ವಿ
- 11. ಗಾಂಧಿ (ಕತೆ) ಬೆಸಗರಹಳ್ಳಿ ರಾಮಣ್ಣ
- 12. ಬೆಲ್ಚಿಯ ಹಾಡು (ಕವನ) ಸಿದ್ದಲಿಂಗಯ್ಯ
- 13. ಎಲ್ಲ ಹುಡುಗಿಯರ ಕನಸು (ಕವನ) ಸವಿತಾ ನಾಗಭೂಷಣ
- 14. ನೀರು (ಕತೆ) ಬಸವರಾಜ ಕುಕ್ಕರಹಳ್ಳಿ
- 15. ಕರ್ನಾಟಕ ಸಂಸ್ಕೃತಿ ಸ್ವರೂಪ (ಪರಿಚಯ ಲೇಖನ) ರಹಮತ ತರೀಕೆರೆ
- 16. ತಂತ್ರಜ್ಞಾನ ಕಲಿಕೆಯಲ್ಲಿ ಭಾಷೆ (ತಂತ್ರಜ್ಞಾನ ಬರಹ) ಎಸ್.ಸುಂದರ್
- 17. ಕೊಣವೇಗೌಡ (ಕಾವ್ಯ) ಜಾನಪದ

PROGRAMMING IN C AND DATA STRUCTURES

[As per Choice Based Credit System (CBCS) scheme] (Effective from the academic year 2015 -2016) SEMESTER - I/II

Subject Code	15PCD13/23	IA Marks	20			
Number of Lecture Hours/Week	04	Exam Marks	80			
Total Number of Lecture Hours	50	Exam Hours	03			
CREDITS - 04						

Course objectives:

The objectives of this course is to make students to learn basic principles of Problem solving, implementing through C programming language and to design & develop programming skills. To gain knowledge of data structures and their applications.

	Toooking
Module -1 : INTRODUCTION TO C LANGUAGE	Teaching Hours
Pseudo code solution to problem, Basic concepts in a C program, Declaration, Assignment & Print statements, Data Types, operators and expressions etc, Programming examples and exercise.	10Hours
Text 1: Chapter 2, and Text 2: 1.1, 1.2, 1.3	
Module -2: BRANCHING AND LOOPING	
Two way selection (if, if-else, nested if-else, cascaded if-else), switch statement, ternary operator? Go to, Loops (For, while-do, do-while) in C, break and continue, Programming examples and exercises.	10 Hours
Text 1: Chapter 3. & Text 2: 4.4.	
Module – 3: FUNCTIONS, ARRAYS AND STRINGS	
 ARRAYS AND STRINGS: Using an array, Using arrays with Functions, Multi-Dimensional arrays. String: Declaring, Initializing, Printing and reading strings, string manipulation functions, String input and output functions, array of strings, Programming examples and Exercises. Text 1: 5.7, & Text 2: 7.3, 7.4, chapter 9 	
FUNCTIONS : Functions in C, Argument Passing – call by value, call by reference, Functions and program structure, location of functions, void and parameter less Functions, Recursion, Programming examples and exercises. Text 1: 1.7, 1.8, Chapter 4. Text 2: 5.1 to 5.4.	

Module-4: STRUCTURES AND FILE MANAGEMENT	
 Basic of structures, structures and Functions, Array of structures, structure Data types, type definition, Defining, opening and closing of files, Input and output operations, Programming examples and exercises. Text 1: 6.1 to 6.3. Text 2: 10.1 to 10.4, Chapter 11. 	
Module-5: POINTERS AND PREPROCESSORS & Data Structures	I
Pointers and address, pointers and functions (call by reference) arguments, pointers and arrays, address arithmetic, character pointer and functions, pointers to pointer ,Initialization of pointer arrays, Dynamic memory allocations methods, Introduction to Preprocessors, compiler control Directives, Programming examples and exercises.	
Text 1: 5.1 to 5.6, 5.8. Text 2: 12.2, 12.3, 13.1 to 13.7 .	10 Hours
Introduction to Data Structures : Primitive and non primitive data types, Abstract data types, Definition and applications of Stacks, Queues, Linked Lists and Trees.	
Text 2: 14.1, 14.2, 14.11, 14.12, 14.13, 14.15, 14.16, 14.17, 15.1.	
Course outcomes: On completion of this course, students are able	e to
• Achieve Knowledge of design and development of C proble	m solving
skills.	
Understand the basic principles of Programming in C languag	e
• Design and develop modular programming skills.	
• Effective utilization of memory using pointer technology	
• Understands the basic concepts of pointers and data structur	es.
Question none nottern:	
Question paper pattern:	
• The question paper will have ten questions.	
• Each full Question consisting of 16 marks	· · · ·
• There will be 2 full questions(with a maximum of four sub	questions)
from each module.	
• Each full question will have sub questions covering all the to a module.	pics under
• The students will have to answer 5 full questions, selecting	ng one full

question from each module.

Text Books:

- Brian W. Kernighan and Dennis M. Ritchie: The C Programming Language, 2nd Edition, PHI, 2012.
- Jacqueline Jones & Keith Harrow: Problem Solving with C, 1st Edition, Pearson 2011.

Reference Books:

1. Vikas Gupta: Computer Concepts and C Programming, Dreamtech Press 2013.

- 2. R S Bichkar, Programming with C, University Press, 2012.
- 3. V Rajaraman: Computer Programming in C, PHI, 2013.

WORKSHOP PRACTICE

[As per Choice Based Credit System (CBCS) scheme]

(Effective from the academic year 2015 -2016)

SEMESTER - I/II

Subject Code	15WSL16/15WSL26	IA Marks	20
Labs / Tutorial Hours/Week	3 (1 hr Tut +2 hrs lab)	Exam Marks	80
Total Number of Lecture Hours	42	Exam Hours	03

CREDITS - 02

Course objectives:

- To impart knowledge and skill to use tools, machines, equipment, and measuring instruments.
- Educate students of Safe handling of machines and tools.

Module -1	Teaching Hours			
1. Demonstration on use of Hand Tools: V-block, Marking Gauge, Files, Hack Saw, Drills, Taps.Minimum 3 models involving Dove tail joint,Triangular joint and Semicircular joint.	3 Hours			
2. Welding: Study of electric arc welding tools &equipments, Models: Butt Joint, Lap Joint, T joint & L-joint.				
3. Sheet Metal & Soldering Work: Development & Soldering of the models: Tray, Frustum of cone, Prism(Hexagon & Pentagon),Truncated Square Pyramid, Funnel.				
Course outcomes:	1			
At the end of the course, the student will be able to:				
1. Demonstrate and produce different types of fitting models.				
Gain knowledge of development of sheet metal models with an understanding of their applications.				

- 3. Perform soldering and welding of different sheet metal & welded joints.
- 4. Understand the Basics of Workshop practices.

Ref Books:

1. Elements of Workshop Technology:Vol I:Manufacturing Processes, S K Hajra.

Choudhury, A K. Hajra Choudhury,15th Edition Reprinted 2013,Media Promoters &Publishers Pvt Ltd., Mumbai.

Note: No mini drafters and drawing boards required. Drawings (Developments) can be doneon sketch sheets using scale , pencil and Geometrical Instruments

SCHEME OF TEACHING AND EXAMINATION B.E Electronics & Communication Engineering / Telecommunication Engineering (Common to Electronics & Communication and Telecommunication Engineering)

Sl. Subject No Code	C-1: 4			ing Hours Week	Examination				Credits	
		Title	Theory	Practical/ Drawing	Duration	Theory/ Practical Marks	I.A. Marks	Total Marks		
1	15MAT31	Engineering Mathematics –III*	04		03	80	20	100	4	
2	15EC32	Analog Electronics	04		03	80	20	100	4	
3	15EC33	Digital Electronics	04		03	80	20	100	4	
4	15EC34	Network Analysis	04		03	80	20	100	4	
5	15EC35	Electronic Instrumentation	04		03	80	20	100	4	
6	15EC36	Engineering Electromagnetics	04		03	80	20	100	4	
7	15ECL37	Analog Electronics Lab		1I+2P	03	80	20	100	2	
8	15ECL38	Digital Electronics Lab		1I+2P	03	80	20	100	2	
		TOTAL	24	6	24	640	160	800	28	

III SEMESTER

*Additional course for Lateral entry students only:

1 15MATDIP31	Additional Mathematics - I	03		03	80		80		
--------------	----------------------------	----	--	----	----	--	----	--	--

SCHEME OF TEACHING AND EXAMINATION B.E Electronics & Communication Engineering / Telecommunication Engineering (Common to Electronics & Communication and Telecommunication Engineering)

CI	Subject Code			ng Hours /eek		Examinat	tion		Credits	
SI. No		Title	Theory	Practical / Drawing	Duration	Theory/ Practical Marks	I.A. Marks	Total Marks	4 4 4 4 4 4	
1	15MAT41	Engineering Mathematics –IV*	04		03	80	20	100	4	
2	15EC42	Microprocessor	04		03	80	20	100	4	
3	15EC43	Control Systems	04		03	80	20	100	4	
4	15EC44	Signals and Systems	04		03	80	20	100	4	
5	15EC45	Principles of Communication Systems	04		03	80	20	100	4	
6	15EC46	Linear Integrated Circuits	04		03	80	20	100	4	
7	15ECL47	Microprocessor Lab		1I+2P	03	80	20	100	2	
8	15ECL48	Linear ICs and Communication Lab		1I+2P	03	80	20	100	2	
	•	TOTAL	24	06	24	640	160	800	28	

*Additional course for Lateral entry students only:

1	15MATDIP41	Additional Mathematics - II	03		03	80		80		
---	------------	-----------------------------	----	--	----	----	--	----	--	--

V SEMESTER

SI.	Subject		Teaching /Week	g Hours	Examination				Credits
	Code	Title	Theory	Practical /Drawing	Duration	Theory/ Practical Marks	I.A. Marks	Total Marks	4 4 4 4 4
1	15ES51	Management and Entrepreneurship Development	04		03	80	20	100	4
2	15EC52	Digital Signal Processing	04		03	80	20	100	4
3	15EC53	Verilog HDL	04		03	80	20	100	4
4	15EC54	Information Theory & Coding	04		03	80	20	100	4
5	15EC55X	Professional Elective-1	03		03	80	20	100	3
6	15EC56X	Open Elective-1	03		03	80	20	100	3
7	15ECL57	DSP Lab		1I+2P	03	80	20	100	2
8	15ECL58	HDL Lab		1I+2P	03	80	20	100	2
тот	TAL	L	22	06	24	640	160	800	26

Profession	al Elective-1	Open Elect	ive – 1* (List offered by EC/TC Board only)
15EC551	Nanoelectronics	15EC561	Automotive Electronics
15EC552	Switching & Finite Automata Theory	15EC562	Object Oriented Programming Using C++
15EC553	Operating System	15EC563	8051 Microcontroller
15EC554	Electrical Engineering Materials		
15EC555	MSP430 Microcontroller		

1. Professional Elective: Elective relevant to chosen specialization/ branch.

2. * Open Elective List: For other Open Electives offered by other Boards, refer the Scheme of other Boards or Consolidated list in VTU Website.

VI SEMESTER

CI	Cashi a st			ng Hours Veek		Credits			
SI. No	Subject Code	Title	Theory	Practical/ Drawing	Duration	Theory/ Practical Marks	I.A. Marks	Total Marks	-
1	15EC61	Digital Communication	04		03	80	20	100	4
2	15EC62	ARM Microcontroller & Embedded Systems	04		03	80	20	100	4
3	15EC63	VLSI Design	04		03	80	20	100	4
4	15EC64	Computer Communication Networks	04		03	80	20	100	4
5	15EC65X	Professional Elective-2	03		03	80	20	100	3
6	15EC66X	Open Elective-2	03		03	80	20	100	3
7	15ECL67	Embedded Controller Lab		1I+2P	03	80	20	100	2
8	15ECL68	Computer Networks Lab		1I+2P	03	80	20	100	2
		TOTAL	22	6	24	640	160	800	26

Profession	al Elective-2	Open Elective – 2* (List offered by EC/TC Board only)				
15EC651	Cellular Mobile Communication	15EC661	Data Structures Using C++			
15EC652	Adaptive Signal Processing	15EC662	Power Electronics			
15EC653	Artificial Neural Networks	15EC663	Digital System Design using Verilog			
15EC654	Digital Switching Systems					
15EC655	Microelectronics					

Professional Elective: Elective relevant to chosen specialization/branch.
 * Open Elective List: For other Open Electives offered by other Boards, refer the Scheme of other Boards or Consolidated list in VTU Website.

SI.	Subject		Teachin /W	g Hours eek		Exami	ination		15EC
SI. No	Subject Code	Title	Theory	Practic al/Dra wing	Duration	I.A. Marks	Theory/ Practical Marks	Total Marks	
1	15EC71	Microwave and Antennas	04		03	20	80	100	4
2	15EC72	Digital Image Processing	04		03	20	80	100	4
3	15EC73	Power Electronics	04		03	20	80	100	4
4	15XX74X	Professional Elective-3	03		03	20	80	100	3
5	15EC75X	Professional Elective-4	03		03	20	80	100	3
6	15ECL76	Advanced Communication Lab		1I+2P	03	20	80	100	2
7	15ECL77	VLSI Lab		1I+2P	03	20	80	100	2
8	15ECP78	Project Work Phase–I + Project work Seminar		03		100	-	100	2
		TOTAL	18	09	21	240	560	800	24

Profession	al Elective-3	Professional	Elective-4
15EC741	Multimedia Communication	15EC751	DSP Algorithms and Architecture
15EC742	Biomedical Signal Processing	15EC752	IoT and Wireless Sensor Networks
15EC743	Real Time Systems	15EC753	Pattern Recognition
15EC744	Cryptography	15EC754	Advanced Computer Architecture
15EC745	CAD for VLSI	15EC755	Satellite Communication

1. Project Phase –I + Project Work Seminar: Literature Survey, Problem Identification, Objectives and Methodology. Submission of Synopsis and Seminar.

VIII SEMESTER

Sl. Subject			Teaching Hours /Week Examination			Credits			
SI. No	Subject Code	Title	Theory	Practical/ Drawing	Duration	I.A. Marks	Theory/ Practical Marks	Total Marks	
1	15EC81	Wireless Cellular and LTE 4G Broadband	4	-	3	20	80	100	4
2	15EC82	Fiber Optics & Networks	4	-	3	20	80	100	4
3	15EC83X	Professional Elective-5	3	-	3	20	80	100	3
4	15EC84	Internship/Professional Practice	Industr	y Oriented	3	50	50	100	2
5	15ECP85	Project Work	-	6	3	100	100	200	6
6	15ECS86	Seminar	-	4	-	100	-	100	1
	1	TOTAL	11	10	15	310	390	700	20

Profession	nal Elective -5
15EC831	Micro Electro Mechanical Systems
15EC832	Speech Processing
15EC833	Radar Engineering
15EC834	Machine learning
15EC835	Network and Cyber Security

1. Internship / **Professional Practice:** To be carried between the (6th and 7th Semester) or (7th and 8th) Semester Vacation period.

B.E., III Semester, Electronics & Communication Engineering /Telecommunication Engineering

	ENGINEERING MATHEMAT	ICS-III		
F	B.E., III Semester, Common to a			
[As pe	er Choice Based Credit System (C	BCS) scheme]		
Subject Code	15MAT31	IA Marks	20	
Number of Lecture	04	Exam marks	80	
Hours/Week				
Total Number of	50 (10 Hours per Module)			
Lecture Hours				
	Credits - 04			
Course Objectives: Th	is course will enable students to:			
different engineer	ommonly used analytical and nur ring fields. ries, Fourier transforms and Z-tra			
numerical metho		insionis, statistical in	ethous,	
	nd transcendental equations, vec	tor integration and cal	culus of	
	Modules		RBT Level	
Module-1				
	c functions, Dirichlet's condition		L1, L2,	
	n period \mathcal{Z} and with arbitrary		L4	
	ld functions. Half range Four			
narmonic analysis-mus	trative examples from engineerin	g neid.		
E	Module-2			
transforms. Inverse Fou	Infinite Fourier transforms, Fou	rier sine and cosine	L2, L3, L4	
	e equations, basic definition, z-	transform_definition	L4	
	, Damping rule, Shifting rule, In			
	nout proof) and problems, I			
	orms to solve difference equation			
	Module-3			
Regression analysis- lir	Review of measures of centric reason's coefficient of the of regression (without proof) –	correlation-problems. Problems		
curves of the form, <i>y</i> = Numerical Methods :	fitting by the method of least so $ax + b$, $y = ax^2 + bx + c$ and $y = a$ Numerical solution of algebraic	and transcendental	L3	
equations by Regula- F	alsi Method and Newton-Raphsor	n method.		
	Module-4			
and backward inte divided difference form interpolation formula (a	orward and backward difference rpolation formulae. Divided on nula. Lagrange's interpolation f all formulae without proof)-Prob a: Simpson's (1/3) th and (3/8) th ms.	differences- Newton's formula and inverse lems.	L3	

Module-5	
Vector integration: Line integrals-definition and problems, surface and volume integrals-definition, Green's theorem in a plane, Stokes and Gauss-divergence theorem(without proof) and problems.	L3, L4
Calculus of Variations: Variation of function and Functional, variational problems. Euler's equation, Geodesics, hanging chain, Problems.	L2, L4
Course outcomes: On completion of this course, students are able to:	
• Know the use of periodic signals and Fourier series to analyze circuits	
and system communications.	
• Explain the general linear system theory for continuous-time signals and digital signal processing using the Fourier Transform and z-transform.	
• Employ appropriate numerical methods to solve algebraic and transcendental equations.	
• Apply Green's Theorem, Divergence Theorem and Stokes' theorem in various applications in the field of electro-magnetic and gravitational fields and fluid flow problems.	
 Determine the extremals of functionals and solve the simple problems of the calculus of variations. 	
Question paper pattern:	
• The question paper will have ten questions.	
Each full Question consisting of 16 marks	
• There will be 2 full questions (with a maximum of four sub questions) fro module.	m each
• Each full question will have sub questions covering all the topics under a module.	l
• The students will have to answer 5 full questions, selecting one full quest each module.	tion from
Text Books:	
1. B.S. Grewal: Higher Engineering Mathematics, Khanna Publishers, 43 ^d Ed.,	
2. E. Kreyszig: Advanced Engineering Mathematics, John Wiley & Sons, 10 th E	d., 2015
Reference Books: 1. N.P.Bali and Manish Goyal: A Text Book of Engineering Mathematics Publishers, 7 th Ed., 2010.	rs, Laxm
2. B.V.Ramana: "Higher Engineering Mathematics" Tata McGraw-Hill, 2006.	
3. H. K. Dass and Er. Rajnish Verma: "Higher Engineering Mathematics", S publishing, 1st edition, 2011.	S. Chand
Web Link and Video Lectures:	
1. http://nptel.ac.in/courses.php?disciplineID=111	
2. http://www.khanacademy.org/	

ADDITIONAL MATHEMATICS - I B.E., III Semester, Common to all Branches (A Bridge course for Lateral Entry students of III Sem. B. E.) [As per Choice Based Credit System (CBCS) scheme]

Subject Code	15MATDIP31	IA Marks	
Number of Lecture	03	Exam marks	80
Hours/Week			
Total Number of	40 (08 Hours per Module)		
Lecture Hours	-		
Credits – 00			

Course Objectives: This course will enable students to:

- Acquire basic concepts of complex trigonometry, vector algebra, differential & integral calculus and vector differentiation.
- Solve first order differential equations.

Modules	RBT Level
Module-1	
Complex Trigonometry : Complex Numbers: Definitions & properties. Modulus and amplitude of a complex number, Argand's diagram, De- Moivre's theorem (without proof).	L1
Vector Algebra : Scalar and vectors. Vectors addition and subtraction. Multiplication of vectors (Dot and Cross products). Scalar and vector triple products-simple problems.	
Module-2	
Differential Calculus : Review of successive differentiation. Formulae for n th derivatives of standard functions- Liebnitz's theorem (without proof). Polar curves-angle between the radius vector and the tangent pedal equation- Problems. Maclaurin's series expansions- Illustrative examples. Partial Differentiation : Euler's theorem for homogeneous functions of two variables. Total derivatives-differentiation of composite and implicit function. Application to Jacobians.	L1, L2
Module-3	
Integral Calculus : Statement of reduction formulae for <i>sinⁿx</i> , <i>cosⁿx</i> , <i>and sin^mx cosⁿx</i> and evaluation of these with standard limits-Examples. Double and triple integrals-Simple examples.	L1, L2
Module-4	
Vector Differentiation : Differentiation of vector functions. Velocity and acceleration of a particle moving on a space curve. Scalar and vector point functions. Gradient, Divergence, Curl and Laplacian (Definitions only). Solenoidal and irrotational vector fields-Problems.	L1, L2
Module-5	
Ordinary differential equations (ODE's): Introduction-solutions of first order and first degree differential equations: homogeneous, exact, linear differential equations of order one and equations reducible to above types.	L1, L2

_

ĮAS	ANALOG ELECTRONICS per Choice Based Credit System (CBCS) scheme] SEMESTER – III (EC/TC)		
Subject Code	15EC32 IA Marks		20
Number of	04 Exam Ma	rks	80
Lecture			
Hours/Week Total Number of	50 (10 Hours per Module) Exam Ho	1170	03
Lecture Hours	50 (10 Hours per Module) Exam Ho	uis	03
	CREDITS – 04		
Course objectives:	This course will enable students to:		
• Explain various	BJT parameters, connections and configurations.		
• Explain BJT Am	plifier, Hybrid Equivalent and Hybrid Models.		
• Explain construe	ction and characteristics of JFETs and MOSFETs.		
Construct frequeAnalyze Power a	types of FET biasing, and demonstrate the use of FE ency response of BJT and FET amplifiers at various f mplifier circuits in different modes of operation. back and Oscillator circuits using FET.		
I	Modules	R	BT Level
Module -1			
configuration. Dar model, Approxima	fixed bias, Voltage divider bias, Emitter followe lington connection-DC bias; The Hybrid equivalen te Hybrid Equivalent Circuit- Fixed bias, Voltag ollower configuration; Complete Hybrid equivalen odel.	t e	
Module -2			
	sistors: Construction and Characteristics of JFETs istics, Depletion type MOSFET, Enhancement typ		1, L2, L3
FET Amplifiers: JI bias configuration	FET small signal model, Fixed bias configuration, Sel a, Voltage divider configuration, Common Gat ce-Follower Configuration, Cascade configuration.		
FET Amplifiers: JI bias configuration	n, Voltage divider configuration, Common Gat		

Feedback and Oscillator Circuits: Feedback concepts, Feedback connection types, Practical feedback circuits, Oscillator operation, FET Phase shift oscillator, Wien bridge oscillator, Tuned Oscillator circuit, Crystal oscillator, UJT construction, UJT Oscillator.	L1,L2, L3
Module -5	
Power Amplifiers: Definition and amplifier types, Series fed class A	
amplifier, Transformer coupled class A amplifier, Class B amplifier	L1, L2, L3
operation and circuits, Amplifier distortion, Class C and Class D	
amplifiers. Voltage Regulators: Discrete transistor voltage regulation -	
Series and Shunt Voltage regulators.	
Course Outcomes: After studying this course, students will be able to:	I

- Describe the working principle and characteristics of BJT, FET, Single stage, cascaded and feedback amplifiers.
- Describe the Phase shift, Wien bridge, tuned and crystal oscillators using BJT/FET/UJT.
- Calculate the AC gain and impedance for BJT using re and h parameters models for CE and CC configuration.
- Determine the performance characteristics and parameters of BJT and FET amplifier using small signal model.
- Determine the parameters which affect the low frequency and high frequency responses of BJT and FET amplifiers and draw the characteristics.
- Evaluate the efficiency of Class A and Class B power amplifiers and voltage regulators.

Question paper pattern:

- The question paper will have ten questions.
- Each full question consists of 16 marks.
- There will be 2 full questions (with a maximum of Three sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module. The students will have to answer 5 full questions, selecting one full question from each module.

Text Book:

Robert L. Boylestad and Louis Nashelsky, "Electronics devices and Circuit theory", Pearson, $10^{th}/11$ th Edition, 2012, ISBN:978-81-317-6459-6.

- 1. Adel S. Sedra and Kenneth C. Smith, "Micro Electronic Circuits Theory and Application", 5th Edition ISBN:0198062257
- 2. Fundamentals of Microelectronics, Behzad Razavi, John Weily ISBN 2013 978-81-265-2307-8
- 3. J.Millman & C.C.Halkias Integrated Electronics, 2nd edition, 2010, TMH. ISBN 0-07-462245-5
- **4.** K. A. Navas, "Electronics Lab Manual", Volume I, PHI, 5th Edition, 2015, ISBN:9788120351424.

DIGITAL ELECTRONICS [As per Choice Based Credit System (CBCS) scheme] SEMESTER – III (EC/TC)			
Subject Code	15EC33	IA Marks	20
Number of	04	Exam Marks	80
Lecture			
Hours/Week			
Total Number of	50 (10 Hours per Module)	Exam Hours	03
Lecture Hours			
<u> </u>	- CREDITS This course will enable stud		
 McClusky Techn Design combina Design Decoder, Comparators. Describe Latche Analyze Mealy a 	fication of Algebraic equation niques. tional logic circuits. s, Encoders, Digital Multiples s and Flip-flops, Registers an nd Moore Models. agrams Synchronous Sequer	ker, Adders, Subtractors ar nd Counters.	
Develop State al	agrams synemonous sequer		
	Modules		RBT Level
Module – 1			
Karnaugh maps-3, care terms) Sim minimization tech	Generation of switching equ 4,5 variables, Incompletely plifying Max term equa nique, Quine-McCluskey plicants Tables.(Text 1, Chap	specified functions (Don't ations, Quine-McCluskey using don't care terms,	
Madula 0			
combinational logi multiplexers, Usin and subtractors, comparators.(Text	sign of combinational log c design, Decoders, BCD de g multiplexers as Boolean fu Cascading full adders, Lo 1, Chapter 4)	ecoders, Encoders, digital Inction generators, Adders	L1, L2, L3
Module -3			
master-slave flip-f	Bistable elements, Latches, T lops (pulse-triggered flip-flo ed flip-flops, Characteristic e	ps): SR flip-flops,JK flip-	L1,L2
Module -4			
synchronous binar of a synchronous	Applications: Registers, y counters, Counters based counters, Design of a syn K , D and SR flip-flops. (Text	on shift registers, Design chronous mod-n counter	L1,L2, L3

Module -5

Sequential Circuit Design: Mealy and Moore models, State machine	L1, L2, L3
notation, Synchronous Sequential circuit analysis, Construction of state	
diagrams, counter design. (Text 1, Chapter 6)	

Course Outcomes: After studying this course, students will be able to:

- Develop simplified switching equation using Karnaugh Maps and Quine-McClusky techniques.
- Explain the operation of decoders, encoders, multiplexers, demultiplexers, adders, subtractors and comparators.
- Explain the working of Latches and Flip Flops (SR,D,T and JK).
- Design Synchronous/Asynchronous Counters and Shift registers using Flip Flops.
- Develop Mealy/Moore Models and state diagrams for the given clocked sequential circuits.
- Apply the knowledge gained in the design of Counters and Registers.

Question paper pattern:

- The question paper will have ten questions.
- Each full question consists of 16 marks.
- There will be 2 full questions (with a maximum of Three sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module. The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

- 1. Digital Logic Applications and Design, John M Yarbrough, Thomson Learning, 2001. ISBN 981-240-062-1.
- 2. Donald D. Givone, "Digital Principles and Design", McGraw Hill, 2002. ISBN 978-0-07-052906-9.

- 1. D. P. Kothari and J. S Dhillon, "Digital Circuits and Design", Pearson, 2016, ISBN:9789332543539.
- 2. Morris Mano, "Digital Design", Prentice Hall of India, Third Edition.
- 3. Charles H Roth, Jr., "Fundamentals of logic design", Cengage Learning.
- 4. K. A. Navas, "Electronics Lab Manual", Volume I, PHI, 5thEdition, 2015, ISBN: 9788120351424.

	NETWORK ANALY As per Choice Based Credit Syst SEMESTER – III (E	em (CBCS) scheme]	
Subject Code	15EC34	IA Marks	20
Number	04	Exam Marks	80
Total Number of Lecture Hours	50 (10 Hours per Module)	Exam Hours	03
	CREDITS – 04		

Course objectives: This course enables students to:

- Describe basic network concepts emphasizing source transformation, source shifting, mesh and nodal techniques to solve for resistance/impedance, voltage, current and power.
- Explain network Thevenin's, Millman's, Superposition, Reciprocity, Maximum Power transfer and Norton's Theorems and apply them in solving the problems related to Electrical Circuits.
- Explain the behavior of networks subjected to transient conditions.
- Use applications of Laplace transforms to network problems.
- Describe Series and Parallel Combination of Passive Components as resonating circuits, related parameters and to analyze frequency response.
- Study two port network parameters like Z, Y, T and h and their inter-relationships and applications.

Modules	RBT Level
Module -1	I
Basic Concepts: Practical sources, Source transformations, Network reduction using Star – Delta transformation, Loop and node analysis with linearly dependent and independent sources for DC and AC networks, Concepts of super node and super mesh.	L1, L2,L3,L4
Module -2	
Network Theorems: Superposition, Reciprocity, Millman's theorems, Thevinin's and Norton's theorems, Maximum Power transfer theorem.	L1, L2, L3,L4
Module -3	
Transient behavior and initial conditions: Behavior of circuit elements under switching condition and their Representation, evaluation of initial and final conditions in RL, RC and RLC circuits for AC and DC excitations.	L1, L2, L3,L4
Laplace Transformation & Applications : Solution of networks, step, ramp and impulse responses, waveform Synthesis.	
Module -4	
Resonant Circuits: Series and parallel resonance, frequency- response of series and Parallel circuits, Q–Factor, Bandwidth.	L1, L2, L3,L4
Module -5	1

Two port network parameters: Definition of Z, Y, h and Transmission	L1, L2,
parameters, modeling with these parameters, relationship between	L3,L4
parameters sets.	

Course Outcomes: After studying this course, students will be able to:

- Determine currents and voltages using source transformation/ source shifting/ mesh/ nodal analysis and reduce given network using star-delta transformation/ source transformation/ source shifting.
- Solve network problems by applying Superposition/ Reciprocity/ Thevenin's/ Norton's/ Maximum Power Transfer/ Millman's Network Theorems and electrical laws to reduce circuit complexities and to arrive at feasible solutions.
- Calculate current and voltages for the given circuit under transient conditions.
- Apply Laplace transform to solve the given network.
- Evaluate for RLC elements/ frequency response related parameters like resonant frequency, quality factor, half power frequencies, voltage across inductor and capacitor, current through the RLC elements, in resonant circuits
- Solve the given network using specified two port network parameter like Z or Y or T or h.

Question paper pattern:

- The question paper will have ten questions.
- Each full question consists of 16 marks.
- There will be 2 full questions (with a maximum of Three sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

- 1. M.E. Van Valkenberg (2000), "Network analysis", Prentice Hall of India, 3rd edition, 2000, ISBN: 9780136110958.
- 2. Roy Choudhury, "Networks and systems", 2nd edition, New Age International Publications, 2006, ISBN: 9788122427677.

- **1.** Hayt, Kemmerly and Durbin "Engineering Circuit Analysis", TMH 7th Edition, 2010.
- J. David Irwin /R. Mark Nelms, "Basic Engineering Circuit Analysis", John Wiley, 8thed, 2006.
- **3.** Charles K Alexander and Mathew N O Sadiku, "Fundamentals of Electric Circuits", Tata McGraw-Hill, 3rd Ed, 2009.

	ELECTRONIC INSTRU	IMENTATION	
[4	as per Choice Based Credit Sy		
L. L.	SEMESTER – III		
Subject Code	15EC35	IA Marks	20
Number of	04	Exam Marks	80
Lecture			
Hours/Week Total Number of	50 (10 Houng non Madula)	Exam Hours	0.2
Lecture Hours	50 (10 Hours per Module)	Exam Hours	03
	CREDITS -	04	
Course objectives	: This course will enable stud	lents to:	
 Define and d probability a 	escribe accuracy and precision precision and	on, types of errors, statis	stical and
	operation of Ammeters, Volt	neters. Multimeters and	develop
	nultirange Ammeters and Vol		uevelop
	ctional concepts and operation		Digital
measuring ir			-
	sic concepts and operation of	Digital Voltmeters and M	licroprocessor
based instruments.			
			_
Describe and	l discuss functioning and typ	es of Oscilloscopes, Sign	al generators,
 Describe and AC and DC b 	l discuss functioning and typ pridges.		C
 Describe and AC and DC b Recognize a 	l discuss functioning and typ pridges. und describe significance		C
 Describe and AC and DC b 	l discuss functioning and typ pridges. und describe significance		rent types of
 Describe and AC and DC b Recognize a 	l discuss functioning and typ pridges. und describe significance		C
 Describe and AC and DC b Recognize a transducers. 	l discuss functioning and typ pridges. Ind describe significance		rent types of RBT
 Describe and AC and DC b Recognize a transducers. Module -1 Measurement and and Significant 	l discuss functioning and typ pridges. Ind describe significance	and working of differ acy, Precision, Resolutions, Measurement error	rent types of RBT Level on L1, L2, L3
 Describe and AC and DC b Recognize a transducers. Module -1 Measurement and and Significant combinations, Bass Ammeters: DC An Universal Shund 	l discuss functioning and typ oridges. and describe significance Modules d Error: Definitions, Accura Figures, Types of Error	and working of differ acy, Precision, Resolutions, Measurement error ext 2) The Ayrton Shunt of Extending of Ammete	rent types of RBT Level on or or er
 Describe and AC and DC b Recognize a transducers. Module -1 Measurement and and Significant combinations, Base Ammeters: DC Ar Universal Shund Ranges, RF Amm (Text 1) Voltmeters and Voltmeter, DC Vo Ranges, Loading, A Differential Voltme 	l discuss functioning and typ oridges. and describe significance Modules I Error: Definitions, Accura Figures, Types of Error ics of Statistical Analysis. (Te nmeter, Multirange Ammeter, c, Requirements of Shunt,	and working of differ and working of differ acy, Precision, Resolution rs, Measurement error ext 2) The Ayrton Shunt of Extending of Ammeton ations of Thermocoupl Basic Meter as a D ter, Extending Voltmeton rs. Transistor Voltmeton	rent types of RBT Level On Or Or er e. OC er er,

Distal Valturation DAMD technique Duel Clane		
Digital Voltmeters: Introduction, RAMP technique, Dual Slope	L1, L2,L3	
Integrating Type DVM, Integrating Type DVM, Most Commonly used		
principles of ADC, Successive Approximations, Continuous Balance		
DVM, ³ ¹ / ₂ -Digit, Resolution and Sensitivity of Digital Meters, General		
Specifications of DVM, Microprocessor based Ramp type DVM. (Text 1)		
Digital Instruments: Introduction, Digital Multimeters, Digital Frequency Meter, Digital Measurement of Time, Universal Counter, Digital Tachometer, Digital pH Meter, Digital Phase Meter, Digital Capacitance Meter, Microprocessor based Instruments. (Text 1)		
Module -3		
Oscilloscopes: Introduction, Basic principles, CRT features, Block diagram of Oscilloscope, Simple CRO, Vertical Amplifier, Horizontal Deflecting System, Sweep or Time Base Generator, Storage Oscilloscope, Digital Readout Oscilloscope, Measurement of Frequency by Lissajous Method, Digital Storage Oscilloscope. (Text 1)	L1, L2	
Signal Generators: Introduction, Fixed and Variable AF Oscillator, Standard Signal Generator, Laboratory Type Signal Generator, AF sine and Square Wave Generator, Function Generator, Square and Pulse Generator, Sweep Generator. (Text 1)		
Module -4		
 Measuring Instruments: Output Power Meters, Field Strength Meter, Stroboscope, Phase Meter, Vector Impedance Meter, Q Meter, Megger, Analog pH Meter. (Text 1) Bridges: Introduction, Wheatstone's bridge, Kelvin's Bridge; AC bridges, Capacitance Comparison Bridge, Inductance Comparison Bridge, Maxwell's bridge, Wien's bridge, Wagner's earth connection. (Text 1) 	L1, L2,L3	
Module -5		
Transducers: Introduction, Electrical transducers, Selecting a transducer, Resistive transducer, Resistive position transducer, Strain gauges, Resistance thermometer, Thermistor, Inductive transducer, Differential output transducers, LVDT, Piezoelectric transducer, Photoelectric transducer, Photovoltaic transducer, Semiconductor photo diode and transistor, Temperature transducers-RTD. (Text 1)	L1, L2, L3	
Course Outcomes: After studying this course, students will be able to:		
 Describe instrument measurement errors and calculate them. Describe the operation of Ammeters, Voltmeters, Multimeters and deve for multirange Ammeters and Voltmeters. Describe functional concepts and operation of Digital voltmeters and ir to measure voltage, frequency, time period, phase difference of signals, 	nstruments	
 speed, capacitance and pH of solutions. Describe functional concepts and operation of various Analog instruments to measure output power, field Strength, impedance, solutions and strength in the strength is strength in the strength in the strength in the strength is strength in the strength in the strength is strength in the strength in the strength is strength in the strength is strength in the strength in the strength in the strength is strength in the strength in the strength is strength in the strength in the strength in the strength is strength in the strength in the strength in the strength is strength in the strength in the strength in the strength is strength in the strength in the strength in the strength is strength in the strength in the strength in the strength is strength in the strength in the strength in the strength is strength in the strength is strength in the s	measuring	
 speed, in/out of phase, Q of coils, insulation resistance and pH. Describe and discuss functioning and types of Oscilloscopes, Signal ge and Transducers. 	-	
• Utilize AC and DC bridges for passive component and frequency measured	iromonto	

Question paper pattern:

- The question paper will have ten questions.
- Each full question consists of 16 marks.
- There will be 2 full questions (with a maximum of Three sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

- **1.** H. S. Kalsi, "Electronic Instrumentation", McGraw Hill, 3rd Edition, 2012, ISBN:9780070702066.
- **2.** David A. Bell, "Electronic Instrumentation & Measurements", Oxford University Press PHI 2nd Edition, 2006, ISBN 81-203-2360-2.

- 1. A. D. Helfrick and W.D. Cooper, "Modern Electronic Instrumentation and Measuring Techniques", Pearson, 1st Edition, 2015,ISBN:9789332556065.
- 2. A. K. Sawhney, "Electronics and Electrical Measurements", Dhanpat Rai & Sons. ISBN -81-7700-016-0

ENGINEERING ELECTROMAGNETICS [As per Choice Based Credit System (CBCS) scheme] **SEMESTER – III (EC/TC)** Subject Code 15EC36 IA Marks 20 Number of Lecture Hours/Week Exam Marks 80 04 Total Number of Lecture Hours 50 (10 Hours per Module) Exam Hours 03 CREDITS - 04

Course objectives: This course will enable students to:

- Study the different coordinate systems, Physical signifiance of Divergence, Curl and Gradient.
- Understand the applications of Coulomb's law and Gauss law to different charge distributions and the applications of Laplace's and Poisson's Equations to solve real time problems on capacitance of different charge distributions.
- Understand the physical significance of Biot-Savart's, Amperes's Law and Stokes' theorem for different current distributions.
- Infer the effects of magnetic forces, materials and inductance.
- Know the physical interpretation of Maxwell' equations and applications for Plane waves for their behaviour in different media
- Acquire knowledge of Poynting theorem and its application of power flow.

Modules	RBT Level
Aodule - 1	
Coulomb's Law, Electric Field Intensity and Flux density Experimental law of Coulomb, Electric field intensity, Field due to continuous volume charge distribution, Field of a line charge, Electric flux density.	L1, L2, L3
Module -2	
Gauss's law and Divergence Gauss' law, Divergence. Maxwell's First equation (Electrostatics), Vector Operator and divergence theorem.	L1, L2, L3
Energy, Potential and Conductors Energy expended in moving a point charge in an electric field, The line integral, Definition of potential difference and potential, The potential field of point charge, Current and Current density, Continuity of current.	
Module -3	
Poisson's and Laplace's Equations Derivation of Poisson's and Laplace's Equations, Uniqueness theorem, Examples of the solution of Laplace's equation. Steady Magnetic Field Biot-Savart Law, Ampere's circuital law, Curl, Stokes' theorem, Magnetic flux and magnetic flux density, Scalar and Vector Magnetic Potentials.	L1, L2, L3
Module -4	<u> </u>

Magnetic Forces	L1, L2, L3
Force on a moving charge, differential current elements, Force	
between differential current elements.	
Magnetic Materials	
Magnetisation and permeability, Magnetic boundary conditions,	
Magnetic circuit, Potential Energy and forces on magnetic materials.	
Module -5	
Time-varying fields and Maxwell's equations Farday's law, displacement current, Maxwell's equations in point form, Maxwell's equations in integral form.	L1, L2, L3
Uniform Plane Wave Wave propagation in free space and good conductors. Poynting's theorem and wave power, Skin Effect.	
Course Outcomes: After studying this course, students will be able to:	
 Evaluate problems on electric field due to point, linear, volume capplying conventional methods or by Gauss law. Determine potential and energy with respect to point charge and using Laplace equation. Calculate magnetic field, force, and potential energy with respect materials. Apply Maxwell's equation for time varying fields, EM waves in fre conductors. Evaluate power associated with EM waves using Poynting theore 	capacitance to magnetic e space and
Question paper pattern:	
The question paper will have ten questions.Each full question consisting of 16 marks.	
 Each full question consisting of To marks. There will be 2 full questions (with a maximum of Three sub question module. 	tions) from each
 Each full question will have sub questions covering all the topics The students will have to answer 5 full questions, selecting one fue ach module. 	
Text Book:	
W.H. Hayt and J.A. Buck, "Engineering Electromagnetics", 7th Ed McGraw-Hill, 2009, ISBN-978-0-07-061223-5.	lition, Tata
Reference Books:	
1. John Krauss and Daniel A Fleisch, " Electromagnetics with applica	tions" McCrow

- Hill.N. Narayana Rao, "Fundamentals of Electromagnetics for Engineering", Pearson.

ANALOG ELECTRONICS LABORATORY [As per Choice Based Credit System (CBCS) scheme] SEMESTER – III (EC/TC)			
Laboratory Code	15ECL37	IA	20
		Marks	
Number of	01Hr Tutorial (Instructions)	Exam Marks	80
Lecture	+ 02 Hours Laboratory		
Hours/Week			
RBT Level	L1, L2, L3	Exam Hours	03
CREDITS – 02			

Course objectives: This laboratory course enables students to get practical experience in design, assembly, testing and evaluation of:

- Rectifiers and Voltage Regulators.
- BJT characteristics and Amplifiers.
- JFET Characteristics and Amplifiers.
- MOSFET Characteristics and Amplifiers
- Power Amplifiers.
- RC-Phase shift, Hartley, Colpitts and Crystal Oscillators.

NOTE: The experiments are to be carried using discrete components only.

Laboratory Experiments:

 Design and set up the following rectifiers with and without filters and to determine ripple factor and rectifier efficiency:

 (a) Full Ways Pactifier
 (b) Bridge Pactifier

(a)Full Wave Rectifier (b) Bridge Rectifier

- 2. Conduct experiment to test diode clipping (single/double ended) and clamping circuits (positive/negative).
- 3. Conduct an experiment on Series Voltage Regulator using Zener diode and power transistor to determine line and load regulation characteristics.
- 4. Realize BJT Darlington Emitter follower with and without bootstrapping and determine the gain, input and output impedances.
- 5. Design and set up the BJT common emitter amplifier using voltage divider bias with and without feedback and determine the gain- bandwidth product from its frequency response.
- 6. Plot the transfer and drain characteristics of a JFET and calculate its drain resistance, mutual conductance and amplification factor.
- 7. Design, setup and plot the frequency response of Common Source JFET/MOSFET amplifier and obtain the bandwidth.

- 8. Plot the transfer and drain characteristics of n-channel MOSFET and calculate its parameters, namely; drain resistance, mutual conductance and amplification factor.
- 9. Set-up and study the working of complementary symmetry class B push pull power amplifier and calculate the efficiency.
- 10. Design and set-up the RC-Phase shift Oscillator using FET, and calculate the frequency of output waveform.
- 11. Design and set-up the following tuned oscillator circuits using BJT, and determine the frequency of oscillation.
- (a) Hartley Oscillator (b) Colpitts Oscillator

12. Design and set-up the crystal oscillator and determine the frequency of oscillation.

Course Outcomes: On the completion of this laboratory course, the students will be able to:

- Test circuits of rectifiers, clipping circuits, clamping circuits and voltage regulators.
- Determine the characteristics of BJT and FET amplifiers and plot its frequency response.
- Compute the performance parameters of amplifiers and voltage regulators
- Design and test the basic BJT/FET amplifiers, BJT Power amplifier and oscillators.

Conduct of Practical Examination:

- All laboratory experiments are to be included for practical examination.
- Students are allowed to pick one experiment from the lot.
- Strictly follow the instructions as printed on the cover page of answer script for breakup of marks.
- Change of experiment is allowed only once and Marks allotted to the procedure part to be made zero.

	DIGITAL ELECTRONICS LABORATORY		
[As p	er Choice Based Credit System (CBCS) schem SEMESTER – III (EC/TC)	e]	
Laboratory Code	15ECL38	IA Marks	20
	01Hr Tutorial (Instructions)	Exam	š 80
Hours/Week	+ 02 Hours Laboratory	Mark	
RBT Level	L1, L2, L3	Exam	03
		Hour	
	CREDITS - 02		
experience in design, i Demorgan's The Full/Parallel Ad Multiplexer usir Demultiplexers			
given are suggest	ponents to test and verify the logic gates. The tive. Any equivalent IC can be used. Io. 11 and 12 any open source or licensed sim		
Laboratory Experime	ents:		
 (b) The sum-of processing states. 2. Design and implem (a) Full Adder using (b) Full subtractor 	eorem for 2 variables. duct and product-of-sum expressions using un eent g basic logic gates. using basic logic gates. ent 4-bit Parallel Adder/ subtractor using IC 7		
4. Design and Implem	nentation of 4-bit Magnitude Comparator usin	g IC 7485.	
5. Realize (a) 4:1 Multiplexer (b) 3-variable function	using gates. Ion using IC 74151(8:1MUX).		
6. Realize 1:8 Demux	and 3:8 Decoder using IC74138.		
	g flip-flops using NAND Gates. -Flop (b) JK Flip-Flop.		
8. Realize the following (a) SISO (b) SIPO (c	g shift registers using IC7474) PISO (d) PIPO.		
9. Realize the Ring Co	unter and Johnson Counter using IC7476.		
10. Realize the Mod-N	Counter using IC7490.		

11. Simulate Full- Adder using simulation tool.

12. Simulate Mod-8 Synchronous UP/DOWN Counter using simulation tool.

Course outcomes: On the completion of this laboratory course, the students will be able to:

- Demonstrate the truth table of various expressions and combinational circuits using logic gates.
- Design and test various combinational circuits such as adders, subtractors, comparators, multiplexers and demultiplexers.
- Construct and test flips-flops, counters and shift registers.
- Simulate full adder and up/down counters.

Conduct of Practical Examination:

- All laboratory experiments are to be included for practical examination.
- Students are allowed to pick one experiment from the lot.
- Strictly follow the instructions as printed on the cover page of answer script for breakup of marks.
- Change of experiment is allowed only once and 15% Marks allotted to the procedure part to be made zero.

B.E E&C FOURTH SEMESTER SYLLABUS

ENGINEERING MATHEMATICS-IV

B.E., IV Semester, Common to all Branches

[As per Choice Based Credit System (CBCS) scheme]

[As pe	er Choice Based Credit System ((CBCS) scheme]	
Subject Code	15MAT41	IA Marks	20
Number of Lecture	04	Exam marks	80
Hours/Week			
Total Number of	50 (10 Hours per Module)		
Lecture Hours			
	Credits – 04		
Course Objectives: Th	is course will enable students to	0:	
complex analysi	numerical methods to solve s, sampling theory and joir ses arising in science and engir	nt probability distribut	
	Modules		RBT Level
	Module-1		
of first order and first method, Runge - K	Numerical solution of ordinar t degree, Taylor's series metho utta method of fourth order d corrector methods (No derivat	od, modified Euler's r. Milne's and Adams-	L1, L3
	Module-2		
differential equations, Special Functions: S Bessel's differential equ Basic properties and o	Numerical solution of sec Runge-Kutta method and Mili Series solution-Frobenious met uation leading to $J_n(x)$ -Bessel's rthogonality. Series solution of $P_n(x)$ -Legendre polynomials.	ne's method. hod. Series solution of function of first kind. Legendre's differential	L3
	Module-3		
continuity, differentiable cartesian and polar functions. Complex lin	Review of a function of a con ility. Analytic functions-Cauchy forms. Properties and con e integrals-Cauchy's theorem a es, Cauchy's Residue theoren	-Riemann equations in astruction of analytic and Cauchy's integral	L1, L3,
Transformations: Conformal transformations, discussion of		L3	
transformations: $w=z^2$, problems.	$w = e^z$, $w = z + (1/z)(z \neq 0)$ and bil	inear transformations-	
1	Module-4		
Probability Distributi probability mass/den	ons: Random variables (disc	rete and continuous)	

Joint probability distribution: Joint Probability distribution for two discrete random variables, expectation, covariance, correlation coefficient.	
Module-5	
Sampling Theory: Sampling, Sampling distributions, standard error, test of hypothesis for means and proportions, confidence limits for means, student's t-distribution, Chi-square distribution as a test of goodness of fit.	L3
Stochastic process: Stochastic processes, probability vector, stochastic matrices, fixed points, regular stochastic matrices, Markov chains, higher transition probability-simple problems. Course Outcomes: On completion of this course, students are able to:	L1
 Solve first and second order ordinary differential equations arising in flow problems using single step and multistep numerical methods. 	
• Understand the analyticity, potential fields, residues and poles of complex potentials in field theory and electromagnetic theory.	
 Describe conformal and bilinear transformation arising in aerofoil theory, fluid flow visualization and image processing. 	
• Solve problems of quantum mechanics, hydrodynamics and heat conduction by employing Bessel's function relating to cylindrical polar coordinate systems and Legendre's polynomials relating to spherical polar coordinate systems.	
• Solve problems on probability distributions relating to digital signal processing, information theory and optimization concepts of stability of design and structural engineering.	
• Draw the validity of the hypothesis proposed for the given sampling distribution in accepting or rejecting the hypothesis.	
• Determine joint probability distributions and stochastic matrix connected with the multivariable correlation problems for feasible random events.	
• Define transition probability matrix of a Markov chain and solve problems related to discrete parameter random process.	
Question paper pattern:	
The question paper will have ten questions.	
Each full Question consisting of 16 marksThere will be 2 full questions (with a maximum of four sub questions)	
from each module.	
 Each full question will have sub questions covering all the topics under a module. 	
• The students will have to answer 5 full questions, selecting one full question from each module.	
Text Books:	
1. B.S. Grewal: Higher Engineering Mathematics, Khanna Publishers, 43 rd Ed., 2015.	

2. E. Kreyszig: Advanced Engineering Mathematics, John Wiley & Sons, 10th Ed., 2015.

Reference Books:

- 1. N.P.Bali and Manish Goyal: A Text Book of Engineering Mathematics, Laxmi Publishers, 7th Ed., 2010.
- 2. B.V.Ramana: "Higher Engineering Mathematics" Tata McGraw-Hill, 2006.
- *3. H. K. Dass and Er. Rajnish Verma: "Higher Engineering Mathematics", S. Chand publishing, 1st edition, 2011.*

Web Link and Video Lectures:

- 1. http://nptel.ac.in/courses.php?disciplineID=111
- 2. http://www.khanacademy.org/
- 3. http://www.class-central.com/subject/math

ADDITIONAL MATHEMATICS - II B.E., IV Semester, Common to all Branches (A Bridge course for Lateral Entry students of IV Sem. B. E.) [As per Choice Based Credit System (CBCS) scheme]

Subject Code	15MATDIP41	IA Marks	
Number of Lecture	03	Exam marks	80
Hours/Week			
Total Number of	40 (08 Hours per Module)		
Lecture Hours	-		
Credits – 00			

Course Objectives: This course will enable students to:

- Understand essential concepts of linear algebra.
- Solve second and higher order differential equations.
- Understand Laplace and inverse Laplace transforms and elementary probability theory.

Modules	RBT Level
Module-1	
Linear Algebra: Introduction - rank of matrix by elementary row operations - Echelon form. Consistency of system of linear equations - Gauss elimination method. Eigen values and Eigen vectors of a square matrix. Application of Cayley-Hamilton theorem (without proof) to compute the	L1,L3
inverse of a matrix-Examples.	
Module-2	
Higher order ODE's: Linear differential equations of second and higher order equations with constant coefficients. Homogeneous /non-homogeneous equations. Inverse differential operators. Solutions of initial value problems. Method of undetermined coefficients and variation of parameters.	L1,L3
Module-3	
Laplace transforms : Laplace transforms of elementary functions. Transforms of derivatives and integrals, transforms of periodic function and unit step function-Problems only.	L1,L2
Module-4	
Inverse Laplace transforms : Definition of inverse Laplace transforms. Evaluation of Inverse transforms by standard methods. Application to solutions of Linear differential equations and simultaneous differential equations.	L1,L2
Module-5	
Probability: Introduction. Sample space and events. Axioms of probability. Addition and multiplication theorems. Conditional probability – illustrative examples. Bayes's theorem-examples.	L1,L2
Course Outcomes: On completion of this course, students are able to:	
• Solve systems of linear equations in the different areas of linear algebra.	
• Solve second and higher order differential equations occurring in of electrical circuits, damped/un-damped vibrations.	
	20

Describe Laplace transforms of standard and periodic functions.
• Determine the general/complete solutions to linear ODE using inverse Laplace transforms.
• Recall basic concepts of elementary probability theory and, solve problems related to the decision theory, synthesis and optimization of digital circuits.
Question paper pattern:
The question paper will have ten questions.
Each full Question consisting of 16 marks
• There will be 2 full questions (with a maximum of four sub
questions) from each module.
• Each full question will have sub questions covering all the topics under a module.
• The students will have to answer 5 full questions, selecting one full question from each module.
Text Book:
B.S. Grewal: Higher Engineering Mathematics, Khanna Publishers, 43 ^{°d}
Ed., 2015.
Reference Books:
1. E. Kreyszig: Advanced Engineering Mathematics, John Wiley & Sons,
10 th Ed., 2015.
2. N.P.Bali and Manish Goyal: A Text Book of Engineering Mathematics,
Laxmi Publishers, 7th Ed., 2007.

	MICROPROCESS	ORS	
[As	per Choice Based Credit Syste		
	SEMESTER – IV (E	,	
Subject Code	15EC42	IA Marks	20
Number of Lecture	04	Exam Marks	80
Hours/Week			
	50 (10 Hours per Module)	Exam Hours	03
Lecture Hours			
Comments all a stress of	CREDITS – 04		
	This course will enable studer		
	architecture of 8086 micropro		
	croprocessor using Assembly	Level Language	
	Procedures in 8086 Programs	with momony and no	rinharal ahing
Understand inter involving system	facing of 16 bit microprocesso	n with memory and pe	ripiteral chips
0.0	architecture of 8088, 8087 Coj	processor and other CI	DI ⊺
architectures			0
architectures			
Modules			RBT Level
Module -1			
	: Historical background (refer ure (1.1 – 1.3 of Text).	Reference Book 1),	
Addressing modes, Machine language instruction formats, Machine coding the program (2.2, 2.1, 3.2 of Text).		L1, L2, L3	
instructions. Cont	CT OF 8086: Data trans rol/Branch Instructions, Il ample programs (2.3 of Text).	afer and arithmetic lustration of these	
Module -2			
Logical Instruction manipulation and l instructions with	ns, String manipulation Processor control instructions example programs. Assem ly Language Programming ar t).	, Illustration of these bler Directives and	L1, L2, L3
Module -3			
Stack and Interrup Introduction to stace Interrupts and Int NMI, INTR, Interrup Macros, Timing and	ots: ek, Stack structure of 8086, Pr errupt Service routines, Inte ot programming, Passing para I Delays. (Chap. 4 of Text).	errupt cycle of 8086,	L1, L2, L3
Module -4			

8086 Bus Configuration and Timings: Physical memory Organization, General Bus operation cycle, I/O addressing capability, Special processor activities, Minimum mode 8086 system and Timing diagrams, Maximum Mode 8086 system and Timing diagrams. (1.4 to 1.9 of Text).	L1, L2, L3
Basic Peripherals and their Interfacing with 8086 (Part 1) : Static RAM Interfacing with 8086 (5.1.1), Interfacing I/O ports, PIO 8255, Modes of operation – Mode-0 and BSR Mode, Interfacing Keyboard and 7-Segment digits using 8255 (Refer 5.3, 5.4, 5.5 of Text).	
Module 5	
Basic Peripherals and their Interfacing with 8086 (Part 2): Interfacing ADC-0808/0809, DAC-0800, Stepper Motor using 8255 (5.6.1, 5.7.2, 5.8). Timer 8254 – Mode 0, 1, 2 & 3 and Interfacing programmes for these modes (refer 6.1 of Text).	L1, L2, L3
INT 21H DOS Function calls - for handling Keyboard and Display (refer Appendix-B of Text).	
Other Architectures: Architecture of 8088 (refer 1.10 upto 1.10.1 of Text) and Architecture of NDP 8087 (refer 8.3.1, 8.3.5 of Text).	
Von-Neumann & Harvard CPU architecture and CISC & RISC CPU architecture (refer Reference Book 1).	
Course Outcomes: At the end of the course students will be able to:	
• Explain the History of evaluation of Microprocessors, Architecture and set of 8086, 8088, 8087, CISC & RISC, Von-Neumann & Harvard CPU Architecture, Configuration & Timing diagrams of 8086 and Instructio 8086.	
• Write8086 Assembly level programs using the 8086 instruction set	
• Write modular programs using procedures and macros.	
Write 8086 Stack and Interrupts programming	
• Interface 8086 to Static memory chips and 8255, 8254, 0808 ADC, 08 Keyboard, Display and Stepper motors.	00 DAC,
• Use INT 21 DOS interrupt function calls to handle Keyboard and Disp	lay.
 Question paper pattern: The question paper will have ten questions. Each full Question consisting of 16 marks There will be 2 full questions (with a maximum of Three sub question each module. Each full question will have sub questions covering all the topics une module. The students will have to answer 5 full questions, selecting one full of from each module. 	der a
	32

Text Book:

Advanced Microprocessors and Peripherals - A.K. Ray and K.M. Bhurchandi, TMH, 3rd Edition, 2012, ISBN 978-1-25-900613-5.

- 1. **Microprocessor and Interfacing** Douglas V Hall, SSSP Rao, 3rd edition TMH, 2012.
- 2. **Microcomputer systems-The 8086** / **8088 Family** Y.C. Liu and A. Gibson, 2nd edition, PHI -2003.
- 3. **The 8086 Microprocessor: Programming & Interfacing the PC** Kenneth J Ayala, CENGAGE Learning, 2011.
- 4. The Intel Microprocessor, Architecture, Programming and Interfacing Barry B. Brey, 6e, Pearson Education / PHI, 2003.

<u>CONTROL SYSTEMS</u> [As per Choice Based Credit System (CBCS) scheme] SEMESTER – IV (EC/TC)				
Subject Code	15EC43	IA Marks	20	
Number of Lecture Hours/Week	04	Exam Marks	80	
Total Number of Lecture Hours	50(10 Hours per Module)	Exam Hours	03	
CREDITS – 04				

Course objectives: This course will enable students to:

- Understand the basic features, configurations and application of control systems.
- Understand various terminologies and definitions for the control systems.
- Learn how to find a mathematical model of electrical, mechanical and electromechanical systems.
- Know how to find time response from the transfer function.
- Find the transfer function via Masons' rule.
- Analyze the stability of a system from the transfer function.

Modules	RBT Level
Module -1	
Introduction to Control Systems: Types of Control Systems, Effect of Feedback Systems, Differential equation of Physical Systems – Mechanical Systems, Electrical Systems, Analogous Systems. Block diagrams and signal flow graphs: Transfer functions, Block diagram algebra and Signal Flow graphs.	L1, L2, L3
Module -2	·
Time Response of feedback control systems: Standard test signals, Unit step response of First and Second order Systems. Time response specifications, Time response specifications of second order systems, steady state errors and error constants. Introduction to PI, PD and PID Controllers (excluding design).	L1, L2, L3
Module -3	
Stability analysis: Concepts of stability, Necessary conditions for Stability, Routh stability criterion, Relative stability analysis: more on the Routh stability criterion, Introduction to Root-Locus Techniques, The root locus concepts, Construction of root loci.	L1, L2, L3
Module -4	

Frequency domain analysis and stability:	L1, L2, L3
Correlation between time and frequency response, Bode Plots,	
Experimental determination of transfer function.	
Introduction to Polar Plots, (Inverse Polar Plots excluded) Mathematical	
preliminaries, Nyquist Stability criterion, (Systems with transportation	
lag excluded)	
Introduction to lead, lag and lead-lag compensating networks (excluding	
design). Module -5	
Introduction to Digital Control System: Introduction, Spectrum	L1, L2, L3
Analysis of Sampling process, Signal reconstruction, Difference equations. Introduction to State variable analysis: Introduction, Concept of State, State variables & State model, State model for Linear Continuous & Discrete time systems, Diaganolisation.	11, 12, 13
Course Outcomes: At the end of the course, the students will be able to	ł
 Develop the mathematical model of mechanical and electrical system Develop transfer function for a given control system using block diagreduction techniques and signal flow graph method Determine the time domain specifications for first and second order Determine the stability of a system in the time domain using Routh-criterion and Root-locus technique. Determine the stability of a system in the frequency domain using N bode plots Develop a control system model in continuous and discrete time usi variable techniques 	gram systems -Hurwitz Jyquist and
Question paper pattern:The question paper will have ten questions.	
Each full Question consisting of 16 marks	
• There will be 2 full questions (with a maximum of Three sub question each module.	ns) from
• Each full question will have sub questions covering all the topics unmodule.	der a
• The students will have to answer 5 full questions, selecting one full of from each module.	question
Text Book: J.Nagarath and M.Gopal, "Control Systems Engineering", New Age (P) Limited, Publishers, Fifth edition-2005, ISBN: 81-224-2008-7.	International
Reference Books: 1. "Modern Control Engineering," K.Ogata, Pearson Education Asia Edition, 2002. ISBN 978-81-203-4010-7.	/PHI, 4 th
 "Automatic Control Systems", Benjamin C. Kuo, John Wiley India Edition, 2008. 	a Pvt. Ltd., 8 th
 "Feedback and Control System," Joseph J Distefano III et al., Sch Outlines, TMH, 2nd Edition 2007. 	naum's

	SIGNALS AND SYSTEMS			
[As	per Choice Based Credit System (CBCS)) scheme]		
SEMESTER – IV (EC/TC)				
Subject Code	15EC44	IA Marks	20	
Number of Lecture	04	Exam Marks	80	
Hours/Week				
	50(10 Hours per Module)	Exam Hours	03	
Lecture Hours				
~	CREDITS - 04			
 Understand the mand systems. Analyze the signal equations Classify signals if Analyze Linear Transmission of the system of the system	This course will enable students to: nathematical description of continuous als in time domain using convolution different categories based on their prime Invariant (LTI) systems in time and the inderstanding of courses such as signal nunication. Modules	ference/differ roperties. transform dor	ential nains.	
Madala 1				
Module -1				
 Introduction and Classification of signals: Definition of signal and systems, communication and control systems as examples. Sampling of analog signals, Continuous time and discrete time signal, Classification of signals as even, odd, periodic and non-periodic, deterministic and non-deterministic, energy and power. Elementary signals/Functions: Exponential, sine, impulse, step and its properties, ramp, rectangular, triangular, signum, sync functions. Operations on signals: Amplitude scaling, addition, multiplication, differentiation, integration (Accumulator for DT), time scaling, time shifting and time folding. Systems: Definition, Classification: linear and non-linear, time variant and invariant, causal and non- causal, static and dynamic, stable and unstable, invertible. 			L1, L2, L3	
Module -2				
Input-output relatio convolution integra convolution sum us unit step to export	resentation of LTI System: System n, definition of impulse response, convo al, computation of convolution int sing graphical method for unit step to pential, exponential to exponential, un rectangular to rectangular only. Pro-	lution sum, tegral and o unit step, nit step to	L1, L2, L3	
Module -3				

System interconnection, system properties in terms of impulse response, step response in terms of impulse response (4 Hours).	L1, L2, L3
Fourier Representation of Periodic Signals : Introduction to CTFS and DTFS, definition, properties (No derivation) and basic problems (inverse Fourier series is excluded) (06 Hours).	
Module -4	
 Fourier Representation of aperiodic Signals: FT representation of aperiodic CT signals - FT, definition, FT of standard CT signals, Properties and their significance (4 Hours). FT representation of aperiodic discrete signals-DTFT, definition, DTFT of standard discrete signals, Properties and their significance (4 Hours). Impulse sampling and reconstruction: Sampling theorem (only statement) and reconstruction of signals (2 Hours). 	L1, L2, L3
Module -5	
Z-Transforms: Introduction, the Z-transform, properties of the Region of convergence, Properties of the Z-Transform, Inversion of the Z-Transform, Transform analysis of LTI systems.	L1, L2, L3
Course Outcomes: At the end of the course, students will be able to:	I
 Classify the signals as continuous/discrete, periodic/aperiodic, even/energy/power and deterministic/random signals. Determine the linearity, causality, time-invariance and stability proper continuous and discrete time systems. Compute the response of a Continuous and Discrete LTI system using integral and convolution sum. Determine the spectral characteristics of continuous and discrete time Fourier analysis. Compute Z-transforms, inverse Z- transforms and transfer functions of LTI systems. 	rties of g convolution e signal using
Question paper pattern:	
 The question paper will have ten questions. Each full Question consisting of 16 marks There will be 2 full questions (with a maximum of Three sub question each module. Each full question will have sub questions covering all the topics un module. The students will have to answer 5 full questions, selecting one full of from each module. 	der a
Text Book: Simon Haykins and Barry Van Veen, "Signals and Systems", 2nd Edir 2008, WileyIndia. ISBN 9971-51-239-4.	tion,

Reference Books:

- 1. **Michael Roberts,** "Fundamentals of Signals & Systems", 2nd edition, Tata McGraw-Hill, 2010, ISBN 978-0-07-070221-9.
- 2. Alan V Oppenheim, Alan S, Willsky and A Hamid Nawab, "Signals and Systems" Pearson Education Asia / PHI, 2nd edition, 1997. Indian Reprint 2002.
- 3. **H. P Hsu, R. Ranjan,** "Signals and Systems", Scham's outlines, TMH, 2006.
- 4. B. P. Lathi, "Linear Systems and Signals", Oxford University Press, 2005.
- 5. **Ganesh Rao and Satish Tunga,** "Signals and Systems", Pearson/Sanguine Technical Publishers, 2004.

<u>PRINCIPLES</u>	S OF COMMUNICATION SYS	TEMS	
- 1	Based Credit System (CBCS) EMESTER – IV (EC/TC)	scheme]	
Subject Code	15EC45	IA Marks	20
Number of Lecture Hours/Week	04	Exam Marks	80
Total Number of Lecture Hours	50(10 Hours per Module)	Exam Hours	03
	CREDITS - 04	I	
 Understand the concepts in A systems. Design simple systems for ger signals. Learn the concepts of random Evaluate the performance of t Analyze pulse modulation and 	erating and demodulating fro process and various types of he communication system in	équency modul: f noise.	ated
¥ *	Modules		RBT Level
Module – 1			
AMPLITUDE MODULATION: Intr Frequency – Domain description,			L1, L2, L3
MODULATION: SSB Modulation Frequency- Division Multiplexing	n, Ring modulator, Coheren ier Multiplexing. ESTIGIAL SIDEBAND MI , VSB Modulation, Frequenc g, Theme Example: VSB Tra	nt detection, ETHODS OF y Translation, ansmission of	
Analog and Digital Television. Module – 2	Chapte	er 3 of Text).	
ANGLE MODULATION : Basic de Band FM, Wide Band FM, T Generation of FM Signals, D Multiplexing, Phase–Locked Loop PLL, Nonlinear Effects in FM Sys Chapter 4 of Text).	ransmission bandwidth of emodulation of FM Signals : Nonlinear model of PLL, Li	FM Signals, s, FM Stereo near model of	L1, L2, L3

 RANDOM VARIABLES & PROCESS: Introduction, Probability, Conditional Probability, Random variables, Several Random Variables. Statistical Averages: Function of a random variable, Moments, Random Processes, Mean, Correlation and Covariance function: Properties of autocorrelation function, Cross-correlation functions (refer Chapter 5 of Text). NOISE: Shot Noise, Thermal noise, White Noise, Noise Equivalent Bandwidth (refer Chapter 5 of Text), Noise Figure (refer Section 6.7 of Text). Module - 4 NOISE IN ANALOG MODULATION: Introduction, Receiver Model, Noise in DSB-SC receivers, Noise in AM receivers, Threshold effect, Noise in FM receivers, Capture effect, FM threshold effect, FM threshold reduction, Pre-emphasis and De-emphasis in FM (refer Chapter 6 of Text). 	L1, L2, L3
Module – 5	
 DIGITAL REPRESENTATION OF ANALOG SIGNALS: Introduction, Why Digitize Analog Sources?, The Sampling process, Pulse Amplitude Modulation, Time Division Multiplexing, Pulse-Position Modulation, Generation of PPM Waves, Detection of PPM Waves, The Quantization Process, Quantization Noise, Pulse-Code Modulation: Sampling, Quantization, Encoding, Regeneration, Decoding, Filtering, Multiplexing (refer Chapter 7 of Text), Application to Vocoder (refer Section 6.8 of Reference Book 1). Course Outcomes: At the end of the course, students will be able to: 	L1, L2, L3
 Determine the performance of analog modulation schemes in time and domains. Determine the performance of systems for generation and detection of mod analog signals. Characterize analog signals in time domain as random processes and in free domain using Fourier transforms. Characterize the influence of channel on analog modulated signals Determine the performance of analog communication systems. Understand the characteristics of pulse amplitude modulation, pulse position modulation and pulse code modulation systems. 	ulated
 Question paper pattern: The question paper will have ten questions. Each full Question consisting of 16 marks. There will be 2 full questions (with a maximum of Three sub questions) module. Each full question will have sub questions covering all the topics under The students will have to answer 5 full questions, selecting one full question module. 	a module.
Text Book: Communication Systems, Simon Haykins & Moher, 5th Edition, Joh Willey, India Pvt. Ltd, 2010, ISBN 978 - 81 - 265 - 2151 - 7. Reference Books:	hn

- 1. **Modern Digital and Analog Communication Systems,** B. P. Lathi, Oxford University Press., 4th edition.
- 2. An Introduction to Analog and Digital Communication, Simon Haykins, John Wiley India Pvt. Ltd., 2008, ISBN 978-81-265-3653-5.
- 3. **Principles of Communication Systems**, H.Taub & D.L.Schilling, TMH, 2011.
- 4. **Communication Systems**, Harold P.E, Stern Samy and A.Mahmond, Pearson Edition, 2004.
- 5. **Communication Systems**: **Analog and Digital**, R.P.Singh and S.Sapre: TMH 2nd edition, 2007.

LINEAR INTEGRATED CIRCUITS [As per Choice Based Credit System (CBCS) scheme] SEMESTER – IV (EC/TC)				
Subject Code	15EC46	IA Marks	20	
Number of Lecture	04	Exam Marks	80	
Hours/Week				
Total Number of	50(10 Hours per Module)	Exam Hours	03	
Lecture Hours	-			
CREDITS – 04				
Course objectives: This course will enable students to:				

• Define and describe various parameters of Op-Amp, its characteristics and

- specifications.
- Discuss the effects of Input and Output voltage ranges upon Op-Amp circuits.
- Sketch and Analyze Op-Amp circuits to determine Input Impedances, output Impedances and other performance parameters.
- Sketch and Explain typical Frequency Response graphs for each of the Filter circuits showing Butterworth and Chebyshev responses where ever appropriate.
- Describe and Sketch the various switching circuits of Op-Amps and analyze its operations.
- Differentiate between various types of DACs and ADCs and evaluate the performance of each with neat circuit diagrams and assuming suitable inputs.

Modules	RBT
Midules	Level
	Level
Module -1	
Operational Amplifier Fundamentals:	L1, L2,L3
Basic Op-amp circuit, Op-Amp parameters – Input and output voltage,	
CMRR and PSRR, offset voltages and currents, Input and output	
impedances, Slew rate and Frequency limitations. OP-Amps as DC	
Amplifiers – Biasing OP-amps, Direct coupled voltage followers, Non-inverting amplifiers, inverting amplifiers, Summing amplifiers, and	
Difference amplifiers. Interpretation of OP-amp LM741 & TL081	
datasheet. (Text1)	
Module -2	
Op-Amps as AC Amplifiers: Capacitor coupled voltage follower, High input impedance – Capacitor coupled voltage follower, Capacitor coupled non inverting amplifiers, High input impedance – Capacitor coupled Non	L1, L2,L3
non inverting amplifiers, High input impedance – Capacitor coupled Non	
inverting amplifiers Canacitor coupled inverting amplifiers setting the	
upper cut-off frequency, Capacitor coupled difference amplifier. OP-Amp Applications: Voltage sources, current sources and current	
sinks, current amplifiers, instrumentation amplifier, precision	
rectifiers. (Text1)	
Module-3	
More Applications : Limiting circuits, Clamping circuits, Peak detectors,	L1, L2,L3
Sample and hold circuits, V to I and I to V converters, Differentiating	, , -
Circuit, Integrator Circuit, Phase shift oscillator, Wien bridge oscillator,	
Crossing detectors, inverting Schmitt trigger. (Text 1)	
Log and antilog amplifiers, Multiplier and divider. (Text2)	

Module -4 Active Filters: First order and second order active Low-pass and high pass filters, Bandpass Filter, Bandstop Filter.	L1, L2,L3
(Text 1) Voltage Regulators: Introduction, Series Op-amp regulator, IC voltage regulators. 723 general purpose regulators. (Text 2)	
Module -5	
 Phase locked loop: Basic Principles, Phase detector/comparator, VCO. DAC and ADC convertor: DAC using R-2R, ADC using Successive approximation. Other IC Application: 555 timer, Basic timer circuit, 555 timer used as astable and monostable multivibrator. (Text 2) 	L1, L2,L3
 Course Outcomes: After studying this course, students will be able to: Explain Op-Amp circuit and parameters including CMRR, PSRR, Inpu Impedances and Slew Rate. Design Op-Amp based Inverting, Non-inverting, Summing & Difference and AC Amplifiers including Voltage Follower. Test circuits of Op-Amp based Voltage/ Current Sources & Sink Instrumentation and Precision Amplifiers. Test circuits of Op-Amp based linear and non-linear circuits co limiting, clamping, Sample & Hold, Differentiator/ Integrator Cir Detectors, Oscillators and Multiplier & Divider. Design first & second order Low Pass, High Pass, Band Pass, Band and Voltage Regulators using Op-Amps. Explain applications of linear ICs in phase detector, VCO, DAC, ADC a 	ce Amplifier, as, Current, mprising of cuits, Peak Stop Filters
Question paper pattern:	
 The question paper will have ten questions. Each full Question consisting of 16 marks. There will be 2 full questions (with a maximum of Three sub questions module. Each full question will have sub questions covering all the topics unde The students will have to answer 5 full questions, selecting one full que each module. 	r a module.
 Text Books: 1. "Operational Amplifiers and Linear IC's", David A. Bell, 2nd edition, PI 2004. ISBN 978-81-203-2359-9. 	HI/Pearson,
 "Linear Integrated Circuits", D. Roy Choudhury and Shail B. Jain, 4th Reprint 2006, New Age International ISBN 978-81-224-3098-1. 	edition,

Reference Books:

- **1.** Ramakant A Gayakwad, "Op-Amps and Linear Integrated Circuits", Pearson, 4th Ed, 2015. ISBN 81-7808-501-1.
- **2.** B Somanathan Nair, "Linear Integrated Circuits: Analysis, Design & Applications," Wiley India, 1st Edition, 2015.
- **3.** James Cox, "Linear Electronics Circuits and Devices", Cengage Learning, Indian Edition, 2008, ISBN-13: 978-07-668-3018-7.
- **4.** Data Sheet: http://www.ti.com/lit/ds/symlink/tl081.pdf.

MICROPROCESSOR LABORATORY				
[As]	[As per Choice Based Credit System (CBCS) scheme]			
	SEMESTER – IV (EC/TC)			
Laboratory Code15ECL47IA Marks20				
NumberofLecture01HrTutorial (Instructions)Hours/Week+02HoursLaboratory		Exam Marks	80	
RBT Level	L1, L2, L3	Exam Hours	03	
CREDITS – 02				

Course objectives: This course will enable students to:

- Get familiarize with 8086 instructions and DOS 21H interrupts and function calls.
- Develop and test assembly language programs to use instructions of 8086.
- Get familiarize with interfacing of various peripheral devices with 8086 microprocessor for simple applications.

Laboratory Experiments:

1. Programs involving:

Data transfer instructions like:

- i) Byte and word data transfer in different addressing Modes
- ii) Block move (with and without overlap)
- iii) Block interchange

2. Programs involving:

Arithmetic & logical operations like:

- i) Addition and Subtraction of multi precision nos.
- ii) Multiplication and Division of signed and unsigned Hexadecimal nos.
- iii) ASCII adjustment instructions.
- iv) Code conversions.

3. Programs involving:

Bit manipulation instructions like checking:

- i) Whether given data is positive or negative
- ii) Whether given data is odd or even
- iii) Logical 1's and 0's in a given data
- iv) 2 out 5 code
- v) Bit wise and nibble wise palindrome

4. Programs involving:

Branch/ Loop instructions like

i) Arrays: addition/subtraction of N nos., Finding largest and smallest nos., Ascending and descending order.

ii) Two application programs using Procedures and Macros (Subroutines).

5. Programs involving

String manipulation like string transfer, string reversing, searching for a string.

6. Programs involving

Programs to use DOS interrupt INT 21h Function calls for Reading a Character from keyboard, Buffered Keyboard input, Display of character/ String on console.

7. Interfacing Experiments:

Experiments on interfacing 8086 with the following interfacing modules through DIO (Digital Input/Output - PCI bus compatible card / 8086 Trainer)

- 1. Matrix keyboard interfacing
- 2. Seven segment display interface
- 3. Logical controller interface
- 4. Stepper motor interface
- 5. ADC and DAC Interface (8 bit)

6. Light dependent resistor (LDR), Relay and Buzzer Interface to make light operated switches

Course Outcomes: On the completion of this laboratory course, the students will be able to:

- Write and execute 8086 assembly level programs to perform data transfer, arithmetic and logical operations.
- Understand assembler directives, branch, loop operations and DOS 21H Interrupts.
- Write and execute 8086 assembly level programs to sort and search elements in a given array.
- Perform string transfer, string reversing, searching a character in a string with string manipulation instructions of 8086.
- Utilize procedures and macros in programming 8086.
- Demonstrate the interfacing of 8086 with 7 segment display, matrix keyboard, logical controller, stepper motor, ADC, DAC, and LDR for simple applications.

Conduct of Practical Examination:

- All laboratory experiments are to be included for practical examination.
- For examination, one question from software and one question from hardware interfacing to be set.
- Students are allowed to pick one experiment from the lot.
- Change of experiment is allowed only once and Marks allotted to the procedure part to be made zero.

LINEAR ICS AND COMMUNICATION LAB

As per Choice Based Credit System (CBCS) scheme]

SEMESTER – IV (EC/TC)

Laboratory Code	15ECL48	IA Marks	20	
Number of Lecture Hours/Week	01Hr Tutorial (Instructions) + 02 Hours Laboratory	Exam Marks	80	
RBT Level	L1, L2, L3	Exam Hours	03	
CREDITS – 02				

Course objectives: This laboratory course enables students to:

- Design, Demonstrate and Analyze instrumentation amplifier, filters, DAC, adder, differentiator and integrator circuits, using op-amp.
- Design, Demonstrate and Analyze multivibrators and oscillator circuits using Op-amp
- Design, Demonstrate and Analyze analog systems for AM, FM and Mixer operations.
- Design, Demonstrate and Analyze balance modulation and frequency synthesis.
- Demonstrate and Analyze pulse sampling and flat top sampling.

Laboratory Experiments:

- 1. Design an instrumentation amplifier of a differential mode gain of 'A' using three amplifiers.
- 2. Design of RC Phase shift and Wien's bridge oscillators using Op-amp.

3. Design active second order Butterworth low pass and high pass filters.

4. Design 4 bit R – 2R Op-Amp Digital to Analog Converter (i) using 4 bit binary input from toggle switches and (ii) by generating digital inputs using mod-16 counter.

5. Design Adder, Integrator and Differentiator using Op-Amp.

6. Design of Monostable and Astable Multivibrator using 555 Timer.

7. Demonstrate Pulse sampling, flat top sampling and reconstruction.

8. Amplitude modulation using transistor/FET (Generation and detection).

9. Frequency modulation using IC 8038/2206 and demodulation.

10. Design BJT/FET Mixer.

11.DSBSC generation using Balance Modulator IC 1496/1596.

12. Frequency synthesis using PLL.

Course Outcomes: This laboratory course enables students to:

- Illustrate the pulse and flat top sampling techniques using basic circuits.
- Demonstrate addition and integration using linear ICs, and 555 timer operations to generate signals/pulses.
- Demonstrate AM and FM operations and frequency synthesis.
- Design and illustrate the operation of instrumentation amplifier, LPF, HPF, DAC and oscillators using linear IC.

Conduct of Practical Examination:

- All laboratory experiments are to be included for practical examination.
- Students are allowed to pick one experiment from the lot.
- Change of experiment is allowed only once and Marks allotted to the procedure part to be made zero.

B.E E&C FIFTH SEMESTER SYLLABUS

MANAGEMENT AND ENTREPRENEURSHIP DEVELOPMENT

B.E., V Semester, EC/TC/EI/BM/ML

[As per Choice Based Credit System (CBCS) scheme]

Subject Code	15ES51	IA Marks	20	
Number of Lecture	04	Exam Marks	80	
Hours/Week				
Total Number of Lecture Hours	50 (10 Hours / Module)	Exam Hours	03	
Lecture mours	CREDITS	S – 04		
Course Objectives	: This course will enable s			
	asic skills of Management			
	e need for Entrepreneurs	and their skills	5	
	roject identification and Se			
	anagement functions and		bilities	
e e	tween management and a	-		
	Module-1			RBT
	module	•		Level
Management: Na	ture and Functions of Ma	nagement – Im	portance. Definition.	
	ctions, Levels of Managen			L1, L2
Skills, Manageme	ent & Administration, M	lanagement as	s a Science, Art &	
Profession (Selecte	ed topics of Chapter 1, Tex	xt 1).		
Planning: Planni	ng-Nature, Importance,	Types Steps	and Limitations of	
	on Making – Meaning,			
	opics from Chapters 4 & 5			
Module-2				
Organizing and Staffing: Organization-Meaning, Characteristics, Process of				11 10
Organizing, Principles of Organizing, Span of Management (meaning and			L1, L2	
importance only), Departmentalisation,	Committees-N	leaning, Types of	
Committees;	Centralization Vs Dec	entralization	of Authority and	
Responsibility; Staffing-Need and Importance, Recruitment and Selection				
Process (Selected	topics from Chapters 7, 8	& 11,Text 1).		
Directing and	Controlling: Meaning	and Requirem	ents of Effective	
Direction, Giving Orders; Motivation-Nature of Motivation, Motivation				
Theories (Maslow's Need-Hierarchy Theory and Herzberg's Two Factor				
Theory); Communication – Meaning, Importance and Purposes of				
Communication; Leadership-Meaning, Characteristics, Behavioural				
Approach of Leadership; Coordination-Meaning, Types, Techniques of				
Coordination; Controlling - Meaning, Need for Control System, Benefits of				
Control, Essentials of Effective Control System, Steps in Control Process				
(Selected topics from Chapters 15 to 18 and 9, Text 1).				
	Module-3			
Responsibilities of	Filities of Business: Mear f Business towards Difference cate Covernance (Selected	ent Groups, So	cial Audit, Business	L1, L2
Ethics and Corpor	rate Governance (Selected	topics from Ch	apter 3, Text 1).	

Entrepreneurship : Definition of Entrepreneur, Importance of Entrepreneurship, concepts of Entrepreneurship, Characteristics of successful Entrepreneur, Classification of Entrepreneurs, Myths of Entrepreneurship, Entrepreneurial Development models, Entrepreneurial development cycle, Problems faced by Entrepreneurs and capacity building for Entrepreneurship (Selected topics from Chapter 2, Text 2).	
Modern Small Business Enterprises: Role of Small Scale Industries, Impact	
of Globalization and WTO on SSIs, Concepts and definitions of SSI Enterprises, Government policy and development of the Small Scale sector in India, Growth and Performance of Small Scale Industries in India, Sickness in SSI sector, Problems for Small Scale Industries, Ancillary Industry and Tiny Industry (Definition only)(Selected topics from Chapter1, Text 2).	L1, L2
Institutional Support for Business Enterprises: Introduction, Policies & Schemes of Central Level Institutions, State Level Institutions (Selected topics from Chapter 4, Text 2).	
Module-5	
Projects Management: AProject. Search for a Business idea: Introduction, Choosing an Idea, Selection of product, The Adoption process, Product Innovation, Product Planning and Development Strategy, Product Planning and Development Process. Concepts of Projects and Classification: Introduction, Meaning of Projects, Characteristics of a Project, Project Levels, Project Classification, Aspects of a Project, The project Cycle, Features and Phases of Project management, Project Management Processes. Project Identification: Feasibility Report, Project Feasibility Analysis. Project Formulation: Meaning, Steps in Project formulation, Sequential Stages of Project Formulation, Project Evaluation.	L1, L2, L3
Project Design and Network Analysis: Introduction, Importance of Network Analysis, Origin of PERT and CPM, Network, Network Techniques, Need for Network Techniques, Steps in PERT, CPM, Advantages, Limitations and Differences.	
(Selected topics from Chapters 16 to 20 of Unit 3, Text 3).	
Course Outcomes: After studying this course, students will be able to:	
 Understand the fundamental concepts of Management and Entrepreneurs Select a best Entrepreneurship model for the required domain of establish Describe the functions of Managers, Entrepreneurs and their social responsibilities Compare various types of Entrepreneurs Analyze the Institutional support by various state and central government agencies 	ment
Question paper pattern	
 The question paper will have TEN questions. Each full question carries 16 marks. There will be two full questions (with a maximum of Three sub questions) each module. Each full question will have sub questions covering all topics under a mode. The students will have to answer 5 full questions, selecting one full questions deach module. 	lule.

Text Books:

- 1. Principles of Management P.C Tripathi, P.N Reddy, McGraw Hill Education, 6th Edition, 2017. ISBN-13:978-93-5260-535-4.
- **2.** Entrepreneurship Development Small Business Enterprises- Poornima M Charantimath, Pearson Education 2008, ISBN 978-81-7758-260-4.
- **3.** Dynamics of Entrepreneurial Development and Management by Vasant Desai. HPH 2007, ISBN: 978-81-8488-801-2.

Reference Book:

Essentials of Management: An International, Innovation and Leadership perspective by Harold Koontz, Heinz Weihrich McGraw Hill Education, 10th Edition 2016. ISBN- 978-93-392-2286-4.

DIGITAL SIGNAL PROCESSING

B.E., V Semester, Electronics & Communication Engineering / Telecommunication Engineering

[As per Choice Based Credit System (CBCS) scheme]				
Subject Code	15EC52	IA Marks	20	
Number of Lecture	04	Exam Marks	80	
Hours/Week				
Total Number of	50 (10 Hours / Module)	Exam Hours	03	
Lecture Hours				
CREDITS – 04				
Course objectives: This course will enable students to				

- Understand the frequency domain sampling and reconstruction of discrete time signals.
- Study the properties and the development of efficient algorithms for the computation of DFT.
- Realization of FIR and IIR filters in different structural forms.
- Learn the procedures to design of IIR filters from the analog filters using impulse invariance and bilinear transformation.
- Study the different windows used in the design of FIR filters and design appropriate filters based on the specifications.

Modules		
Module-1	RBT Level	
Discrete Fourier Transforms (DFT): Frequency domain sampling and	L1, L2	
reconstruction of discrete time signals. DFT as a linear transformation, its		
relationship with other transforms. Properties of DFT, multiplication of two		
DFTs- the circular convolution.		
Module-2		
Additional DFT properties, use of DFT in linear filtering, overlap-save and	L1, L2,	
overlap-add method. Fast-Fourier-Transform (FFT) algorithms: Direct	L3	
computation of DFT, need for efficient computation of the DFT (FFT		
algorithms).		
Module-3		
Radix-2 FFT algorithm for the computation of DFT and IDFT-decimation-in-time	L1, L2,	
and decimation-in-frequency algorithms. Goertzel algorithm, and chirp-z	L3	
transform.		
Module-4		
Structure for IIR Systems: Direct form, Cascade form, Parallel form structures.	L1, L2,	
IIR filter design: Characteristics of commonly used analog filter – Butterworth	L3	
and Chebyshev filters, analog to analog frequency transformations.		
Design of IIR Filters from analog filter using Butterworth filter: Impulse		
invariance, Bilinear transformation.		
Module-5		
Structure for FIR Systems: Direct form, Linear Phase, Frequency sampling	L1, L2,	

structure, Lattice structure. L3 FIR filter design: Introduction to FIR filters, design of FIR filters using -Rectangular, Hamming, Hanning and Bartlett windows. **Course Outcomes:** After studying this course, students will be able to: • Determine response of LTI systems using time domain and DFT techniques. • Compute DFT of real and complex discrete time signals. • Computation of DFT using FFT algorithms and linear filtering approach. • Solve problems on digital filter design and realize using digital computations. **Question paper pattern:** • The question paper will have ten questions • Each full question consists of 16 marks. • There will be 2 full questions (with a maximum of three sub questions) from each module. • Each full question will have sub questions covering all the topics under a module The students will have to answer 5 full questions, selecting one full question from each module. **Text Book: Digital signal processing - Principles Algorithms & Applications**, Proakis & Monalakis, Pearson education, 4th Edition, New Delhi, 2007. **Reference Books:** 1. Discrete Time Signal Processing, Oppenheim & Schaffer, PHI, 2003. 2. Digital Signal Processing, S. K. Mitra, Tata Mc-Graw Hill, 3rd Edition, 2010.

3. Digital Signal Processing, Lee Tan: Elsevier publications, 2007.

<u>Verilog HDL</u> B.E., V Semester, Electronics & Communication Engineering/ Telecommunication Engineering

F.A.		0 0	1	
-	per Choice Based Credit S		_	
Subject Code	15EC53	IA Marks	20	
Number of Lecture	04	Exam Marks	80	
Hours/Week				
Total Number of	50 (10 Hours / Module)	Exam Hours	03	
Lecture Hours	CDEDITC	0.1		
<u>а 1 т</u>	CREDITS -			
	This course will enable stud			
	etween Verilog and VHDL de			
	Verilog HDL and VHDL cor			
	different levels of abstractio	on in Verilog.		
	rilog Tasks and Directives.			
	ning and delay Simulation.		. 10	<u> </u>
	design levels of data flow, l	behavioral and str	ructural for	effective
modeling of dig	ital circuits.			
	Module-1			RBT
				Level
8	Design with Verilog HDL		.1	L1, L2,
	mergence of HDLs, typical H	IDL-flow, why Ver	ilog	L3
HDL?, trends in HDI				
Hierarchical Model		difference and hoters		
-	m-up design methodology, o			
stimulus block. (Tex	e instances, parts of a simu	liation, design bio	CK,	
Sumulus Diock. (Tex				
	Module-2			
Basic Concepts				L1, L2,
-	data types, system tasks, o	compiler directives	s (Text1)	L3
Modules and Ports	aata types, system tabils, t		5. (I cher)	20
	port declaration, connectin	ng ports, hierarch	nical name	
referencing. (Text1)	· · · · · · · · · · · · · · · · · · ·	-8 F		
	Module-3			
Gate-Level Modelin				L1, L2,
	ic Verilog gate primitives,	description of a	nd/or and	L3
	rise, fall and turn-off dela			_
delays. (Text1)		<i>.</i> , <i>, , ,</i>	51	
Dataflow Modeling				
Continuous assignments, delay specification, expressions, operators,			operators,	
operands, operator t		÷ ,	• ·	
-				
	Module-4			
Behavioral Modelin				L1, L2,
	ıres, initial and always, l			L3

	ext1) Module-5
ln Sy Er	troduction to VHDLL1, L2,troduction: Why use VHDL?, Shortcomings, Using VHDL for DesignL1, L2,nthesis, Design tool flow, Font conventions.L3tities and Architectures: Introduction, A simple design, DesignDesigntities, Identifiers, Data objects, Data types, and Attributes. (Text 2)L1, L2,
Co	 • Write Verilog programs in gate, dataflow (RTL), behavioral and switch modeling levels of Abstraction. • Write simple programs in VHDL in different styles. • Design and verify the functionality of digital circuit/system using test benches. • Identify the suitable Abstraction level for a particular digital design. • Write the programs more effectively using Verilog tasks and directives. • Perform timing and delay Simulation.
Qι	lestion paper pattern:
	The question paper will have ten questions
	• Each full question consists of 16 marks.
	• There will be 2 full questions (with a maximum of three sub questions) from each module.
	• Each full question will have sub questions covering all the topics under a module
	• The students will have to answer 5 full questions, selecting one full question from each module
Ге	xt Books:
1.	Samir Palnitkar, "Verilog HDL: A Guide to Digital Design and Synthesis Pearson Education, Second Edition.
2.	Kevin Skahill, "VHDL for Programmable Logic", PHI/Pearson education, 2006.
Re	ference Books:
1.	Donald E. Thomas, Philip R. Moorby, "The Verilog Hardware Description Language", Springer Science+Business Media, LLC, Fifth edition.
2.	Michael D. Ciletti, "Advanced Digital Design with the Verilog HDL" Pearso (Prentice Hall), Second edition.
3.	Padmanabhan, Tripura Sundari, "Design through Verilog HDL", Wiley, 2016

INFORMATION THEORY AND CODING

B.E., V Semester, Electronics & Communication Engineering / Telecommunication Engineering

[As per Choice Based Credit System (CBCS) scheme]

Subject Code	15EC54	IA Marks	20	
Number of Lecture	04	Exam Marks	80	
Hours/Week				
Total Number of	50 (10 Hours / Module)	Exam Hours	03	
Lecture Hours				
CREDITS - 04				

Course Objectives: This course will enable students to:

- Understand the concept of Entropy, Rate of information and order of the source with reference to dependent and independent source.
- Study various source encoding algorithms.
- Model discrete & continuous communication channels.
- Study various error control coding algorithms.

Modules			
Module-1	RBT Level		
Information Theory: Introduction, Measure of information, Information	L1, L2,		
content of message, Average Information content of symbols in Long	L3		
Independent sequences, Average Information content of symbols in Long			
dependent sequences, Markov Statistical Model of Information Sources,			
Entropy and Information rate of Markoff Sources (Section 4.1, 4.2 of Text			
1).			
Module-2			
Source Coding: Source coding theorem, Prefix Codes, Kraft McMillan	L1, L2,		
Inequality property – KMI (Section 2.2 of Text 2).	L3		
Encoding of the Source Output, Shannon's Encoding Algorithm (Sections			
4.3, 4.3.1 of Text 1).			
Shannon Fano Encoding Algorithm, Huffman codes, Extended Huffman			
coding, Arithmetic Coding, Lempel – Ziv Algorithm (Sections 3.6, 3.7, 3.8,			
3.10 of Text 3).			
Module-3			
Information Channels: Communication Channels (Section 4.4 of Text 1).	L1, L2,		
Channel Models, Channel Matrix, Joint probability Matrix, Binary	L3		
Symmetric Channel, System Entropies, Mutual Information, Channel			
Capacity, Channel Capacity of : Binary Symmetric Channel, Binary Erasure Channel, Muroga, s Theorem, Contineuos Channels (Sections 4.2,			
4.3, 4.4, 4.6, 4.7 of Text 3).			
Module-4			

	1			
Error Control Coding : Introduction, Examples of Error control coding, methods of Controlling Errors, Types of Errors, types of Codes, Linear Block Codes: matrix description of Linear Block Codes, Error Detection and Error Correction Capabilities of Linear Block Codes, Single Error Correcting hamming Codes, Table lookup Decoding using Standard Array. Binary Cyclic Codes: Algebraic Structure of Cyclic Codes, Encoding using an (n-k) Bit Shift register, Syndrome Calculation, Error Detection and Correction (Sections 9.1, 9.2, 9.3, 9.3.1, 9.3.2, 9.3.3 of Text 1).	L1, L2, L3			
Module-5				
Some Important Cyclic Codes: Golay Codes, BCH Codes(Section 8.4 – Article 5 of Text 2).	L1, L2, L3			
Convolution Codes : Convolution Encoder, Time domain approach, Transform domain approach, Code Tree, Trellis and State Diagram, The Viterbi Algorithm) (Section 8.5 – Articles 1,2 and 3, 8.6- Article 1 of Text 2).				
Course Outcomes: At the end of the course the students will be able to:	•			
 Explain concept of Dependent & Independent Source, measure of in Entropy, Rate of Information and Order of a source Represent the information using Shannon Encoding, Shannon Fano, Huffman Encoding Algorithms Model the continuous and discrete communication channels using in and joint probabilities Determine a codeword comprising of the check bits computed us Block codes, cyclic codes & convolutional codes Design the encoding and decoding circuits for Linear Block codes, cyc convolutional codes, BCH and Golay codes. 	Prefix and put, output sing Linear			
Question paper pattern:The question paper will have ten questions				
• Each full question consists of 16 marks.				
• There will be 2 full questions (with a maximum of three sub questions) from each module.				
 Each full question will have sub questions covering all the topics under a module 				
• The students will have to answer 5 full questions, selecting one full question from each module				
Text Books:				
 Digital and analog communication systems, K. Sam Shanmugam, John Wiley India Pvt. Ltd, 1996. 				
 Digital communication, Simon Haykin, John Wiley India Pvt. Ltd, 2008. Information Theory and Coding, Muralidhar Kulkarni, K.S. Shivaprakas India Pvt. Ltd, 2015, ISBN:978-81-265-5305-1. 	ha, Wiley			
Reference Books: 1. ITC and Cryptography, Ranjan Bose, TMH, II edition, 2007				
 Principles of digital communication, J. Das, S. K. Mullick, P. K. Chatt Wiley, 1986 - Technology & Engineering 	erjee,			

- 3. Digital Communications Fundamentals and Applications, Bernard Sklar, Second Edition, Pearson Education, 2016, ISBN: 9780134724058.
- 4. Information Theory and Coding, K.N.Haribhat, D.Ganesh Rao, Cengage Learning, 2017.

<u>NANOELECTRONICS</u> B.E., V Semester, Electronics & Communication Engineering / Telecommunication Engineering

[As per Choice Based Credit System (CBCS) scheme]

Subject Code	15EC551	IA Marks	20	
Number of Lecture	03	Exam Marks	80	
Hours/Week				
Total Number of	40 (8 Hours / Module)	Exam Hours	03	
Lecture Hours				
CREDITS – 03				

Course Objectives: This course will enable students to:

- Enhance basic engineering science and technical knowledge of nanoelectronics.
- Explain basics of top-down and bottom-up fabrication process, devices and systems.
- Describe technologies involved in modern day electronic devices.
- Know various nanostructures of carbon and the nature of the carbon bond itself.
- Learn the photo physical properties of sensor used in generating a signal.

Module-1	RBT		
	Level		
Introduction: Overview of nanoscience and engineering. Development milestones in microfabrication and electronic industry. Moore's law and continued miniaturization, Classification of Nanostructures, Electronic properties of atoms and solids: Isolated atom, Bonding between atoms, Giant molecular solids, Free electron models and energy bands, crystalline solids, Periodicity of crystal lattices, Electronic conduction, effects of nanometerlength scale, Fabrication methods: Top down processes, Bottom up processes methods for templating the growth of nanomaterials, ordering of nanosystems (Text 1).	L1, L2		
Module-2			
Characterization: Classification, Microscopic techniques, Field ion	L1, L2		
microscopy, scanning probe techniques, diffraction techniques: bulk and surface diffraction techniques (Text 1).			
Inorganic semiconductor nanostructures: overview of semiconductor			
physics. Quantum confinement in semiconductor nanostructures:			
quantum wells, quantum wires, quantum dots, super-lattices, band offsets, electronic density of states (Text 1).			
Module-3			
Fabrication techniques: requirements of ideal semiconductor, epitaxial	L1 L2		
growth of quantum wells, lithography and etching, cleaved-edge over growth, growth of vicinal substrates, strain induced dots and wires, electrostatically induced dots and wires, Quantum well width fluctuations, thermally annealed quantum wells, semiconductor nanocrystals, collidal quantum dots, self-assembly techniques.(Text 1).	21, 24		
Physical processes: modulation doping, quantum hall effect, resonant			
tunneling, charging effects, ballistic carrier transport, Inter band			
absorption, intraband absorption, Light emission processes, phonon			
bottleneck, quantum confined stark effect, nonlinear effects, coherence and dephasing, characterization of semiconductor nanostructures: optical			

Module-4		
Carbon Nanostructures: Carbon molecules, Carbon Clusters, Carbon Nanotubes, application of Carbon Nanotubes. (Text 2)	L1, L2	
Module-5		
 Nanosensors: Introduction, What is Sensor and Nanosensors?, What makes them Possible?, Order From Chaos, Characterization, Perception, Nanosensors Based On Quantum Size Effects, Electrochemical Sensors, Sensors Based On Physical Properties, Nanobiosensors, Smart dust Sensor for the future. (Text 3) Applications: Injection lasers, quantum cascade lasers, single-photon sources, biological tagging, optical memories, coulomb blockade devices, photonic structures, QWIP's, NEMS, MEMS (Text 1). Course outcomes: After studying this course, students will be able to: Know the principles behind Nanoscience engineering and Nanoelectronics. Know the effect of particles size on mechanical, thermal, optical and electrical properties of nanomaterials. Know the properties of carbon and carbon nanotubes and its applications. Know the properties used for sensing and the use of smart dust sensors. Apply the knowledge to prepare and characterize nanomaterials. Analyse the process flow required to fabricate state-of-the-art transistor technology. 	L1, L2	
Question paper pattern:The question paper will have ten questions	1	
• Each full question consists of 16 marks.		
• There will be 2 full questions (with a maximum of three sub questions) each module.	from	
• Each full question will have sub questions covering all the topics unde module	ra	
• The students will have to answer 5 full questions, selecting one fur from each module	ll question	
 Text Books: Ed Robert Kelsall, Ian Hamley, Mark Geoghegan, "Nanoscale Science and Technology", John Wiley, 2007. Charles P Poole, Jr, Frank J Owens, "Introduction to Nanotechnology", John Wiley, Copyright 2006, Reprint 2011. 		
 T Pradeep, "Nano: The essentials-Understanding Nanoscience and Nanotechnology", TMH. 		
Reference Book: Ed William A Goddard III, Donald W Brenner, Sergey E. Lyshevski, Ge Iafrate, "Hand Book of Nanoscience Engineering and Technology", CRG 2003.		

SWITCHING & FINITE AUTOMATA THEORY

B.E., **V** Semester, Electronics & Communication Engineering / Telecommunication Engineering

[As per Choice Based Credit System (CBCS) scheme]

[]				
Subject Code	15EC552	IA Marks	20	
Number of Lecture	03	Exam Marks	80	
Hours/Week				
Total Number of	40 (8 Hours / Module)	Exam Hours	03	
Lecture Hours				
CREDITS - 03				

Course Objectives: This course will enable students to:

- 1. Understand the basics of threshold logic, effect of hazards on digital circuits and techniques of fault detection
- 2. Explain finite state model and minimization techniques
- 3. Know structure of sequential machines, and state identification
- 4. Understand the concept of fault detection experiments

Modules			
Module-1	RBT Level		
Threshold Logic: Introductory Concepts: Threshold element, capabilities	Level		
and limitations of threshold logic, Elementary Properties, Synthesis of			
Threshold networks: Unate functions, Identification and realization of	LJ		
threshold functions, The map as a tool in synthesizing threshold networks.			
(Sections 7.1, 7.2 of Text)			
Module-2			
Reliable Design and Fault Diagnosis: Hazards, static hazards, Design of	L1, L2,		
Hazard-free Switching Circuits, Fault detection in combinational circuits,			
Fault detection in combinational circuits: The faults, The Fault Table,			
Covering the fault table, Fault location experiments: Preset experiments,			
Adaptive experiments, Boolean differences, Fault detection by path			
sensitizing. (Sections 8.1, 8.2, 8.3, 8.4, 8.5 of Text)			
Module-3			
Sequential Machines: Capabilities, Minimization and Transformation	L1, L2,		
The Finite state model and definitions, capabilities and limitations of finite	L3		
state machines, State equivalence and machine minimization: k-			
equivalence, The minimization Procedure, Machine equivalence,			
Simplification of incompletely specified machines. (Section 10.1, 10.2, 10.3,			
10.4 of Text)			
Module-4			
Structure of Sequential Machines: Introductory example, State			
assignment using partitions: closed partitions, The lattice of closed	L3		
partitions, Reduction of output dependency, Input dependence and			
autonomous clocks, Covers and generation of closed partitions by state			
splitting: Covers, The implication graph, An application of state splitting to			
parallel decomposition. (Section 12.1, 12.2, 12.3, 12.4, 12.5, 12.6 of Text)			
Module-5	11 10		
State-Identification and Fault Detection Experiments: Experiments, Homing experiments, Distinguishing experiments, Machine identification,	L1, L2, L3		

Fault detection experiments, Design of diagnosable machines, Second algorithm for the design of fault detection experiments. (Sections 13.1, 13.2, 13.3, 13.4, 13.5, 13.6, 13.7 of Text)

Course outcomes: At the end of the course, students should be able to:

- Explain the concept of threshold logic
- Understand the effect of hazards on digital circuits and fault detection and analysis
- Define the concepts of finite state model
- Analyze the structure of sequential machine
- Explain methods of state identification and fault detection experiments

Question paper pattern:

- The question paper will have ten questions
- Each full question consists of 16 marks.
- There will be 2 full questions (with a maximum of three sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module
- The students will have to answer 5 full questions, selecting one full question from each module

Text Book:

Switching and Finite Automata Theory – Zvi Kohavi, McGraw Hill, 2nd edition, 2010 ISBN: 0070993874.

Reference Books:

- 1. **Fault Tolerant And Fault Testable Hardware Design-**Parag K Lala, Prentice Hall Inc. 1985.
- 2. Digital Circuits and Logic Design.-Charles Roth Jr, Larry L. Kinney, Cengage Learning, 2014, ISBN: 978-1-133-62847-7.

OPERATING SYSTEM B.E., V Semester, Electronics & Communication Engineering / **Telecommunication Engineering** [As per Choice Based Credit System (CBCS) scheme]

[A5	per Choice Based Cred	it System (CBCS) schemej	
Subject Code	15EC553	IA Marks	20	
Number of Lecture Hours/Week	03	Exam Marks	80	
Total Number of Lecture Hours	40 (8 Hours / Module)	Exam Hours	03	
	CREDIT			
Course objectives:	This course will enable s			
 Understand ho Understand diffication management. Understand the 	e services provided by an w processes are synchro ferent approaches of me e structure and organiza erprocess communicatio	onized and sched emory manageme ation of the file s	luled. ent and virtual r ystem	nemory
	Module-1			RBT
	Module-1			Level
Introduction to Operating Systems OS, Goals of an OS, Operation of an OS, Computational Structures, Resource allocation techniques, Efficiency, System Performance and User Convenience, Classes operating System, Batch processing, Multi programming, Time Sharing Systems, Real Time and distributed Operating Systems (Topics from Sections 1.2, 1.3, 2.2 to 2.8 of Text).				L1, L2
Module-2				
Process Management: OS View of Processes, PCB, Fundamental State L1, L2 Transitions, Threads, Kernel and User level Threads, Non-preemptive scheduling- FCFS and SRN, Preemptive Scheduling- RR and LCN, Long term, medium term and short term scheduling in a time sharing system (Topics from Sections 3.3, 3.3.1 to 3.3.4, 3.4, 3.4.1, 3.4.2, 4.2, 4.3, 4.4.1 of Text).				L1, L2
	Module-3			
Memory Management: Contiguous Memory allocation, Non-Contiguos Memory Allocation, Paging, Segmentation, Segmentation with paging, Virtual Memory Management, Demand Paging, Paging Hardware, VM handler, FIFO, LRU page replacement policies (Topics from Sections 5.5 to 5.9, 6.1 to 6.3, except Optimal policy and 6.3.1of Text).			L1, L2	
	Module-4			
Directory structures, File Protection, Interface between File system and IOCS, Allocation of disk space, Implementing file access (Topics from Sections 7.1 to 7.8 of Text).				L1, L2, L3
Module-5				
Implementing mess resource allocation	and Deadlocks : Ove age passing, Mailboxe , Resource state me Prevention (Topics from	es, Deadlocks, odelling, Deadl	Deadlocks in ock detection	L1, L2, L3

11.5 of Text).	_
Course outcomes: After studying this course, students will be al	ole to:
 Explain the goals, structure, operation and types of operatin Apply scheduling techniques to find performance factors. Explain organization of file systems and IOCS. 	
 Apply suitable techniques for contiguous and non-contiguou Describe message passing, deadlock detection and prevention 	5
Question paper pattern:	
 The question paper will have ten questions 	
• Each full question consists of 16 marks.	
• There will be 2 full questions (with a maximum of three sub module.	questions) from each
 Each full question will have sub questions covering all the to The students will have to answer 5 full questions, selecting each module 	•
Text Book:	
Operating Systems - A concept based approach, by Dhamdare, TM	/IH, 2 nd edition.
Reference Books:	
1. Operating systems concepts, Silberschatz and Galvin, John Wi 5 th edition,2001.	iley India Pvt. Ltd,
2. Operating system–internals and design system, William Stallin Education, 4th ed, 2006.	ıg, Pearson
3. Design of operating systems, Tannanbhaum, TMH, 2001.	

ELECTRICAL ENGINEERING MATERIALS

B.E., V Semester, Electronics & Communication Engineering/ Telecommunication Engineering

[As per Choice Based Credit System (CBCS) scheme]

Subject Code	15EC554	IA Marks	20
Number of Lecture	03	Exam Marks	80
Hours/Week			
Total Number of	40 (8 Hours/Module)	Exam Hours	03
Lecture Hours			
CREDITS - 03			

Course Objectives: This course will enable students to:

- Understand the formation of bands in materials and the classification of materials on the basis of band theory
- Understand the classification of magnetic materials on the basis of their behavior in an external magnetizing field.
- Understand the characteristics and properties of conducting and superconducting materials
- Understand the electrical characteristics of the material to be considered on the basis of their uses.
- Classify electrical engineering materials into low and high resistance materials

Modules		
Module-1	RBT Level	
Band Theory of Solids: Introduction to free electron theory, Kroning- Penney Model, Explanation for Discontinuities in E vs. K curve, Formation of Solid Material, Formation of Band in Metals, Formation of Bands in Semiconductors and Insulating Materials, Classification of Materials on the Basis of Band Structure, Explanation for differences in the Electrical properties of different Materials. Important Characteristics of a Band Electron, Number of energy states per band, Explanation for Insulating and Metallic Behavior of Materials, Concept of Hole.	L1, L2	
Module-2		
Magnetic Properties of Materials: Introduction, Origin of Magnetism, Basic Terms in Magnetism, Relation between Magnetic Permeability and Susceptibility, Classification of magnetic Materials, Characteristics of Diamagnetic Materials, Paramagnetic Materials, Ferromagnetic Materials, Ferrimagnetic Materials, Langevin's Theory of Diamagnetism, Explanation of Dia, Para and Ferromagnetism, Ampere's Lam in Dia, Para and Ferromagnetism, Hystersis and Hystersis loss, Langevin's Theory of paramagnetism, Modification in the Langevin's Theory, Anti- Ferromagnetism and Neel Temperature, Ferrimagnetic Materials, Properties of some important Magnetic Materials, Magentostriction and Magnetostrictive Materials, Hard and Soft Ferromagnetic Materials and their Applications.	L1, L2	
Module-3		
Behavior of Dielectric Materials in AC and DC Fields: Introduction, Classification of Dielectric Materials at Microscopic level, Polar Dielectric Materials, Non-polar Dielectric Materials, Kinds of Polarizations, behavior of	L1, L2	

	11	
dielectric materials, Three electric Vectors, Gauss's Law in a Dielectric, Electric Susceptibility and Static Dielectric constant, Effect of Dielectric medium upon capacitance, macroscopic electric field, Microscopic Electric field, temperature dependence of dielectric constant, polar dielectric in ac and dc fields, behavior of polar dielectric at high frequencies, Dielectric loss, Dielectric strength and Dielectric Breakdown, Various kinds of Dielectric Materials, Hysteresis in Ferroelectric Materials, Applications of Ferroelectric Materials in Devices.		
Module-4		
Conductivity of Metals and Superconductivity: Introduction, Ohm's law, Explanation for the dependence of electrical resistivity upon temperature, Free-electron theory of metals, Application of Lorentz-Drude free-electron theory, Effect of various parameters on Electrical Conductivity, Resistivity Ratio, Variation of resistivity of alloys with temperature, Thermal Conductivity of Materials, Heat produced in Current Carrying Conductor, Thermoelectric Effect, Thermoelectric Series, Seebeck's Experiment.		
Discovery of superconductivity, superconductivity and transition temperature, superconducting materials, explanation of superconductivity phenomenon, characteristics of superconductors, change in thermodynamic parameters in superconducting state, frequency dependence of superconductivity, current status of high temperature superconductors, practical applications of superconductors. Module-5		
	L1, L2	
Electrical Conducting and Insulating materials: Introduction, Classification of conducting materials, difference in properties of Hard- Drawn and Annealed copper, standard conductors, comparison between some popular Low-Resistivity Materials, Low-Resistivity Copper Alloys, Electrical contact materials and their selection, classification of contact materials, Materials for Lamp Filaments, Preparation of Tungsten Filaments.		
Insulating gases, Liquids and solids and their characteristics, Selection of the insulating material, other important properties of Insulating materials, Thermal characteristics, chemical properties of Insulating materials, classification of Insulating materials on the basis of structure.		
Course Outcomes: At the end of the course, students will be able to	1	
 Understand the various kinds of materials and their applications in ac fields. Understand the conductivity of superconductivity of materials. Explain the electrical properties of different materials and metallic beha materials on the basis of band theory. Explain the properties and applications of all kind of magnetic materials Explain the properties of electrical conducting and insulating materials Assess a variety of approaches in developing new materials with enhangerformance to replace existing materials. 	avior of s.	
Question paper pattern:		
The question paper will have ten questions		

- Each full question consists of 16 marks.
- There will be 2 full questions (with a maximum of three sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module
- The students will have to answer 5 full questions, selecting one full question from each module

Text Book:

R K Shukla and Archana Singh, "Electrical Engineering Materials" McGraw Hill, 2012, ISBN: 978-1-25-90062-03.

Reference Books:

- 1. S.O. KASAP, "Electronic Materials and Devices" 3rd edition, McGraw Hill, 2014, ISBN-978-0-07-064820-3.
- **2.** C.S.Indulkar and S. Thiruvengadam, S., "An Introduction to Electrical Engineering Materials", ISBN-9788121906661.

MSP430 MICROCONTROLLER B.E., V Semester, Electronics & Communication Engineering [As per Choice Based Credit System (CBCS) scheme]

Subject Code	15EC555	IA Marks	20	
Number of Lecture	03	Exam Marks	80	
Hours/Week				
Total Number of	40 (8 Hours / Module)	Exam Hours	03	
Lecture Hours				
	CRED	ITS - 03		
Course objectives:	This course will enable	students to:		
MSP430.	architectural features a 0 using the various inst			
• Understand the MSP430.	functions of the various	peripherals whic		
	ver saving modes in MSI			
• Explain the low	power applications using	g MSP430.		
	M. Jl.	1		
MCD420 Arabita	<u>Module-</u> c ture: Introduction –Wh		120 ft The	RBT Level
				L1, L2
	outside view, The inside view-Functional block diagram, Memory, Central Processing Unit, Memory Mapped Input and Output, Clock Generator,			
			Generator,	
-	rupts and Resets, MSP43	5		
(lext: Ch1- 1.3 to	1.7, Ch2- 2.1 to 2.7, Ch	1	5.7.1)	
	Module-			
Addressing Modes & Instruction Set-Addressing Modes, Instruction set, Constant Generator and Emulated Instructions, Program Examples.L1, L(Text: Ch5- 5.2 to 5.5)		L1, L2, L3		
	Module-3	3		
Clock System, In	terrupts and Operating		ystem,	L1, L2
Interrupts, What happens when an interrupted is requested, Interrupt				
Service Routines, Low Power Modes of Operation, Watchdog Timer, Basic				
Timer1, Real Time Clock, Timer-A: Timer Block, Capture/Compare				
Channels, Interrupts from Timer-A.				
(Text: Ch5 - 5.8 upto 5.8.4, Ch 6-6.6 to 6.8, 6.10, Ch8 -8.1, 8.2, 8.3)				
	Module-		· · · ·	
Analog Input-Ou	tput and PWM - Compa		ADC12, Sigma-	L1, L2
Delta ADC, Internal Operational Amplifiers, DAC, Edge Aligned PWM,				
Simple PWM, Des				
-	ign of i wive.			
LCD interfacing.				
0	ip to 9.1.2, 9.4, 9.5 up to	o 9.5.1, 9.7, 9.8 ι	up to 9.8.1,	
(Text: Ch9 – 9.1 u			up to 9.8.1,	

Digital Input-Output and Serial Communication: Parallel Ports, Lighting LEDs, Flashing LEDs, Read Input from a Switch, Toggle the LED state by pressing the push button, LCD interfacing. Asynchronous Serial Communication, Asynchronous Communication with	L1, L2, L3
USCI_A, Communications, Peripherals in MSP430, Serial Peripheral Interface.	
(Text: Selected topics from Ch4 & Ch7 and Ch7- 7.1, Ch10 – 10.1, 10.2, and 10.12)	
 Course outcomes: After studying this course, students will be able to: Understand the architectural features and instruction set of 16 bit microcontroller MSP430. 	
• Develop programs using the various instructions of MSP430 for different applications.	
 Understand the functions of the various peripherals which are interfaced with MSP430 microcontroller. Describe the neuron serving modes in MSP430 	
Describe the power saving modes in MSP430.Explain the low power applications using MSP430 microcontroller.	

Evaluation of Internal Assessment Marks:

It is suggested that at least a few simple programs to be executed by students using any evaluation board of MSP430 for better understanding of the course. This activity can be considered for the evaluation of 5 marks out of 20 Internal assessment marks, reserved for the other activities.

Question paper pattern:

- The question paper will have ten questions
- Each full question consists of 16 marks.
- There will be 2 full questions (with a maximum of three sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module
- The students will have to answer 5 full questions, selecting one full question from each module

Text Book:

John H Davies, MSP430 Microcontroller Basics, Newnes Publications, Elsevier, 2008.

References:

- 1. Chris Nagy, Embedded Systems Design using TI MSP430 Series, Newnes Publications, Elsevier, 2003.
- 2. User Guide from Texas Instruments.

DSP Lab B.E., V Semester, EC/TC [As per Choice Based Credit System (CBCS) scheme]

[As	per Choice Based Credit System (CBCS	5) scheme]	
Subject Code	15ECL57	IA Marks	20
Number of Lecture	01Hr Tutorial (Instructions)	Exam Marks	80
Hours/Week	+ 02 Hours Laboratory=03		
RBT Levels	L1, L2, L3	Exam Hours	03
	CREDITS - 02		
Course objectives:	This course will enable students to		
Simulate discrete	ete time signals and verification of samp	ling theorem.	
	FT for a discrete signal and verification	-	using
MATLAB.	8		0
• Find solution to	o the difference equations and computations	tion of convoluti	on and
	ng with the verification of properties.		
	lisplay the filtering operations and comp	pare with the the	eoretical
values.			
• Implement the	DSP computations on DSP hardware ar	nd verify the resu	ult.
1	Laboratory Experiments	5	
 Following Experiments to be done using MATLAB / SCILAB / OCTAVE or equivalent: 1. Verification of sampling theorem. 2. Linear and circular convolution of two given sequences, Commutative, distributive and associative property of convolution. 3. Auto and cross correlation of two sequences and verification of their properties 4. Solving a given difference equation. 5. Computation of N point DFT of a given sequence and to plot magnitude and phase spectrum (using DFT equation and verify it by built-in routine). 6. (i) Verification of DFT properties (like Linearity and Parseval's theorem, etc.) (ii) DFT computation of square pulse and Sinc function etc. 7. Design and implementation of FIR filter to meet given specifications (using different window techniques). 8. Design and implementation of IIR filter to meet given specifications. 			
 Following Experiments to be done using DSP kit 9. Linear convolution of two sequences 10. Circular convolution of two sequences 11. N-point DFT of a given sequence 12. Impulse response of first order and second order system 13. Implementation of FIR filter 			
able to: • Understa	s: On the completion of this laboratory and the concepts of analog to digital con y domain sampling of signals.		

- Modelling of discrete time signals and systems and verification of its properties and results.
- Implementation of discrete computations using DSP processor and verify the results.
- Realize the digital filters using a simulation tool and a DSP processor and verify the frequency and phase response.

Conduct of Practical Examination:

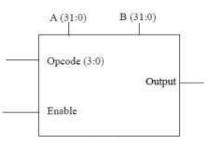
- 1. All laboratory experiments are to be included for practical examination.
- 2. Strictly follow the instructions as printed on the cover page of answer script for breakup of marks.
- **3.**Change of experiment is allowed only once and Marks allotted to the procedure part to be made zero.

HDL Lab B.E., V Semester, EC/TC [As per Choice Based Credit System (CBCS) scheme]

Subject Code	15ECL58	IA Marks	20
Number of Lecture Hours/Week	01 Hr Tutorial (Instructions) + 02 Hours Laboratory = 03	Exam Marks	80
RBT Levels	L1, L2, L3	Exam Hours	03

CREDITS - 02

Course objectives: This course will enable students to:


- Familiarize with the CAD tool to write HDL programs.
- Understand simulation and synthesis of digital design.
- Program FPGAs/CPLDs to synthesise the digital designs.
- Interface hardware to programmable ICs through I/O ports.
- Choose either Verilog or VHDL for a given Abstraction level.

Note: Programming can be done using any compiler. Download the programs on a FPGA/CPLD boards such as Apex/Acex/Max/Spartan/Sinfi or equivalent and performance testing may be done using 32 channel pattern generator and logic analyzer apart from verification by simulation with tools such as Altera/Modelsim or equivalent.

Laboratory Experiments

Part-A: PROGRAMMING

- 1. Write Verilog code to realize all the logic gates
- 2. Write a Verilog program for the following combinational designs
 - a. 2 to 4 decoder
 - b. 8 to 3 (encoder without priority & with priority)
 - c. 8 to 1 multiplexer.
 - d. 4 bit binary to gray converter
 - e. Multiplexer, de-multiplexer, comparator.
- 3. Write a VHDL and Verilog code to describe the functions of a Full Adder using three modeling styles.
- 4. Write a Verilog code to model 32 bit ALU using the schematic diagram shown below

- ALU should use combinational logic to calculate an output based on the four bit op-code input.
- ALU should pass the result to the out bus when enable line in high, and tristate the out bus when the enable line is low.

• ALU should decode the 4 bit op-code according to the example given below.

OPCODE	ALU Operation
1.	A+B
2.	A-B
3.	A Complement
4.	A*B
5.	A AND B
6.	A OR B
7.	A NAND B
8.	A XOR B

- 5. Develop the Verilog code for the following flip-flops, SR, D, JK and T.
- 6. Design a 4 bit binary, BCD counters (Synchronous reset and Asynchronous reset) and "any sequence" counters, using Verilog code.

Part-B: INTERFACING (at least four of the following must be covered using VHDL/Verilog)

- 1. Write HDL code to display messages on an alpha numeric LCD display.
- **2.** Write HDL code to interface Hex key pad and display the key code on seven segment display.
- **3.** Write HDL code to control speed, direction of DC and Stepper motor.
- **4.** Write HDL code to accept Analog signal, Temperature sensor and display the data on LCD or Seven segment display.
- 5. Write HDL code to generate different waveforms (Sine, Square, Triangle, Ramp etc.,) using DAC change the frequency.
- **6.** Write HDL code to simulate Elevator operation.

Course Outcomes: At the end of this course, students should be able to:

- Write the Verilog/VHDL programs to simulate Combinational circuits in Dataflow, Behavioral and Gate level Abstractions.
- Describe sequential circuits like flip flops and counters in Behavioral description and obtain simulation waveforms.
- Synthesize Combinational and Sequential circuits on programmable ICs and test the hardware.
- Interface the hardware to the programmable chips and obtain the required output.

Conduct of Practical Examination:

- 1. All laboratory experiments are to be included for practical examination.
- 2. Strictly follow the instructions as printed on the cover page of answer script for breakup of marks.
- 3. Change of experiment is allowed only once and Marks allotted to the procedure part to be made zero.

5th Semester Open Electives Syllabus for the Courses offered by EC/TC Board

(Text 1: Chapter 5)

(4 hours)

Module-2

Automotive Electronics B.E V Semester (Open Elective) [As per Choice Based Credit System (CBCS) scheme			
Subject Code	15EC561	IA Marks	20
Number of Lecture Hours/Week	80		
Total Number of Lecture Hours	40(08 Hrs per Module)	Exam Hours	03
	CREDITS - 03	1	L
 Understand the basics of automobile dynamics and design electronics to complement those features. Design and implement the electronics that attribute the reliability, safety, and smartness to the automobiles, providing add-on comforts. 			
Module-1			
Automotive Fundamentals Overview – Evolution of Automotive Electronics, Automobile Physical Configuration, Survey of Major Automotive Systems, The Engine – Engine Block, Cylinder Head, Four Stroke Cycle, Engine Control, Ignition System - Spark plug, High voltage circuit and distribution, Spark pulse generation, Ignition Timing, Diesel Engine, Drive Train - Transmission, Drive Shaft, Differential, Suspension, Brakes, Steering System (Text 1: Chapter1), Starter Battery –Operating principle: (Text 2: Pg. 407-410) (4 hours)			
Electronics, Automobile Automotive Systems, The Stroke Cycle, Engine Cont circuit and distribution, S Engine, Drive Train - Tran Brakes, Steering System	Physical Configuration, S Engine – Engine Block, Cyl rol, Ignition System - Spark p park pulse generation, Igniti smission, Drive Shaft, Differe (Text 1: Chapter1), Starter B	urvey of Major inder Head, Four plug, High voltage on Timing, Diese ntial, Suspension	

Automotive Control System applications of Sensors and Actuators – Typical Electronic Engine Control System, Variables to be measured (Text 1: Chapter 6) (1 hour)Automotive Sensors – Airflow rate sensor, Strain Gauge MAP sensor, Engine Crankshaft Angular Position Sensor, Magnetic Reluctance Position Sensor, Hall effect Position Sensor, Shielded Field Sensor, Optical Crankshaft Position Sensor, Throttle Angle Sensor (TAS), Engine Coolant Temperature (ECT) Sensor, Exhaust Gas Oxygen (O2/EGO) Lambda Sensors, Piezoelectric Knock Sensor. (Text 1: Chapter 6) (5 hours)Automotive Actuators – Solenoid, Fuel Injector, EGR Actuator, Ignition System (Text 1: Chapter 6) (2 hours)	L1, L2
Module-3	
Module-3Digital Engine Control Systems – Digital Engine control features, Control modes for fuel Control (Seven Modes), EGR Control, Electronic Ignition Control - Closed loop Ignition timing, Spark Advance Correction Scheme, Integrated Engine Control System - Secondary Air Management, Evaporative Emissions Canister Purge, Automatic System Adjustment, System Diagnostics. (Text 1: Chapter 7)(6 (6	L1, L2
Control Units – Operating conditions, Design, Data processing, Programming, Digital modules in the Control unit, Control unit software. (Text 2: Pg. 196-207) (2 hours)	
Module-4	
 Automotive Networking -Bus Systems - Classification, Applications in the vehicle, Coupling of networks, Examples of networked vehicles (Text 2: Pg. 85-91), Buses - CAN Bus, LIN Bus, MOST Bus, Bluetooth, Flex Ray, Diagnostic Interfaces. (Text 2: Pg. 92-151) (6 hours) Vehicle Motion Control - Typical Cruise Control System, Digital Cruise Control System, Digital Speed Sensor, Throttle Actuator, Digital Cruise Control configuration, Cruise Control Electronics (Digital only), Antilock Brake System (ABS) (Text 1: Chapter 8) (2 hours) 	L1, L2
Module-5	
Automotive Diagnostics-Timing Light, Engine Analyzer, On-board diagnostics, Off-board diagnostics, Expert Systems, Occupant Protection Systems – Accelerometer based Air Bag systems. (Text 1: Chapter 10) (2 hours)	L1, L2, L3
Future Automotive Electronic Systems – Alternative Fuel Engines, Electric and Hybrid vehicles, Fuel cell powered cars, Collision Avoidance Radar warning Systems, Low tire pressure warning system, Heads Up display, Speech Synthesis, Navigation – Navigation Sensors - Radio Navigation, Signpost navigation, dead reckoning navigation, Voice Recognition Cell Phone dialing, Advanced Cruise Control, Stability	

Course Outcomes:	At the end of the course,	students will be able to:

- Acquire an overview of automotive components, subsystems, and basics of Electronic Engine Control in today's automotive industry.
- Use available automotive sensors and actuators while interfacing with microcontrollers / microprocessors during automotive system design.
- Understand the networking of various modules in automotive systems, communication protocols and diagnostics of the sub systems.
- Design and implement the electronics that attribute the reliability, safety, and smartness to the automobiles, providing add-on comforts and get fair idea on future Automotive Electronic Systems.

Question paper pattern:

- The question paper will have ten questions.
- Each full Question consisting of 16 marks
- There will be 2 full questions (with a maximum of three sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

- 1. William B. Ribbens, "Understanding Automotive Electronics", 6th Edition, Elsevier Publishing.
- 2. Robert Bosch Gmbh (Ed.) Bosch Automotive Electrics and Automotive Electronics Systems and Components, Networking and Hybrid Drive, 5th edition, John Wiley& Sons Inc., 2007.

Object Oriented Programming Using C++

B.E. V Semester (Open Elective)

[As per Choice Based Credit System (CBCS)scheme]
--

 classes, formatted and unformatted I/O operations, Output with manipulators, Classes for file stream operations, opening and closing a file, EOF (Selected topics from Chap-10, 11 of Text). Course Outcomes: At the end of the course, students will be able to: Explain the basics of Object Oriented Programming concepts. Apply the object initialization and destroy concept using concept 	L1, L2, L3
 classes, formatted and unformatted I/O operations, Output with manipulators, Classes for file stream operations, opening and closing a file, EOF (Selected topics from Chap-10, 11 of Text). Course Outcomes: At the end of the course, students will be able to: Explain the basics of Object Oriented Programming concepts. Apply the object initialization and destroy concept using concept 	
Explain the basics of Object Oriented Programming concepts.Apply the object initialization and destroy concept using con-	
Explain the basics of Object Oriented Programming concepts.Apply the object initialization and destroy concept using con-	
 and destructors. Apply the concept of polymorphism to implement comp polymorphism in programs by using overloading methods and op Use the concept of inheritance to reduce the length of code and the usefulness. Apply the concept of run time polymorphism by using virtual fu overriding functions and abstract class in programs. Use I/O operations and file streams in programs. 	oile time perators. I evaluate
Question paper pattern:	
The question paper will have ten questions.	
 Each full Question consisting of 16 marks 	
• There will be 2 full questions (with a maximum of Three sub qu from each module.	uestions)
• Each full question will have sub questions covering all the topics module.	under a
• The students will have to answer 5 full questions, selecting question from each module.	one full
Text Book:	
Object Oriented Programming with C++, E.Balaguruswamy, TM Edition, 2013.	MH, 6th
Reference Book:	
Object Oriented Programming using C++, Robert Lafore, publication 2010.	Galgotia

8051 MICROCONTROLLER

B.E., V Semester (Open Elective) [As per Choice Based Credit System (CBCS) scheme]

Subject Code	15EC563	IA Marks	20
Number of Lecture	03	Exam Marks	80
Hours/Week	40(00 Hmg / Modulo)	Energy Harris	00
Total Number of Lecture Hours	40 (08 Hrs/ Module)	Exam Hours	03
110013	CREDITS - 03		
Course objectives: This	course will enable stude	ents to:	
9	ence between a Micropro		controller
• Familiarize the basic a	architecture of 8051 mic	crocontroller.	
	rocessor using Assembly		
	rupt system of 8051 and tion and use of inbuilt T		
1	rnal memory and I/O de	evices using its I/O	ports.
	Module -1		RBT
			Level
8051 Microcontroller:			L1, L2
Microprocessor Vs Microcontroller, Embedded Systems, Embedded			
Microcontrollers, 8051 A			
ports functions, Internal (ROM & RAM) interfacing.	5 0	External Memory	
	Module -2		
8051 Instruction Set	0		L1, L2
instructions, Arithmetic instructions, Logical instructions, Branch instructions, Bit manipulation instructions. Simple Assembly language program examples (without loops) to use these			
instructions.			
	Module -3		
8051 Stack, I/O Port In			L1, L2,
Stack and Subroutine in			L3
examples on subroutine			
Factorial of an 8 bit nur			
without overlap, Addit	tion of N 8 bit	numbers, Picking	
1 '	l		
smallest/largest of N 8 bit		a to avoitab an /- M	
smallest/largest of N 8 bit Interfacing simple switch	and LED to I/O port	s to switch on/off	
smallest/largest of N 8 bit	and LED to I/O port	s to switch on/off	
smallest/largest of N 8 bit Interfacing simple switch	and LED to I/O port	s to switch on/off	
smallest/largest of N 8 bit Interfacing simple switch	and LED to I/O port h status. Module -4		L1, L2,

using Mode-1 and a square wave using Mode-2 on a port pin. 8051 Serial Communication- Basics of Serial Data Communication, RS-232 standard, 9 pin RS232 signals, Simple Serial Port programming in Assembly and C to transmit a message and to receive data serially.	
Module -5	
8051 Interrupts and Interfacing Applications: 8051 Interrupts.	L1, L2,
8051 Assembly language programming to generate an external	L3
interrupt using a switch, 8051 C programming to generate a square	
waveform on a port pin using a Timer interrupt.	
Interfacing 8051 to ADC-0804, LCD and Stepper motor and their	
8051 Assembly language interfacing programming.	
Evaluation of Internal Assessment Marks:	L

It is suggested that at least a few simple programs to be executed by students using a simulation software or an 8051 microcontroller kit for better understanding of the course. This activity can be considered for the evaluation of 5 marks out of 20 Internal assessment marks, reserved for the other activities.

Course outcomes: At the end of the course, students will be able to:

- Explain the difference between Microprocessors & Microcontrollers, Architecture of 8051 Microcontroller, Interfacing of 8051 to external memory and Instruction set of 8051.
- Write 8051 Assembly level programs using 8051 instruction set.
- Explain the Interrupt system, operation of Timers/Counters and Serial port of 8051.
- Write 8051 Assembly language program to generate timings and waveforms using 8051 timers, to send & receive serial data using 8051 serial port and to generate an external interrupt using a switch.
- Write 8051 C programs to generate square wave on 8051 I/O port pin using interrupt and to send & receive serial data using 8051 serial port.
- Interface simple switches, simple LEDs, ADC 0804, LCD and Stepper Motor to 8051 using 8051 I/O ports.

Question paper pattern:

- The question paper will have ten questions.
- Each full Question consisting of 16 marks
- There will be 2 full questions (with a maximum of Three sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer 5 full questions, selecting one full question from each module.

TEXT BOOKS:

- "The 8051 Microcontroller and Embedded Systems using assembly and C ", Muhammad Ali Mazidi and Janice Gillespie Mazidi and Rollin D. McKinlay; PHI, 2006 / Pearson, 2006.
- **2. "The 8051 Microcontroller",** Kenneth J. Ayala, 3rd Edition, Thomson/Cengage Learning.

REFERENCE BOOKS:

- 1. **"The 8051 Microcontroller Based Embedded Systems",** Manish K Patel, McGraw Hill, 2014, ISBN: 978-93-329-0125-4.
- 2. "Microcontrollers: Architecture, Programming, Interfacing and System Design", Raj Kamal, Pearson Education, 2005.

B.E E&C SIXTH SEMESTER SYLLABUS

DIGITAL COMMUNICATION

B.E., VI Semester, Electronics & Communication Engineering/ Telecommunication Engineering

[As per Choice Based Credit System (CBCS) scheme]

Subject Code	15EC61	IA Marks	20
Number of Lecture	04	Exam Marks	80
Hours/Week			
Total Number of	50 (10 Hours/Module)	Exam Hours	03
Lecture Hours			
CREDITS - 04			

Course Objectives: The objectives of the course is to enable students to:

- Understand the mathematical representation of signal, symbol, noise and channels.
- Apply the concept of signal conversion to symbols and signal processing to symbols in transmitter and receiver functional blocks.
- Compute performance issues and parameters for symbol processing and recovery in ideal and corrupted channel conditions.
- Compute performance parameters and mitigate for these parameters in corrupted and distorted channel conditions.

Module-1	RBT
	Level
Bandpass Signal to Equivalent Lowpass : Hilbert Transform, Pre- envelopes, Complex envelopes, Canonical representation of bandpass signals, Complex low pass representation of bandpass systems, Complex representation of band pass signals and systems (Text 1: 2.8, 2.9, 2.10, 2.11, 2.12, 2.13).	L1, L2, L3
Line codes: Unipolar, Polar, Bipolar (AMI) and Manchester code and their power spectral densities (Text 1: Ch 6.10).	
Overview of HDB3, B3ZS, B6ZS (Ref. 1: 7.2)	
Module-2	
Signaling over AWGN Channels- Introduction, Geometric representation of	L1, L2,
signals, Gram-Schmidt Orthogonalization procedure, Conversion of the	L3
continuous AWGN channel into a vector channel, Optimum receivers using coherent detection: ML Decoding, Correlation receiver, matched filter receiver (Text 1: 7.1, 7.2, 7.3, 7.4).	
Module-3	
Digital Modulation Techniques : Phase shift Keying techniques using coherent detection: generation, detection and error probabilities of BPSK and QPSK, M–ary PSK, M–ary QAM (Relevant topics in Text 1 of 7.6, 7.7).	
Frequency shift keying techniques using Coherent detection: BFSK	

generation, detection and error probability (Relevant topics in Text 1 of 7.8).

Non coherent orthogonal modulation techniques: BFSK, DPSK Symbol representation, Block diagrams treatment of Transmitter and Receiver, Probability of error (without derivation of probability of error equation) (Text 1: 7.11, 7.12. 7.13).

Module-4	
Module-4 Communication through Band Limited Channels : Digital Transmission through Band limited channels: Digital PAM Transmission through Band limited Channels, Signal design for Band limited Channels: Design of band limited signals for zero ISI-The Nyquist Criterion (statement only), Design of band limited signals with controlled ISI-Partial Response signals, Probability of error for detection of Digital PAM: Probability of error for detection of Digital PAM: Probability of error for detection of data with controlled ISI (Text 2: 9.1, 9.2, 9.3.1, 9.3.2). Channel Equalization: Linear Equalizers (ZFE, MMSE), Adaptive Equalizers (Text 2: 9.4.2).	L1, L2, L3
Module-5	
Principles of Spread Spectrum: Spread Spectrum Communication Systems: Model of a Spread Spectrum Digital Communication System, Direct Sequence Spread Spectrum Systems, Effect of De-spreading on a narrowband Interference, Probability of error (statement only), Some applications of DS Spread Spectrum Signals, Generation of PN Sequences, Frequency Hopped Spread Spectrum, CDMA based on IS-95 (Text 2: 11.3.1, 11.3.2, 11.3.3, 11.3.4, 11.3.5, 11.4.2).	L1, L2, L3
Comments On the second of the second of the standards will be able to	<u> </u>
 Course Outcomes: At the end of the course, the students will be able to: Associate and apply the concepts of Bandpass sampling to well specifie and channels. Analyze and compute performance parameters and transfer rates for and bandpass symbol under ideal and corrupted non band limited channels. Test and validate symbol processing and performance parameters at the under ideal and corrupted bandlimited channels. Demonstrate by simulation and emulation that bandpass signals sub corrupted and distorted symbols in a bandlimited channel, can be demand estimated at receiver to meet specified performance criteria. 	low pas inels. e receiver jected to
Question paper pattern:	
 The question paper will have ten questions Each full question consists of 16 marks. There will be 2 full questions (with a maximum of Three sub questions) f each module. Each full question will have sub questions covering all the topics under a module 	
• The students will have to answer 5 full questions, selecting one full from each module	question

Text Books:

- 1. Simon Haykin, "Digital Communication Systems", John Wiley & sons, First Edition, 2014, ISBN 978-0-471-64735-5.
- 2. John G Proakis and Masoud Salehi, "Fundamentals of Communication Systems", 2014 Edition, Pearson Education, ISBN 978-8-131-70573-5.

- 1. B.P.Lathi and Zhi Ding, "Modern Digital and Analog communication Systems", Oxford University Press, 4th Edition, 2010, ISBN: 978-0-198-07380-2.
- 2. Ian A Glover and Peter M Grant, "Digital Communications", Pearson Education, Third Edition, 2010, ISBN 978-0-273-71830-7.
- 3. John G Proakis and Masoud Salehi, "Communication Systems Engineering", 2nd Edition, Pearson Education, ISBN 978-93-325-5513-6.

ARM MICROCONTROLLER & EMBEDDED SYSTEMS

B.E., VI Semester, Electronics & Communication Engineering/ Telecommunication Engineering

[As per Choice Based Credit System (CBCS) scheme]

ARM MICROCONTROLLER & EMBEDDED SYSTEMS

B.E., VI Semester, Electronics & Communication Engineering/ Telecommunication Engineering [As per Choice Based Credit System (CBCS) Scheme]

Course Code	15EC62	IA Marks	20
Number of Lecture	04	Exam Marks	80
Hours/Week			
Total Number of	50 (10 Hours / Module)	Exam Hours	03
Lecture Hours			

CREDITS - 04

Course objectives: This course will enable students to:

- Understand the architectural features and instruction set of 32 bit microcontroller ARM Cortex M3.
- Program ARM Cortex M3 using the various instructions and C language for different applications.
- Understand the basic hardware components and their selection method based on the characteristics and attributes of an embedded system.
- Develop the hardware software co-design and firmware design approaches.
- Explain the need of real time operating system for embedded system applications.

Module-1

ARM-32 bit Microcontroller: Thumb-2 technology and applications of ARM, Architecture of ARM Cortex M3, Various Units in the architecture, Debugging support, General Purpose Registers, Special Registers, exceptions, interrupts, stack operation, reset sequence (Text 1: Ch 1, 2, 3) **L1, L2**

Module-2

ARM Cortex M3 Instruction Sets and Programming: Assembly basics, Instruction list and description, Useful instructions, Memory mapping, Bit-band operations and CMSIS, Assembly and C language Programming (Text 1: Ch-4, Ch-5, Ch-10 (10.1, 10.2, 10.3, 10.5 only) **L1, L2, L3**

Module-3

Embedded System Components: Embedded Vs General computing system, Classification of Embedded systems, Major applications and purpose of ES. Core of an Embedded System including all types of processor/controller, Memory, Sensors, Actuators, LED, 7 segment LED display, Optocoupler, Relay, Piezo buzzer, Push button switch, Communication Interface (onboard and external types), Embedded firmware, Other system components.

(Text 2: All the Topics from Ch-1 and Ch-2, excluding 2.3.3.4 (stepper motor), 2.3.3.8 (keyboard) and 2.3.3.9 (PPI) sections). **L1, L2, L3**

Module-4

Embedded System Design Concepts: Characteristics and Quality Attributes of Embedded Systems, Operational and non-operational quality attributes, Embedded

Systems-Application and Domain specific, Hardware Software Co-Design and Program Modelling (excluding UML), Embedded firmware design and development (excluding C language).

(Text 2: Ch-3, Ch-4, Ch-7 (Sections 7.1, 7.2 only), Ch-9 (Sections 9.1, 9.2, 9.3.1, 9.3.2 only) **L1, L2, L3**

Module-5

RTOS and IDE for Embedded System Design: Operating System basics, Types of operating systems, Task, process and threads (Only POSIX Threads with an example program), Thread preemption, Preemptive Task scheduling techniques, Task Communication, Task synchronization issues – Racing and Deadlock, Concept of Binary and counting semaphores (Mutex example without any program), How to choose an RTOS, Integration and testing of Embedded hardware and firmware, Embedded system Development Environment – Block diagram (excluding Keil), Disassembler/decompiler, simulator, emulator and debugging techniques (Text 2: Ch-10 (Sections 10.1, 10.2, 10.3, 10.5.2, 10.7, 10.8.1.1, 10.8.1.2, 10.8.2.2, 10.10 only), Ch 12, Ch-13 (a block diagram before 13.1, 13.3, 13.4, 13.5, 13.6 only) **L1, L2, L3**

Course outcomes: After studying this course, students will be able to:

- Describe the architectural features and instructions of 32 bit microcontroller ARM Cortex M3.
- Apply the knowledge gained for Programming ARM Cortex M3 for different applications.
- Understand the basic hardware components and their selection method based on the characteristics and attributes of an embedded system.
- Develop the hardware /software co-design and firmware design approaches.
- Explain the need of real time operating system for embedded system applications.

Text Books:

- 1. Joseph Yiu, "The Definitive Guide to the ARM Cortex-M3", 2nd Edition, Newnes, (Elsevier), 2010.
- 2. Shibu K V, "Introduction to Embedded Systems", Tata McGraw Hill Education Private Limited, 2nd Edition.

<u>VLSI Design</u> **B.E., VI Semester, Electronics & Communication Engineering** [As per Choice Based Credit System (CBCS) scheme]

Subject Code	15EC63	IA Marks	20	
Number of Lecture	04	Exam Marks	80	
Hours/Week				
Total Number of	50 (10 Hours / Module)	Exam Hours	03	
Lecture Hours				
	CREDITS – 0	4		
Course Objectives:	The objectives of the course i	s to enable students t	.0:	
 Impart know 	vledge of MOS transistor the	ory and CMOS techno	logies	
	wledge on architectural choice		adeoffs inv	volved
in designing	g and realizing the circuits in	CMOS technology		
	e concepts of subsystem desig			
 Demonstrate 	e the concepts of CMOS testin	ng		
	Module-1			RBT
	Moure-1			Level
Introduction: A	Brief History, MOS Transis	tors, MOS Transistor	Theory,	L1, L
	eristics, Non-ideal I-V Effects,	DC Transfer Characte	eristics	
	2, 2.4, 2.5 of TEXT2).			
	OS Fabrication, CMOS Fabr	- 1		
process, Twin tub	process], BiCMOS Technolog		XT1).	
	Module-			
	S Circuit Design Processes:	MOS Layers, Stick Di		L1, L2
Design Rules and	5			L3
	oncepts: Sheet Resistance,	-	•	
	Capacitance, Some Area Ca ays, Driving Large Capacitive			
4.8 of TEXT1).	ays, Driving Large Capacitive	Loaus (5.1 to 5.5, 4)	1, 4.5 10	
4.0 01 1LA11).	Module-3			
Scaling of MOS	Circuits : Scaling Models &	& Scaling Factors fo	r Device	L1, L2
Parameters	C	C		LI, L L3
	n Processes: Some General			
Lof Design Press	sses, Illustration of the D	esign Processes - Re	gularity,	
	II Subsystem The Manch		1 4 1 1	
Design of an AI	e	ester Carry-chain an	d Adder	
Design of an AI	chniques(5.1, 5.2, 7.1, 7.2, 8.2	ester Carry-chain an 2, 8.3, 8.4.1, 8.4.2 of 7	d Adder	
Design of an AI Enhancement Tec	chniques(5.1, 5.2, 7.1, 7.2, 8.2 Module-	ester Carry-chain an 2, 8.3, 8.4.1, 8.4.2 of 7 4	d Adder TEXT1).	T 1
Design of an AI Enhancement Tec Subsystem Desig	chniques(5.1, 5.2, 7.1, 7.2, 8.3 Module- gn: Some Architectural Issues	ester Carry-chain an 2, 8.3, 8.4.1, 8.4.2 of 7 4 , Switch Logic, Gate(re	d Adder TEXT1). estoring)	L1,
Design of an AI Enhancement Tec Subsystem Desig Logic, Parity Gene	chniques(5.1, 5.2, 7.1, 7.2, 8.2 Module - gn: Some Architectural Issues erators, Multiplexers, The Pro	ester Carry-chain an 2, 8.3, 8.4.1, 8.4.2 of 7 4 , Switch Logic, Gate(re	d Adder TEXT1). estoring)	
Design of an AI Enhancement Tec Subsystem Desig Logic, Parity Gene (6.1to 6.3, 6.4.1,	chniques(5.1, 5.2, 7.1, 7.2, 8.2 Module- gn: Some Architectural Issues erators, Multiplexers, The Pro 6.4.3, 6.4.6 of TEXT1).	ester Carry-chain an 2, 8.3, 8.4.1, 8.4.2 of 7 4 , Switch Logic, Gate(re grammable Logic Arra	id Adder TEXT1). estoring) ay (PLA)	
Design of an AI Enhancement Tec Subsystem Desig Logic, Parity Gene (6.1to 6.3, 6.4.1, FPGA Based Syst	chniques(5.1, 5.2, 7.1, 7.2, 8.3 Module - gn: Some Architectural Issues erators, Multiplexers, The Pro- 6.4.3, 6.4.6 of TEXT1). tems: Introduction, Basic con	ester Carry-chain an 2, 8.3, 8.4.1, 8.4.2 of 7 4 , Switch Logic, Gate(re grammable Logic Arra acepts, Digital design a	d Adder TEXT1). estoring) y (PLA) and	
Design of an AI Enhancement Tec Subsystem Desig Logic, Parity Gene (6.1to 6.3, 6.4.1, FPGA Based Syst FPGA's, FPGA bas	chniques(5.1, 5.2, 7.1, 7.2, 8.2 Module- gn: Some Architectural Issues erators, Multiplexers, The Pro 6.4.3, 6.4.6 of TEXT1).	ester Carry-chain an 2, 8.3, 8.4.1, 8.4.2 of 7 4 , Switch Logic, Gate(re grammable Logic Arra acepts, Digital design a	d Adder TEXT1). estoring) y (PLA) and	
Design of an AI Enhancement Teo Subsystem Desig Logic, Parity Gene (6.1to 6.3, 6.4.1, FPGA Based Syst FPGA's, FPGA bas FPGA's	chniques (5.1, 5.2, 7.1, 7.2, 8.2 Module - gn: Some Architectural Issues erators, Multiplexers, The Pro 6.4.3, 6.4.6 of TEXT1). tems: Introduction, Basic con sed System design, FPGA arch	ester Carry-chain an 2, 8.3, 8.4.1, 8.4.2 of 7 4 , Switch Logic, Gate(re grammable Logic Arra acepts, Digital design a	d Adder TEXT1). estoring) y (PLA) and	L1, L2, L
Design of an AI Enhancement Tec Subsystem Desig Logic, Parity Gene (6.1to 6.3, 6.4.1, FPGA Based Syst FPGA's, FPGA bas	chniques (5.1, 5.2, 7.1, 7.2, 8.2 Module - gn: Some Architectural Issues erators, Multiplexers, The Pro 6.4.3, 6.4.6 of TEXT1). tems: Introduction, Basic con sed System design, FPGA arch	ester Carry-chain an 2, 8.3, 8.4.1, 8.4.2 of 7 4 , Switch Logic, Gate(re grammable Logic Arra acepts, Digital design a nitecture, Physical des	d Adder TEXT1). estoring) y (PLA) and	
Design of an AI Enhancement Tec Subsystem Desig Logic, Parity Gene (6.1to 6.3, 6.4.1, FPGA Based Syst FPGA's, FPGA bas FPGA's (1.1 to 1.4, 3.2, 4.	chniques (5.1, 5.2, 7.1, 7.2, 8.3 Module- gn: Some Architectural Issues erators, Multiplexers, The Pro- 6.4.3, 6.4.6 of TEXT1). tems: Introduction, Basic con- sed System design, FPGA arch .8 of TEXT3). Module-	ester Carry-chain an 2, 8.3, 8.4.1, 8.4.2 of 7 4 , Switch Logic, Gate(re grammable Logic Arra cepts, Digital design a nitecture, Physical des 5	d Adder TEXT1). estoring) by (PLA) and sign for	
Design of an AI Enhancement Teo Subsystem Desig Logic, Parity Gene (6.1to 6.3, 6.4.1, FPGA Based Syst FPGA's, FPGA bas FPGA's (1.1 to 1.4, 3.2, 4. Memory, Regist	chniques (5.1, 5.2, 7.1, 7.2, 8.3 Module - gn: Some Architectural Issues erators, Multiplexers, The Pro 6.4.3, 6.4.6 of TEXT1). tems: Introduction, Basic con sed System design, FPGA arch .8 of TEXT3).	ester Carry-chain an 2, 8.3, 8.4.1, 8.4.2 of 7 4 , Switch Logic, Gate(re grammable Logic Arra acepts, Digital design a nitecture, Physical des 5 em Timing- System	and sign for	L2, L L1, L

Testing and Verification: Introduction, Logic Verification, Logic Verification Principles, Manufacturing Test Principles, Design for testability (12.1, 12.1.1, 12.3, 12.5, 12.6 of TEXT 2).

Course outcomes: At the end of the course, the students will be able to:

- Demonstrate understanding of MOS transistor theory, CMOS fabrication flow and technology scaling.
- Draw the basic gates using the stick and layout diagrams with the knowledge of physical design aspects.
- Interpret Memory elements along with timing considerations
- Demonstrate knowledge of FPGA based system design
- Interpret testing and testability issues in VLSI Design
- Analyze CMOS subsystems and architectural issues with the design constraints.

Question paper pattern:

- The question paper will have ten questions
- Each full question consists of 16 marks.
- There will be 2 full questions (with a maximum of Three sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module
- The students will have to answer 5 full questions, selecting one full question from each module

Text Books:

- **1. "Basic VLSI Design"** Douglas A. Pucknell& Kamran Eshraghian, PHI 3rd Edition (original Edition 1994).
- 2. "CMOS VLSI Design- A Circuits and Systems Perspective"- Neil H.E. Weste, David Harris, Ayan Banerjee, 3rd Edition, Pearson Education.
- **3. "FPGA Based System Design"** Wayne Wolf, Pearson Education, 2004, Technology and Engineering.

<u>COMPUTER COMMUNICATION NETWORKS</u> B.E., VI Semester, Electronics & Communication Engineering / Telecommunication Engineering

[As per Choice Based Credit System (CBCS) scheme]

COM	DUTED COMMUNICATION NET	PWODKC			
	<u>PUTER COMMUNICATION NE</u> ter, Electronics & Communica				
D.L., VI Semes	Telecommunication Engineer				
[As per (Choice Based Credit System (C				
Course Code	15EC64	IA Marks	20		
Number of Lecture	04	Exam Marks			
Hours/Week					
Total Number of	50 (10 Hours / Module)	Exam Hours	03		
Lecture Hours					
	CREDITS - 04				
Course Objectives: This	s course will enable students to:				
• Understand the layer suite.	ring architecture of OSI reference	e model and TCP/IP	protocol		
• Understand the prot	ocols associated with each layer				
• Learn the different n	etworking architectures and the	ir representations.			
• Learn the various ro	uting techniques and the transp	ort layer services.			
	Module-1				
TCP/IP Protocol Suite: I layers, Encapsulation Demultiplexing, The OSI Data-Link Layer: Intro Sublayers, Link Layer ad	ocol Layering: Scenarios, Prir Layered Architecture, Layers in and Decapsulation, Add Model: OSI Versus TCP/IP. duction: Nodes and Links, S Idressing: Types of addresses, A and Error Control, Data Link Lay Piggybacking. L1, L2	TCP/IP suite, Desc ressing, Multiplexi Services, Categories' ARP. Data Link Cont	ription o ng and of link trol (DLC		
	Module-2				
Controlled Access: Reservent Wired LANs: Ethernet: Ethernet: Characteristic	Random Access: ALOHA, Ca vation, Polling, Token Passing. Ethernet Protocol: IEEE802, 1 s, Addressing, Access Method Method, Physical Layer, Gigal at Ethernet. L1, L2	Ethernet Evolution, , Efficiency, Implen	Standard		
	Module-3				
Architecture, MAC Sub Architecture, Layers.	tion: Architectural Comparison, layer, Addressing Mechanism	, Physical Layer, E	Bluetooth		
Communication between Network Layer: Introduce Forwarding, Other servi	lubs, Switches, Virtual LANs: Switches and Routers, Advanta uction, Network Layer service ces, Packet Switching: Datagra es: Address Space, Classful Add	ges. s: Packetizing, Rou am Approach, Virtua	iting and al Circui		

DHCP, Network Address Resolution, Forwarding of IP Packets: Based on destination Address and Label. **L1, L2**

Module-4

Network Layer Protocols: Internet Protocol (IP): Datagram Format, Fragmentation, Options, Security of IPv4 Datagrams, ICMPv4: Messages, Debugging Tools, Mobile IP: Addressing, Agents, Three Phases, Inefficiency in Mobile IP.

Unicast Routing: Introduction, Routing Algorithms: Distance Vector Routing, Link State Routing, Path vector routing, Unicast Routing Protocol: Internet Structure, Routing Information Protocol, Open Shortest Path First, Border Gateway Protocol Version 4. **L1, L2, L3**

Module-5

Transport Layer: Introduction: Transport Layer Services, Connectionless and Connection oriented Protocols, Transport Layer Protocols: Simple protocol, Stop and wait protocol, Go-Back-N Protocol, Selective repeat protocol, User Datagram Protocol: User Datagram, UDP Services, UDP Applications, Transmission Control Protocol: TCP Services, TCP Features, Segment, Connection, State Transition diagram, Windows in TCP, Flow control, Error control, TCP congestion control. **L1, L2**

Course Outcomes: At the end of the course, the students will be able to:

- Identify the protocols and services of Data link layer.
- Identify the protocols and functions associated with the transport layer services.
- Describe the layering architecture of computer networks and distinguish between the OSI reference model and TCP/IP protocol suite.
- Distinguish the basic network configurations and standards associated with each network.
- Construct a network model and determine the routing of packets using different routing algorithms.

Text Book:

Data Communications and Networking , Forouzan, $5^{\rm th}$ Edition, McGraw Hill, 2016 ISBN: 1-25-906475-3

- 1. Computer Networks, James J Kurose, Keith W Ross, Pearson Education, 2013, ISBN: 0-273-76896-4
- 2. Introduction to Data Communication and Networking, Wayarles Tomasi, Pearson Education, 2007, ISBN:0130138282

CELLULAR MOBILE COMMUNICATIONS B.E., VI Semester, Electronics & Communication Engineering/ Telecommunication Engineering

[As per Choice Based Credit System (CBCS) scheme]

Subject Code	15EC651	IA Marks	20	
Number of Lecture	03	Exam Marks	80	
Hours/Week				
Total Number of	40 (8 Hours / Module)	Exam Hours	03	
Lecture Hours				
CREDITS – 03				
Course Objectives: This course enables students to:				
• Understand the application of multi user access in a cellular communication				

- Understand the application of multi user access in a cellular communication scenario.
- Understand the propagation mechanisms in an urban mobile communications using statistical and empirical models.
- Understand system architecture, call processing protocols and services of GSM, GPRS and EDGE.
- Understand system architecture, call processing protocols and services of CDMA based systems IS95 and CDMA2000.

Module-1	RBT
	Level
Cellular Concept: Frequency Reuse, Channel Assignment Strategies,	L1, L2
Interference and System Capacity, Power Control for Reducing Interference,	
Trunking and Grade of Service, Improving Capacity in Cellular Systems.	
Mobile Radio Propagation: Large Scale path Loss- Free Space Model, Three	
basic propagation mechanisms, Practical Link Budget Design using Path Loss	
Models, Outdoor Propagation Models - Okumura, Hata, PCS Extension to	
Hata Model (explanations only) (Text 1).	
Module-2	
Mobile Radio Propagation: Small-Scale Fading and Multipath:	L1, L2
Small scale Multipath Propagation, Impulse Response Model of a Multipath	
Channel, Small-Scale Multipath Measurements, Parameters of Mobile	
Multipath Channels, Types of Small-Scale Fading, Rayleigh and Ricean	
Distributions, Statistical Model for Multipath Fading Channels (Clarke's Model	
for Flat Fading only).(Text 1)	
Module-3	
System Architecture and Addressing:	L1, L2
System architecture, The SIM concept, Addressing, Registers and subscriber	
data, Location registers (HLR and VLR) Security-related registers (AUC and	
EIR), Subscriber data, Network interfaces and configurations.	
Air Interface – GSM Physical Layer:	
Logical channels, Physical channels, Synchronization- Frequency and clock	
synchronization, Adaptive frame synchronization, Mapping of logical onto	
physical channels, Radio subsystem link control, Channel coding, source	
coding and speech processing, Source coding and speech processing, Channel	
coding, Power-up scenario.	
GSM Protocols:	
Protocol architecture planes, Protocol architecture of the user plane, Protocol	
architecture of the signaling plane, Signaling at the air interface (Um),	
Signaling at the A and Abis interfaces, Security-related network functions,	

Module-4	
GSM Roaming Scenarios and Handover: Mobile application part interfaces, Location registration and location update, Connection establishment and termination, Handover. (up to 6.4.1 only in Text2)	L1, L2
Services: Classical GSM services, Popular GSM services: SMS and MMS.	
Improved data services in GSM: GPRS, HSCSD and EDGE	
GPRS System architecture of GPRS , Services , Session management, mobility management and routing, Protocol architecture, Signaling plane, Interworking with IP networks, Air interface, Authentication and ciphering, Summary of GPRS .	
HSCSD: Architecture, Air interface, HSCSD resource allocation and capacity issues.	
EDGE: The EDGE concept, EDGE physical layer, modulation and coding, EDGE: effects on the GSM system architecture, ECSD and EGPRS. (Text 2)	
Module-5	Т 4 Т 4
CDMA Technology – Introduction to CDMA,CDMA frequency bands, CDMA Network and System Architecture, CDMA Channel concept, Forward Logical Channels, Reverse logical Channels, CDMA frame format, CDMA System Operations(Initialization/Registration), Call Establishment, CDMA Call handoff,IS-95B,CDMA2000,W-CDMA,UMTS,CDMA data networks, Evolution of CDMA to 3G, CDMA 2000 RAN Components, CDMA 2000 Packet Data Service. (Text 3)	L1, L2
Course outcomes: At the end of the course, the students will be able to:	
 Apply the understanding of statistical characterization of urban mobile characterization of urban mobile characterization of urban mobile characterization schemes. Demonstrate the limitations of GSM, GPRS and CDMA to meet high data rate requirements and limited improvements that are needed. Analyze the call process procedure between a calling number and called num all scenarios in GSM or CDMA based systems. Test and validate voice and data call handling for various scenarios in GSM cDMA systems for national and international interworking situations. 	e nber fo
Question paper pattern:	
 The question paper will have ten questions 	
• Each full question consists of 16 marks.	
• There will be 2 full questions (with a maximum of Three sub questions) fro	m
each module	
each module.Each full question will have sub questions covering all the topics under a module	unctio
• Each full question will have sub questions covering all the topics under a	uestio
 Each full question will have sub questions covering all the topics under a module The students will have to answer 5 full questions, selecting one full questions 	uestio
 Each full question will have sub questions covering all the topics under a module The students will have to answer 5 full questions, selecting one full question from each module 	

"GSM- Architecture, Protocols and Services", Wiley, 3rd Edition, 2009, ISBN-978-0-470-03070-7.

3. Gary J Mullet, "Introduction To Wireless Telecommunications Systems and Networks", Cengage Learning.

ADAPTIVE SIGNAL PROCESSING

B.E., VI Semester, Electronics & Communication Engineering/ Telecommunication Engineering

[As per Choice Based Credit System (CBCS) scheme]

L	1		
Subject Code	15EC652	IA Marks	20
Number of Lecture	03	Exam Marks	80
Hours/Week			
Total Number of	40 (8 Hours / Module)	Exam Hours	03
Lecture Hours			
CREDITS – 03			

Course Objectives: The objectives of this course are to:

- Introduce to the concept and need of adaptive filters and popular adaptive signal processing algorithms
- Understand the concepts of training and convergence and the trade-off between performance and complexity.
- Introduce to common linear estimation techniques
- Demonstrate applications of adaptive systems to sample problems.
- Introduce inverse adaptive modelling.

mit oudoe inverse udaptive modeling.	
Module-1	RBT
	Level
Adaptive systems: Definitions and characteristics - applications –	L1, L2
properties-examples - adaptive linear combiner input signal and weight	
vectors - performance function-gradient and minimum mean square error -	
introduction to filtering-smoothing and prediction - linear optimum filtering-	
orthogonality - Wiener – Hopf equation-performance surface(Chapters 1& 2	
of Text).	
Module-2	
Searching performance surface-stability and rate of convergence:	L1, L2
Learning curve-gradient search - Newton's method - method of steepest	
descent - comparison - Gradient estimation - performance penalty - variance	
- excess MSE and time constants – mis-adjustments (Chapters 4& 5 of Text).	
Module-3	
LMS algorithm convergence of weight vector: LMS/Newton algorithm -	L1, L2,
properties - sequential regression algorithm - adaptive recursive filters -	L3
random-search algorithms - lattice structure - adaptive filters with	
orthogonal signals (Chapters 6& 8 of Text).	
Module-4	
Applications-adaptive modeling and system identification: Multipath	L1, L2,
communication channel, geophysical exploration, FIR digital filter synthesis.	L3
(Chapter 9 of Text).	
Module-5	
Inverse adaptive modeling: Equalization, and deconvolution adaptive	L1,
equalization of telephone channels-adapting poles and zeros for IIR digital	L2, L3
filter synthesis(Chapter 10 of Text).	
Course Outcomes: At the end of the course, students should be able to:	
• Devise filtering solutions for optimising the cost function indicating	error in
estimation of parameters and appreciate the need for adaptation in design	
Evaluate the nonformance of various methods for designing edention	

• Evaluate the performance of various methods for designing adaptive filters

through estimation of different parameters of stationary random process clearly considering practical application specifications.

- Analyse convergence and stability issues associated with adaptive filter design and come up with optimum solutions for real life applications taking care of requirements in terms of complexity and accuracy.
- Design and implement filtering solutions for applications such as channel equalisation, interference cancelling and prediction considering present day challenges.

Question paper pattern:

- The question paper will have ten questions
- Each full question consists of 16 marks.
- There will be 2 full questions (with a maximum of Three sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer 5 full questions, selecting one full question from each module.

Text Book:

Bernard Widrow and Samuel D. Stearns, "Adaptive Signal Processing", Person Education, 1985.

- 1. Simon Haykin, "Adaptive Filter Theory", Pearson Education, 2003.
- 2. John R. Treichler, C. Richard Johnson, Michael G. Larimore, "Theory and Design of Adaptive Filters", Prentice-Hall of India, 2002.

ARITIFICAL NEURAL NETWORKS B.E., VI Semester, Electronics & Communication Engineering/ Telecommunication Engineering [As per Choice Based Credit System (CBCS) scheme]

[~	per entere Basea erea	ie System (SBS) benennej	
Subject Code	15EC653	IA Marks	20	
Number of Lecture	03	Exam Marks	80	
Hours/Week				
Total Number of	40 (8 Hours / Module)	Exam Hours	03	
Lecture Hours				
	CREDIT	TS - 03		
Course Objectives: '	The objectives of this cou	urse are:		
Understand	l the basics of ANN and o	comparison with	Human brain	
• Provide kno	owledge on Generalizations of building an ANN	-		l various
	wledge of reinforcement	learning using r	neural networks	
Provide kno	wledge of unsupervised	learning using r	eural networks.	
	Module-1			RBT
				Level
	logical Neuron - Artifi			L1, L2
	s – Architecture : Feed			
	and Linear Separability	, Non-Linear Se	eparable Problem.	
XOR Problem, Multi	5			
	Algorithms, Error correc			
	of TLNs, Perceptron	Learning Algor	ithm, Perceptron	
Convergence Theore				
	Module-2			
Supervised Learning: Perceptron learning and Non Separable sets, -Least			L1, L2,	
Mean Square Learning, MSE Error surface, Steepest Descent Search, µ-LMS			L3	
	dient descent, Applicat			
5	ork Architecture, Back	propagation Le	arning Algorithm,	
Practical considerat	ion of BP algorithm.			
	Module-3			
	hines and Radial Basis F			L1, L2,
	g Theory, Support Vecto			L3
Image Classificati				
	Networks, Learning in	RBFNs, RBF aj	pplication to face	
recognition.				
	Module-4			
	works: Associative Learr			L1, L2,
	memory, Hopfield N			L3
	tate in a Box neural		ulated Annealing,	
Boltzmann Machine	e, Bidirectional Associativ	V		
	Module-5			
	eature Map: Maximal H			L1,
	nts, Generalized Learn			L2, L3
Self-organization Fe	eature Maps, Application	ot SOM, Growir	ng Neural Gas.	

Course outcomes: At the end of the course, students should be able to:

- Understand the role of neural networks in engineering, artificial intelligence, and cognitive modelling.
- Understand the concepts and techniques of neural networks through the study of the most important neural network models.
- Evaluate whether neural networks are appropriate to a particular application.
- Apply neural networks to particular applications, and to know what steps to take to improve performance.

Question paper pattern:

The question paper will have ten questions.

- Each full question consists of 16 marks.
- There will be 2 full questions (with a maximum of Three sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module. The students will have to answer 5 full questions, selecting one full question from each module.

Text Book:

Neural Networks A Classroom Approach– Satish Kumar, McGraw Hill Education (India) Pvt. Ltd, Second Edition.

- 1. Introduction to Artificial Neural Systems-J.M. Zurada, Jaico Publications 1994.
- 2. Artificial Neural Networks-B. Yegnanarayana, PHI, New Delhi 1998.

DIGITAL SWITCHING SYSTEMS B.E., VI Semester, Electronics & Communication Engineering/ Telecommunication Engineering

[As per Choice Based Credit System (CBCS) scheme]

Subject Code	15EC654	IA Marks	20	
Number of Lecture	03	Exam Marks	80	
Hours/Week				
Total Number of	40 (8 Hours / Module)	Exam Hours	03	
Lecture Hours				
CREDITS – 03				
Course Objectives: This course will enable students to				

- Understand the basics of telecommunication networks and digital transmission of data.
- Study about the evolution of switching systems and the digital switching.
- Study about the telecommunication traffic and its measurements.
- Learn the technologies associated with the data switching operations.
- Understand the use of software for the switching and its maintenance

Module-1	RBT
	Level
DEVELOPMENT OF TELECOMMUNICATIONS: Network structure, Network	L1, L2
services, terminology, Regulation, Standards. Introduction to	
telecommunications transmission, Power levels, Four wire circuits, Digital	
transmission, FDM,TDM, PDH and SDH	
[Text-1]	
Module-2	
EVOLUTION OF SWITCHING SYSTEMS: Introduction, Message switching,	L1, L2
Circuit switching, Functions of switching systems, Distribution systems,	
Basics of crossbar systems, Electronic switching.	
DIGITAL SWITCHING SYSTEMS: Switching system hierarchy, Evolution of	
digital switching systems, Stored program control switching systems,	
Building blocks of a digital switching system, Basic call processing. [Text-1	
and 2]	
Module-3	
TELECOMMUNICATIONS TRAFFIC: Introduction, Unit of traffic,	L1, L2
Congestion, Traffic measurement, Mathematical model, lost call systems,	
Queuing systems.	
SWITCHING SYSTEMS: Introduction, Single stage networks, Gradings, Link Systems, GOS of Linked systems. [Text-1]	
Module-4	
TIME DIVISION SWITCHING: Introduction, space and time switching, Time	I1 I9
switching networks, Synchronisation.	
SWITCHING SYSTEM SOFTWARE: Introduction, Basic software	
architecture, Software architecture for level 1to 3 control, Digital switching	
system software classification, Call models, Software linkages during call,	
Feature flow diagram, Feature interaction. [Text-1 and 2]	
Module-5	
MAINTENANCE OF DIGITAL SWITCHING SYSTEM: Introduction , Software	L1, L2
maintenance, Interface of a typical digital switching system central office,	
System outage and its impact on digital switching system reliability, Impact	

of software patches on digital switching system maintainability, A methodology for proper maintenance of digital switching system

A GENERIC DIGITAL SWITCHING SYSTEM MODEL: Introduction, Hardware architecture, Software architecture, Recovery strategy, Simple call through a digital system, Common characteristics of digital switching systems. Reliability analysis. [Text-2]

Course Outcomes: At the end of the course, students should be able to:

- Describe the electromechanical switching systems and its comparison with the digital switching.
- Determine the telecommunication traffic and its measurements.
- Define the technologies associated with the data switching operations.
- Describe the software aspects of switching systems and its maintenance.

Question paper pattern:

- The question paper will have ten questions
- Each full question consists of 16 marks.
- There will be 2 full questions (with a maximum of Three sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module
- The students will have to answer 5 full questions, selecting one full question from each module

Text Books:

- 1. Telecommunication and Switching, Traffic and Networks J E Flood: Pearson Education, 2002.
- 2. Digital Switching Systems, Syed R. Ali, TMH Ed 2002.

Reference Book:

Digital Telephony - John C Bellamy: Wiley India Pvt. Ltd, 3rd Ed, 2008.

MICROELECTRONICS B.E., VI Semester, Electronics & Communication Engineering/ Telecommunication Engineering

	Telecommunicat			
	per Choice Based Cred	N N		
Subject Code	15EC655	IA Marks	20	
Number of Lecture	03	Exam Marks	80	
Hours/Week				
Total Number of	40 (8 Hours / Module)	Exam Hours	03	
Lecture Hours				
	CREDIT			
	This course will enable s		_	
	h the MOSFET physical			
	, circuit models and bas	11		
	rated device and/or circ	uit design proble	ms, identify the de	sign
issues, and dev	-			
	sign microelectronic cire	cuits for linear a	mplifier and digita	
applications.				
	put/output and gain ch			
differential and	l common two-transistor	r linear amplifier	building block sta	ges.
	Module-1			RBT
				Level
	ructure and Physical Ope		cteristics, MOSFET	L1, L2
Circuits at DC, MOSF	ET as an amplifier and as	a switch.		
	Module-2			
MOSFETS (continue)	d): Biasing in MOS ampli		all Signal Operation	L1, L2
	OSFET amplifier, MOSF			,
response of CS amplif	ier.			
	Module-3			
MOSFETS (continued	I): Discrete circuit MOS ar	nplifiers.		L1,
	plifier: Comparison of M			L2, L3
	Current steering circuits	s, high frequency	response- general	
considerations.				
	Module-4			
	nplifier (continued):CS			L1, L2
	amplifiers with active loa			
Cascode amplifiers. C	S with source degeneration	n (only MOS ampli	fiers to be dealt).	
	Module-5			
Differential and M	ultistage Amplifiers: '	The MOS differe	ential pair, small	L1, L2
signal operation of	MOS differential pair,	Differential amp	olifier with active	
loads, and frequer	ncy response of the d	ifferential ampli	ifiers. Multistage	
amplifiers (only MOS	5 amplifiers to be dealt).			
				1
Course outcomes.	After studying this cours	se students will	he able to	
	After studying this cours			
Explain the u	nderlying physics and p	rinciples of opera	ation of	
• Explain the un Metaloxide-set	nderlying physics and pu miconductor (MOS) capa	rinciples of opera	ation of	
• Explain the un Metaloxide-set transistors (M	nderlying physics and p miconductor (MOS) capa OSFETs).	rinciples of opera acitors and MOS	tion of field effect	
 Explain the un Metaloxide-set transistors (M Describe and 	nderlying physics and pu miconductor (MOS) capa OSFETs). apply simple large signa	rinciples of opera acitors and MOS l circuit models f	ation of field effect for MOSFETs.	
 Explain the un Metaloxide-set transistors (M Describe and a 	nderlying physics and pu miconductor (MOS) capa OSFETs). apply simple large signa esign microelectronic ciu	rinciples of opera acitors and MOS l circuit models f	ation of field effect for MOSFETs.	

• Use of discrete MOS circuits to design Single stage and Multistage amplifiers to meet stated operating specifications.

Question paper pattern:

- The question paper will have ten questions
- Each full question consists of 16 marks.
- There will be 2 full questions (with a maximum of Three sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer 5 full questions, selecting one full question from each module.

Text Book:

"Microelectronic Circuits", Adel Sedra and K.C. Smith, 6th Edition, Oxford University Press, International Version, 2009.

- 1. **"Microelectronics An integrated approach",** Roger T Howe, Charles G Sodini, Pearson education.
- 2. **"Fundamentals of Microelectronics",** Behzad Razavi, John Wiley India Pvt. Ltd, 2008.
- **3. "Microelectronics Analysis and Design",** Sundaram Natarajan, Tata McGraw-Hill, 2007.

EMBEDDED CONTROLLER LAB

B.E., VI Semester, Electronics & Communication Engineering/ Telecommunication Engineering

[As per Choice Based Credit System (CBCS) scheme]

RBT Levels	L1, L2, L3	Exam Hours	03
Hours/Week	+ 02 Hours Laboratory = 03		
Number of Lecture	01Hr Tutorial (Instructions)	Exam Marks	80
Subject Code	15ECL67	IA Marks	20

CREDITS – 02

Course objectives: This course will enable students to:

- Understand the instruction set of ARM Cortex M3, a 32 bit microcontroller and the software tool required for programming in Assembly and C language.
- Program ARM Cortex M3 using the various instructions in assembly level language for different applications.
- Interface external devices and I/O with ARM Cortex M3.
- Develop C language programs and library functions for embedded system applications.

Laboratory Experiments

PART-A: Conduct the following Study experiments to learn ALP using ARM Cortex M3 Registers using an Evaluation board and the required software tool.

- 1. ALP to multiply two 16 bit binary numbers.
- 2. ALP to find the sum of first 10 integer numbers.

PART-B: Conduct the following experiments on an ARM CORTEX M3 evaluation board using evaluation version of Embedded 'C' & Keil uVision-4 tool/compiler.

- 1. Display "Hello World" message using Internal UART.
- 2. Interface and Control a DC Motor.
- 3. Interface a Stepper motor and rotate it in clockwise and anti-clockwise direction.

- 4. Interface a DAC and generate Triangular and Square waveforms.
- 5. Interface a 4x4 keyboard and display the key code on an LCD.
- 6. Using the Internal PWM module of ARM controller generate PWM and vary its duty cycle.
- 7. Demonstrate the use of an external interrupt to toggle an LED On/Off.
- 8. Display the Hex digits 0 to F on a 7-segment LED interface, with an appropriate delay in between.

9. Interface a simple Switch and display its status through Relay, Buzzer and LED.

10. Measure Ambient temperature using a sensor and SPI ADC IC.

Course outcomes: After studying this course, students will be able to:

- Understand the instruction set of 32 bit microcontroller ARM Cortex M3, and the software tool required for programming in Assembly and C language.
- Develop assembly language programs using ARM Cortex M3 for different applications.
- Interface external devices and I/O with ARM Cortex M3.
- Develop C language programs and library functions for embedded system applications.

Conduction of Practical Examination:

- 1. PART-B experiments using Embedded-C are only to be considered for the practical examination. PART-A ALP programs are for study purpose and can be considered for Internal Marks evaluation.
- 2. Strictly follow the instructions as printed on the cover page of answer script for breakup of marks.
- 3. Change of experiment is allowed only once and Marks allotted to the procedure part to be made zero.

COMPUTER NETWORKS LABORATORY B.E., VI Semester, Electronics & Communication Engineering

Subject Code	15ECL68	IA Marks	20		
Number of Lecture Hours/Week	01Hr Tutorial (Instructions) + 02 Hours Laboratory = 03	Exam Marks	80		
RBT Levels	L1, L2, L3	Exam Hours	03		
CREDITS – 02					

[As per Choice Based Credit System (CBCS) scheme]

Course objectives: This course will enable students to:

- Choose suitable tools to model a network and understand the protocols at various OSI reference levels.
- Design a suitable network and simulate using a Network simulator tool.
- Simulate the networking concepts and protocols using C/C++ programming. •
- Model the networks for different configurations and analyze the results.

Laboratory Experiments

PART-A: Simulation experiments using NS2/ NS3/ OPNET/ NCTUNS/ NetSim/ QualNet or any other equivalent tool

- 1. Implement a point to point network with four nodes and duplex links between them. Analyze the network performance by setting the queue size and varying the bandwidth.
- 2. Implement a four node point to point network with links n0-n2, n1-n2 and n2-n3. Apply TCP agent between n0-n3 and UDP between n1-n3. Apply relevant applications over TCP and UDP agents changing the parameter and determine the number of packets sent by TCP/UDP.
- 3. Implement Ethernet LAN using n (6-10) nodes. Compare the throughput by changing the error rate and data rate.
- 4. Implement Ethernet LAN using n nodes and assign multiple traffic to the nodes and obtain congestion window for different sources/ destinations.
- 5. Implement ESS with transmission nodes in Wireless LAN and obtain the performance parameters.
- 6. Implementation of Link state routing algorithm.

PART-B: Implement the following in C/C++

- 1. Write a program for a HLDC frame to perform the following.
- i) Bit stuffing
- ii) Character stuffing.
- 2. Write a program for distance vector algorithm to find suitable path for transmission.

- 3. Implement Dijkstra's algorithm to compute the shortest routing path.
- 4. For the given data, use CRC-CCITT polynomial to obtain CRC code. Verify the program for the cases

a. Without error

- b. With error
- 5. Implementation of Stop and Wait Protocol and Sliding Window Protocol
- **6.** Write a program for congestion control using leaky bucket algorithm.

Course outcomes: On the completion of this laboratory course, the students will be able to:

- Use the network simulator for learning and practice of networking algorithms.
- Illustrate the operations of network protocols and algorithms using C programming.
- Simulate the network with different configurations to measure the performance parameters.
- Implement the data link and routing protocols using C programming.

Conduct of Practical Examination:

- All laboratory experiments are to be included for practical examination.
- For examination one question from software and one question from hardware or only one hardware experiments based on the complexity to be set.
- Students are allowed to pick one experiment from the lot.
- Strictly follow the instructions as printed on the cover page of answer script for breakup of marks.
- Change of experiment is allowed only once and Marks allotted to the procedure part to be made zero.

<u>6th Semester Open Electives Syllabus for the courses offered by</u> <u>EC/TC Board:</u>

DATA STRUCTURE USING C++ B.E VI Semester (Open Elective) [As per Choice Based Credit System (CBCS) Scheme]

Course Code	15EC661	IA Marks	20			
Number of Lecture	03	Exam Marks	80			
Hours/Week						
Total Number of Lecture	40 (08 Hrs per Module)	Exam Hours	03			
Hours	_					

CREDITS - 03

Course objectives: This course will enable students to

- Explain fundamentals of data structures and their applications essential for programming/problem solving
- Analyze Linear Data Structures: Stack, Queues, Lists
- Analyze Non Linear Data Structures: Trees
- Assess appropriate data structure during program development/Problem Solving

Module -1

INTRODUCTION: Functions and parameters, Dynamic memory allocation, Recursion. **LINEAR LISTS:** Data objects and structures, Linear list data structures, Array Representation, Vector Representation, Singly Linked lists and chains. **L1, L2**

Module -2

ARRAYS AND MATRICS: Arrays, Matrices, Special matrices, Sparse matrices.

STACKS: The abstract data types, Array Representation, Linked Representation, Applications-Parenthesis Matching & Towers of Hanoi. **L1, L2, L3**

Module -3

QUEUES: The abstract data types, Array Representation, Linked Representation, Applications-Railroad car arrangement.

HASHING: Dictionaries, Linear representation, Hash table representation. L1, L2, L3

Module -4

BINARY AND OTHER TREES: Trees, Binary trees, Properties and representation of binary trees, Common binary tree operations, Binary tree traversal the ADT binary tree, ADT binary tree and the class linked binary tree. **L1, L2, L3**

Module -5

Priority Queues: Linear lists, Heaps, Applications-Heap Sorting. **Search Trees:** Binary search trees operations and implementation, Binary Search trees with duplicates. **L1, L2, L3** **Course outcomes:** After studying this course, students will be able to:

- Acquire knowledge of Dynamic memory allocation, Various types of data structures, operations and algorithms and Sparse matrices and Hashing
- Understand non Linear data structures trees and their applications
- Design appropriate data structures for solving computing problems
- Analyze the operations of Linear Data structures: Stack, Queue and Linked List and their applications

Text Book:

Data structures, Algorithms, and applications in C++, Sartaj Sahni, Universities Press, 2nd Edition, 2005.

- 1. Data structures, Algorithms, and applications in C++, Sartaj Sahni, Mc. Graw Hill, 2000.
- 2. **Object Oriented Programming with C++,** E.Balaguruswamy, TMH, 6th Edition, 2013.
- 3. **Programming in C++,** E.Balaguruswamy. TMH, 4th, 2010.

POWER ELECTRONICS B.E., VI Semester (Open Elective) [As per Choice Based Credit System (CBCS) scheme]

Subject Code	15EC662	IA Marks	20	
Number of Lecture	03	Exam Marks	80	
Hours/Week				
Total Number of Lecture	40 (08 Hours / Module)	Exam Hours	03	
Hours				
a b b b b b b b b b b	CREDITS – 03			
Course Objectives: This cou				
• Understand the working o	1			
	ristor circuits with different			
• Learn the applications of J	power devices in controlled	rectifiers, convert	ers and	d
inverters.				
• Study of power electronics	s circuits under different lo	ad conditions.		
Module-1			RBT	
				Level
Introduction - Application	as of Power Electronics,	Power Semicond	uctor	L1, L2
Devices, Control Characteristics of Power Devices, types of Power Electronic			ronic	
Circuits.				
Power Transistors: Power BJTs: Steady state characteristics. Power			Power	
MOSFETs: device operat		istics, IGBTs: c	levice	
operation, output and trans	sfer characteristics.			
(Text 1)				
	Module-2			
Thyristors - Introduction, Principle of Operation of SCR, Static Anode-		node-	L1, L2,	
Cathode Characteristics of SCR, Two transistor model of SCR, Gate		Gate	L3	
Characteristics of SCR, Turn-ON Methods, Turn-OFF Mechanism, Turn-OFF		-OFF		
Methods: Natural and Forced Commutation – Class A and Class B types,		ypes,		
Gate Trigger Circuit: Resistance Firing Circuit, Resistance capacitance firing				
circuit.				
(Text 2)				
	Module-3			
Controlled Rectifiers - Intro			verter	L1, L2,
operation, Single phase full converters, Single phase dual converters.			L3	
AC Voltage Controllers - Introduction, Principles of ON-OFF Control,				
Principle of Phase Control,	Single phase control with	resistive and indu	lctive	
loads.				
(Text 1)				
	Module-4			
DC-DC Converters - Introduction, principle of step-down operation and it's			L1, L2	
analysis with RL load, principle of step-up operation, Step-up converter with				
a resistive load, Performance				
mode regulators: Buck regu (Text 1)	ilator, Boost regulator, Buo	ck-Boost Regulato	rs.	

Module-5	
Pulse Width Modulated Inverters- Introduction, principle of operation,	L1, L2
performance parameters, Single phase bridge inverters, voltage control of	
single phase inverters, current source inverters, Variable DC-link inverter,	
Boost inverter. (Text 1)	

Course outcomes: After studying this course, students will be able to:

- Describe the characteristics of different power devices and identify the applications.
- Illustrate the working of DC-DC converter and inverter circuit.
- Determine the output response of a thyristor circuit with various triggering options.
- Determine the response of controlled rectifier with resistive and inductive loads.

Evaluation of Internal Assessment Marks:

It is suggested that at least a few experiments of Power Electronics are conducted by the students for better understanding of the course. This activity can be considered for the evaluation of 5 marks out of 20 Internal assessment marks, reserved for the other activities.

Question paper pattern:

- The question paper will have ten questions
- Each full question consists of 16 marks.
- There will be 2 full questions (with a maximum of Three sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module
- The students will have to answer 5 full questions, selecting one full question from each module

Text Book:

- 1. Mohammad H Rashid, Power Electronics, Circuits, Devices and Applications, 3rd/4th Edition, Pearson Education Inc, 2014, ISBN: 978-93-325-1844-5.
- 2. M.D Singh and K B Khanchandani, Power Electronics, 2nd Edition, Tata Mc-Graw Hill, 2009, ISBN: 0070583897.

- 4. L. Umanand, Power Electronics, Essentials and Applications, John Wiley India Pvt. Ltd, 2009.
- 5. Dr. P. S. Bimbhra, "Power Electronics", Khanna Publishers, Delhi, 2012.
- 6. P.C. Sen, "Modern Power Electronics", S Chand & Co New Delhi, 2005.

DIGITAL SYSTEM DESIGN USING VERILOG

B.E., VI Semester (Open Elective)

[As per Choice Based Credit System (CBCS) scheme]

	sed Credit System (CBCS) sche		
Subject Code:	15EC663	IA Marks: 20	
Number of Lecture Hours/Week:	03	Exam Marks:	
Total Number of Lecture Hours:	40 (08 Hrs per module)	Exam Hours:	03
	CREDITS – 03		
Course objectives: This course w	ill enable students to:		
 Understand the concepts of ` 	Verilog Language.		
 Design the digital systems as 	s an activity in a larger systems	s design context	•
	ion of semiconductor memories	frequently	
used in application specific o			
	re embedded in package and a	ssembled in	
PCB's for different applicatio			
• Design and diagnosis of proc	cessors and I/O controllers use	d in embedded	systems.
	Module -1		DDT
	Module - 1		RBT Level
Introduction and Methodology:			L1, L2,
Digital Systems and Embedded Systems	stems, Real-World Circuits, Mo	dels, Design	L3
Methodology (1.1, 1.3 to 1.5 of Tex	t).	_	
Combinational Basics: Combination of Combinational Circuits. (2.3 and	1	, Verification	
Sequential Basics : Sequential Da Timing Methodology (4.3 up to 4.3		Synchronous	
	Module -2		
Memories: Concepts, Memory Typ of Text).	bes, Error Detection and Corre	ction (Chap 5	L1, L2, L3
	Module -3		
Implementation Fabrics: Integra	8	0	L1, L2,
Packaging and Circuit boards, International Circuit boards, Intern	erconnection and Signal integr	ity (Chap 6 of	L3
Text).			
	Module -4	Dunna Contal	11 10
I/O interfacing: I/O devices,		Suses, Serial	L1, L2,
Transmission, I/O software (Cha	ap 8 of fext).		L3
	Module -5		
Design Methodology: Design flow	, Design optimization, Design fe	or test,	L1, L2,
Nontechnical Issues (Chap 10 of Te	ext).		L3, L4
		1.	
Course outcomes: After studying	this course, students will be ab	ole to:	
 Construct the combinational 	circuits using discrete gates a	and programma	hle logic

- Construct the combinational circuits, using discrete gates and programmable logic devices.
- Describe Verilog model for sequential circuits and test pattern generation.

- Design a semiconductor memory for specific chip design.
- Design embedded systems using small microcontrollers, larger CPUs/DSPs, or hard or soft processor cores.
- Synthesize different types of processor and I/O controllers that are used in embedded system.

Question paper pattern:

- The question paper will have ten questions.
- Each full Question consisting of 16 marks. There will be 2 full questions (with a maximum of Three sub questions from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer 5 full questions, selecting one full question from each module.

Text Book:

Peter J. Ashenden, "Digital Design: An Embedded Systems Approach Using VERILOG", Elesvier, 2010.

B.E E&C SEVENTH SEMESTER SYLLABUS

MICROWAVES AND ANTENNAS

B.E., VII Semester, Electronics & Communication Engineering

[As per Choice Based Credit System (CBCS) scheme]

Course Code	15EC71	IA Marks	20	
Number of Lecture Hours/Week	04	Exam Marks	80	
Total Number of Lecture Hours	50 (10 Hours / Module)	Exam Hours	03	
CDEDITS 04				

CREDITS – 04

Course objectives: This course will enable students to:

- Describe the microwave properties and its transmission media
- Describe microwave devices for several applications
- Understand the basics of antenna theory
- Select antennas for specific applications

Module-1

Microwave Tubes: Introduction, Reflex Klystron Oscillator, Mechanism of Oscillations, Modes of Oscillations, Mode Curve (Qualitative Analysis only). (Text 1: 9.1, 9.2.2) Microwave Transmission Lines: Microwave Frequencies, Microwave devices, Microwave Systems, Transmission Line equations and solutions, Reflection Coefficient and Transmission Coefficient, Standing Wave and Standing Wave Ratio, Smith Chart, Single Stub matching. (Text 2: 0.1, 0.2, 0.3, 3.1, 3.2, 3.3, 3.5, 3.6 Except Double stub matching) L1, L2

Module-2

Microwave Network theory: Symmetrical Z and Y-Parameters for Reciprocal Networks, S matrix representation of Multi-Port Networks. (Text 1: 6.1, 6.2, 6.3) **Microwave Passive Devices:** Coaxial Connectors and Adapters, Attenuators, Phase Shifters, Waveguide Tees, Magic tees. (Text 1: 6.4.2, 6.4.14, 6.4.15, 6.4.16) **L1, L2**

Module-3

Strip Lines: Introduction, Micro Strip lines, Parallel Strip lines, Coplanar Strip lines, Shielded Strip Lines. (Text 2: Chapter 11)

Antenna Basics: Introduction, Basic Antenna Parameters, Patterns, Beam Area, Radiation Intensity, Beam Efficiency, Directivity and Gain, Antenna Apertures, Effective Height, Bandwidth, Radio Communication Link, Antenna Field Zones & Polarization. (Text 3: 2.1- 2.11, 2.13,2.15) **L1, L2, L3**

Module-4

Point Sources and Arrays: Introduction, Point Sources, Power Patterns, Power Theorem, Radiation Intensity, Field Patterns, Phase Patterns, Arrays of Two Isotropic Point Sources, Pattern Multiplication, Linear Arrays of n Isotropic Point Sources of equal Amplitude and Spacing.(Text 3: 5.1 – 5.10,5.13)

Electric Dipoles: Introduction, Short Electric Dipole, Fields of a Short Dipole (General and Far Field Analyses), Radiation Resistance of a Short Dipole, Thin Linear Antenna (Field Analyses), Radiation Resistances of Lambda/2 Antenna. (Text 3: 6.1 -6.6) **L1, L2, L3, L4**

Module-5

Loop and Horn Antenna: Introduction, Small loop, Comparison of Far fields of Small Loop and Short Dipole, The Loop Antenna General Case, Far field Patterns of Circular Loop Antenna with Uniform Current, Radiation Resistance of Loops, Directivity of Circular Loop Antennas with Uniform Current, Horn antennas Rectangular Horn Antennas.(Text 3: 7.1-7.8, 7.19, 7.20)

Antenna Types: Helical Antenna, Helical Geometry, Practical Design Considerations of Helical Antenna, Yagi-Uda array, Parabola General Properties, Log Periodic Antenna. (Text 3: 8.3, 8.5, 8.8, 9.5, 11.7) **L1, L2, L3**

Course Outcomes: At the end of the course, students will be able to:

- Describe the use and advantages of microwave transmission
- Analyze various parameters related to microwave transmission lines and waveguides
- Identify microwave devices for several applications
- Analyze various antenna parameters necessary for building an RF system
- Recommend various antenna configurations according to the applications

Text Books:

- 1. **Microwave Engineering** Annapurna Das, Sisir K Das TMH Publication, 2nd, 2010.
- 2. Microwave Devices and circuits- Liao, Pearson Education.
- 3. **Antennas and Wave Propagation,** John D. Krauss, Ronald J Marhefka and Ahmad S Khan,4th Special Indian Edition , McGraw- Hill Education Pvt. Ltd., 2010.

Reference Books:

- 1. **Microwave Engineering** David M Pozar, John Wiley India Pvt. Ltd. 3rdEdn, 2008.
- 2. Microwave Engineering Sushrut Das, Oxford Higher Education, 2ndEdn, 2015.
- 3. Antennas and Wave Propagation Harish and Sachidananda: Oxford University Press, 2007.

DIGITAL IMAGE PROCESSING B.E., VII Semester, Electronics & Communication Engineering [As per Choice Based Credit System (CBCS) scheme]

Subject Code	15EC72	IA Marks	20	
Number of Lecture	04	Exam Marks	80	
Hours/Week				
Total Number of	50 (10 Hours /	Exam Hours	03	
Lecture Hours	Module)			
	CREDI			
Course Objectives: 1	The objectives of this co	urse are to:		
Understand the	fundamentals of digital	image processir	ng	
	image transform used image enhancement te			rocessing
• Understand the	e image restoration tech			
processingUnderstand the	Morphological Operati	ons and Segmen	itation used in d	igital image
processing				
	Module-1			RBT Level
Digital Image Fund	damentals: What is Dig	ital Image Proce	ssing?, Origins	L1, L2
	cessing, Examples of fie			
Steps in Digital Im	age Processing, Compo	onents of an Im	age Processing	
System, Elements	of Visual Perception, In	mage Sensing a	nd Acquisition,	
Image Sampling a	nd Quantization, Some	Basic Relation	ships Between	
Pixels, Linear and Nonlinear Operations.				
[Text: Chapter 1 and Chapter 2: Sections 2.1 to 2.5, 2.6.2]				
	Module-2			
-	Some Basic Intensit	5		L1, L2,
	ing, Fundamentals of	Spatial Filterin	ng, Smoothing	L3
	rpening Spatial Filters	—1 — 5 ·	-	
	in: Preliminary Cond			
	Two Variables, Propert			
	nain, Image Smoothing		arpening Using	
	Filters, Selective Filterin		ama 19 15 ta	
- 1	ections 3.2 to 3.6 and	Chapter 4: Secti	ons 4.2, 4.5 to	
4.10]				
	Module-3			
Restoration: Noise	models, Restoration i	n the Presence	of Noise Only	L1, L2,
using Spatial Filter	ing and Frequency Don	nain Filtering, L	inear, Position-	L3
	ions, Estimating the 1			
	Mean Square Error	(Wiener) Filterin	g, Constrained	
Least Squares Filter				
[Text: Chapter 5: Se	ections 5.2, to 5.9]			
	Module-4			
				•

Color Image Processing: Color Fundamentals, Color Models, Pseudocolor	L1, L2,
Image Processing.	L1, L2, L3
Wavelets: Background, Multiresolution Expansions.	10
Morphological Image Processing: Preliminaries, Erosion and Dilation,	
Opening and Closing, The Hit-or-Miss Transforms, Some Basic	
Morphological Algorithms.	
[Text: Chapter 6: Sections 6.1 to 6.3, Chapter 7: Sections 7.1 and 7.2,	
Chapter 9: Sections 9.1 to 9.5]	
Module-5	
 Segmentation: Point, Line, and Edge Detection, Thresholding, Region-Based Segmentation, Segmentation Using Morphological Watersheds. Representation and Description: Representation, Boundary descriptors. [Text: Chapter 10: Sections 10.2, to 10.5 and Chapter 11: Sections 11.1 and 11.2] 	L1, L2, L3
Course Outcomes: At the end of the course students should be able to:	I
 Understand image formation and the role human visual system plays in perception of gray and color image data. Apply image processing techniques in both the spatial and frequency (Fedomains. Design image analysis techniques in the form of image segmentation are evaluate the Methodologies for segmentation. Conduct independent study and analysis of Image Enhancement techniques in techniques in techniques in the form of image for the segmentation. 	Fourier) nd to
Question paper pattern:	
• The question paper will have ten questions.	
Each full question consists of 16 marks.There will be 2 full questions (with a maximum of Three sub questions)	from each
module.	ii oini euen
• Each full question will have sub questions covering all the topics under The students will have to answer 5 full questions, selecting one full question module.	
Text Book:	
Digital Image Processing - Rafel C Gonzalez and Richard E. Woods, PHI Edition 2010.	3rd
 Reference Books: 1. Digital Image Processing- S.Jayaraman, S.Esakkirajan, T.Veerakumar, McGraw Hill 2014. 	Tata
2. Fundamentals of Digital Image Processing-A. K. Jain, Pearson 2004.	

POWER ELECTRONICS

B.E., VII Semester, Electronics & Communication Engineering [As per Choice Based Credit System (CBCS) scheme]

	POWER ELECTRONI				
B.E., VII Semester, Electronics & Communication Engineering [As per Choice Based Credit System (CBCS) Scheme]					
					Course Code
Number of Lecture04Exam Marks80					
Hours/Week					
Total Number of	50 (10 Hours / Module)	Exam Hours	03		
Lecture Hours	CREDITS - 04				
Course Objectives: This	s course will enable students	to:			
Understand the cor	struction and working of var	rious power devices.			
	of thyristor circuits with diff	-			
Learn the application	ons of power devices in contr	olled rectifiers, conv	verters and		
inverters.	-				
Study of power elec	tronics circuits under variou	s load conditions.			
	Module-1				
Introduction - Application	ns of Power Electronics, Pow	ver Semiconductor I	Devices, Control		
	Devices, types of Power Elect	-			
	r BJTs: Steady state charae				
	aracteristics, IGBTs: device		t and transfer		
characteristics, di/dt and	<u>d dv/dt limitations. (Text 1)</u>	L1, L2			
The mistoria Instruction	Module-2	of CCD Statio	Anada Cathada		
5	on, Principle of Operation Two transisitor model of S				
	n-OFF Mechanism, Turn-O				
	and Class B types, Gate				
	citance firing circuit, UJT Fir				
· · · · · · · · · · · · · · · · · · ·	Module-3	0	,		
Controlled Rectifiers - In	troduction, Principle of Phas	se-Controlled Conve	erter Operation,		
6	rter with RL Load, Single-Ph	ase Dual Converter	rs, Single-Phase		
Semi Converter with RL l					
	Introduction, Principles of C				
01	ntrollers with resistive and i	nductive loads. (Te	ext 1) L1, L2,		
L3	Module-4				
DC-DC Convertors Int	roduction, principle of step	-down operation of	nd it's analysis		
	of step-up operation, Step-u	-	5		
	, Converter classification,	-			
	or, Buck-Boost Regulators,				
L1, L2	,				
	Module-5				
Pulse Width Modulated	Inverters- Introduction, pr	rinciple of operatio	n, performance		
	se bridge inverters, voltage	0 1			
-	s, Variable DC-link inverte	r, Boost inverter,	Inverter circuit		
design.					
Static Switches: Introdu	iction, Single phase AC sv	vitches, DC Switch	es, Solid state		

relays, Microelectronic relays. (Text 1) L1, L2

Course Outcomes: At the end of the course students should be able to:

- Describe the characteristics of different power devices and identify the various applications associated with it.
- Illustrate the working of power circuit as DC-DC converter.
- Illustrate the operation of inverter circuit and static switches.
- Determine the output response of a thyristor circuit with various triggering options.
- Determine the response of controlled rectifier with resistive and inductive loads.

Evaluation of Internal Assessment Marks:

It is suggested that at least 4 experiments of Power Electronics to be conducted by the students. This activity can be considered for the evaluation of 05 marks out of 20 Internal Assessment (IA) Marks, reserved for the other activities.

Text Books:

- 1. Mohammad H Rashid, Power Electronics, Circuits, Devices and Applications, $3^{rd}/4^{th}$ Edition, Pearson Education Inc, 2014, ISBN: 978-93-325-1844-5.
- 2. M.D Singh and K B Khanchandani, Power Electronics, 2nd Edition, Tata Mc-Graw Hill, 2009, ISBN: 0070583897

Reference Books:

- 1. L. Umanand, Power Electronics, Essentials and Applications, John Wiley India Pvt. Ltd, 2009.
- 2. Dr. P. S. Bimbhra, "Power Electronics", Khanna Publishers, Delhi, 2012.
- 3. P.C. Sen, "Modern Power Electronics", S Chand & Co New Delhi, 2005.
- 4. Earl Gose, Richard Johnsonbaugh, Steve Jost, Pattern Recognition and Image Analysis, ePub eBook.

MULTIMEDIA COMMUNICATION

B.E., VII Semester, Electronics & Communication Engineering/ Telecommunication Engineering

[As per Choice Based credit System (CBCS) Scheme

Subject Code	15EC741	IA Marks	20
Number of Lecture	03	Exam Marks	80
Hours/Week			
Total Number of	40 (08 Hours /	Exam Hours	03
Lecture Hours	Module)		
CREDITS – 03			

Course objectives: This course will enable students to:

- Gain fundamental knowledge in understanding the basics of different multimedia networks and applications.
- Understand digitization principle techniques required to analyze different media types.
- Analyze compression techniques required to compress text and image and gain knowledge of DMS.
- Analyze compression techniques required to compress audio and video.
- Gain fundamental knowledge about multimedia communication across different networks.

Module-1	RBT Level
Multimedia Communications : Introduction, Multimedia information representation, multimedia networks, multimedia applications, Application and networking terminology. (Chap 1 of Text 1)	L1, L2
Module-2	
Information Representation : Introduction, Digitization principles, Text, Images, Audio and Video (Chap 2 of Text 1)	L1, L2
Module-3	
Text and image compression: Introduction, Compression principles, text compression, image Compression. (Chap 3 of Text 1)	L1, L2, L3
Distributed multimedia systems: Introduction, main Features of a DMS, Resource management of DMS, Networking, Multimedia operating systems (Chap. 4 - Sections 4.1 to 4.5 of Text 2).	
Module-4	
Audio and video compression: Introduction, Audio compression, video compression, video compression principles, video compression. (Chap. 4 of Text 1).	L1, L2, L3
Module-5	
 network environment, Video transport across generic networks, Multimedia Transport across ATM Networks (Chap. 6 - Sections 6.1, 6.2, 6.3 of Text 2). Course Outcomes: After studying this course, students will be able to: Understand basics of different multimedia networks and applications. Understand different compression techniques to compress audio and vid. Describe multimedia Communication across Networks. 	leo.
 Analyse different media types to represent them in digital form. Compress different types of text and images using different compression techniques and analyse DMS. 	
Question paper pattern:	
 The question paper will have ten questions. Each full question consists of 16 marks. There will be 2 full questions (with a maximum of Three sub questions) for the sub questions of the sub questions. 	rom each
 module. Each full question will have sub questions covering all the topics under a The students will have to answer 5 full questions, selecting one full questions each module. 	
Text Books: 1. Fred Halsall, "Multimedia Communications", Pearson education, 2001 9788131709948.	ISBN -
2. K. R. Rao, Zoran S. Bojkovic, Dragorad A. Milovanovic, "Multimedia Communication Systems", Pearson education, 2004. ISBN -978812032	21458

Reference Book:

Raifsteinmetz, Klara Nahrstedt, "Multimedia: Computing, Communications and Applications", Pearson education, 2002. ISBN -9788177584417

BIOMEDICAL SIGNAL PROCESSING B.E., VII Semester, Electronics & Communication Engineering/ Telecommunication Engineering

[As per Choice Based Credit System (CBCS) scheme]

Subject Code	15EC742	IA Marks	20
Number of Lecture	03	Exam Marks	80
Hours/Week			
Total Number of	40 (8 Hours / Module)	Exam Hours	03
Lecture Hours			
CREDITS – 03			

Course Objectives: The objectives of this course are to:

- Describe the origin, properties and suitable models of important biological signals such as ECG and EEG.
- Introduce students to basic signal processing techniques in analysing biological signals.
- Develop the students mathematical and computational skills relevant to the field of biomedical signal processing.
- Develop a thorough understanding on basics of ECG signal compression algorithms.
- Increase the student's awareness of the complexity of various biological phenomena and cultivate an understanding of the promises, challenges of the biomedical engineering.

	-
Module-1	RBT Level
Introduction to Biomedical Signals: The nature of Biomedical Signals,	L1, L2
Examples of Biomedical Signals, Objectives and difficulties in Biomedical	
analysis.	
Electrocardiography: Basic electrocardiography, ECG lead systems, ECG signal characteristics.	
Signal Conversion :Simple signal conversion systems, Conversion	
requirements for biomedical signals, Signal conversion circuits (Text-1)	
Module-2	
Signal Averaging: Basics of signal averaging, signal averaging as a digital filter, a typical averager, software for signal averaging, limitations of signal averaging.	L1, L2, L3
Adaptive Noise Cancelling: Principal noise canceller model, 60- Hzadaptive cancelling using a sine wave model, other applications of adaptive filtering (Text-1)	
Module-3	
Data Compression Techniques: Turning point algorithm, AZTEC algorithm, Fan algorithm, Huffman coding, data reduction algorithms The Fourier transform, Correlation, Convolution, Power spectrum estimation, Frequency domain analysis of the ECG (Text-1)	L1, L2, L3
Module-4	

Cardiological signal processing: Basic Electrocardiography, ECG data acquisition, ECG lead system, ECG signal characteristics (parameters and their estimation), Analog filters, ECG amplifier, and QRS detector, Power spectrum of the ECG, Bandpass filtering techniques, Differentiation techniques, Template matching techniques, A QRS detection algorithm, Realtime ECG processing algorithm, ECG interpretation, ST segment analyzer, Portable arrhythmia monitor. (Text -2)	L1, L3	L2,
Module-5		
Neurological signal processing: The brain and its potentials, The electrophysiological origin of brain waves, The EEG signal and its characteristics (EEG rhythms, waves, and transients), Correlation. Analysis of EEG channels: Detection of EEG rhythms, Template matching for EEG, spike and wave detection (Text-2).	L1, L3	L2,
Course outcomes: At the end of the course, students will be able to:		
 Possess the basic mathematical, scientific and computational skills need analyse ECG and EEG signals. Apply classical and modern filtering and compression techniques for EEG signals Develop a thorough understanding on basics of ECG and EEG feature of the extension of	CG an	d
 Question paper pattern: The question paper will have ten questions. Each full question consists of 16 marks. There will be 2 full questions (with a maximum of Three sub questions) module. Each full question will have sub questions covering all the topics under The students will have to answer 5 full questions, selecting one full que each module. 	a moo	dule.
 Text Books: 1. Biomedical Digital Signal Processing- Willis J. Tompkins, PHI 2001. 2. Biomedical Signal Processing Principles and Techniques- D C Reddy, Hill publications 2005 Reference Book: 	McGra	aw-

Biomedical Signal Analysis-Rangaraj M. Rangayyan, John Wiley & Sons 2002

REAL TIME SYSTEMS B.E., VII Semester, Electronics & Communication Engineering /Telecommunication Engineering

[As per Choice Based Credit System (CBCS) scheme]

Subject Code	15EC743	IA Marks	20
Number of Lecture	03	Exam marks	80
Hours/Week			
Total Number of	40 (08 Hours per Module)	Exam Hours	03
Lecture Hours	-		
Credits – 03			

Course Objectives: This Course will enable students to:

- Discuss the historical background of Real-time systems and its classifications.
- Describe the concepts of computer control and hardware components for Real-Time Application.
- Discuss the languages to develop software for Real-Time Applications.
- Explain the concepts of operating system and RTS development methodologies.

Modules	RBT Level
Module-1	
Introduction to Real-Time Systems: Historical background, Elements of a Computer Control System, RTS- Definition, Classification of Real-time Systems, Time Constraints, Classification of Programs.	L1, L2
Concepts of Computer Control: Introduction, Sequence Control, Loop Control, Supervisory Control, Centralized Computer Control, Hierarchical Systems. (Text Book: 1.1 to 1.6 and 2.1 to 2.6)	L1, L&
Module-2	
Computer Hardware Requirements for Real-Time Applications: Introduction, General Purpose Computer, Single Chip Microcomputers and Microcontrollers, Specialized Processors, Process-Related Interfaces, Data Transfer Techniques, Communications, Standard Interface.(Text Book: 3.1 to	L1, L2
3.8)	
Module-3	
Languages for Real-Time Applications: Introduction, Syntax Layout and Readability, Declaration and Initialization of Variables and Constants, Modularity and Variables, Compilation of Modular Programs, Data types, Control Structures, Exception Handling, Low-level facilities, Co-routines, Interrupts and Device Handling, Concurrency, Real-Time Support, Overview of Real-Time Languages. (Text Book: 5.1 to 5.14)	L1, L2, L3
Module-4	
Operating Systems: Introduction, Real-Time Multi-Tasking OS, Scheduling Strategies, Priority Structures, Task Management, Scheduler and Real-Time Clock Interrupt Handler, Memory Management, Code Sharing, Resource Control, Task Co-Operation and Communication, Mutual Exclusion.(Text Book: 6.1 to 6.11)	L1, L2

Module-5	
Design of RTS – General Introduction: Introduction, Specification Document, Preliminary Design, Single-Program Approach, Foreground/Background System.	
RTS Development Methodologies: Introduction, Yourdon Methodology, Ward and Mellor Method, Hately and Pirbhai Method. (Text Book: 7.1 to 7.5 and 8.1, 8.2, 8.4,8.5)	L1, L2, L3
 Course Outcomes: At the end of the course, students should be able to: Understand the fundamentals of Real time systems and its classifications. Understand the concepts of computer control, operating system and the s computer hardware requirements for real-time applications. Develop the software languages to meet Real time applications. Apply suitable methodologies to design and develop Real-Time Systems. 	uitable
Question Paper Pattern:	
 The question paper will have ten questions. 	
 Each full Question consisting of 16 marks 	
• There will be 2 full questions (with a maximum of Three sub questions) each module.) from
• Each full question will have sub questions covering all the topics un module.	nder a
• The students will have to answer 5 full questions, selecting one full qu	estion
from each module.	
Text Book:	
Real-Time Computer Control, by Stuart Bennet, 2nd Edn. Pearson Education. 2	2008.
Reference Books:	
 C.M. Krishna, Kang G. Shin, "Real –Time Systems", McGraw –Hill Internat Editions, 1997. 	ional
 Real-Time Systems Design and Analysis, Phillip. A. Laplante, second edition PHI, 2005. 	on,
3. Embedded Systems, Raj Kamal, Tata McGraw Hill, India, third edition, 200	05.

<u>Cryptography</u> B.E., VII Semester, Electronics & Communication Engineering [As per Choice Based Credit System (CBCS) scheme]

Subject Code	15EC744	IA Marks	20	
Number of Lecture	03	Exam Marks	80	
Hours/Week				
Total Number of	40 (08 Hours /	Exam Hours	03	
Lecture Hours	Module)			
	CREI	DITS - 03		
Course Objectives: '	This Course will enabl	le students to:		
cryptography.	ts to understand the l	5		0
	s with some basic mat	1	ts and pseudorar	ndom
	ators required for cryp			
	ts to authenticate and	1 5	pted data.	
Enrich knowle	dge about Email, IP ai	nd Web security.		
	M	odules		
	Module	-1		RBT Level
Groups, Rings and arithmetic, Finite fi Classical Encrypti techniques, Transp SYMMETRIC CIPH	ithm, Euclidean algor Fields, Finite fields of elds of the form GF(2 ^r Module- on Techniques: Symposition techniques, St ERS: Traditional Bloc ed (DES) (Text 1: Chap	the form GF(p), Po (Text 1: Chapter 3 2 metric cipher mode eganography (Text ck Cipher structure oter 2: Section1, 2)	olynomial 3) el, Substitution t 1: Chapter 1) e, Data	L1, L2
	Module-			
4)	ERS: The AES Cipher	-		L1, L2, L3
Congruential Gener	equence Generators rators, Linear Feedbac riphers, Stream cipher 4)	k Shift Registers,	Design and	
	Module-4	ł		
Primality testing, C Chapter 7) Principles of Publi Hellman Key Excha	ry : Prime Numbers, F hinese Remainder the c-Key Cryptosystem nge, Elliptic Curve Ar	Fermat's and Euler Forem, discrete log s: The RSA algorit ithmetic, Elliptic C	arithm. (Text 1: hm, Diffie - Curve	L1, L2, L3
Chapter 7) Principles of Publi Hellman Key Excha	c-Key Cryptosystem	s : The RSA algorit ithmetic, Elliptic (hm, Diffie - Curve	

Secure block functi Discre 18.5,	Vay Hash Functions: Background, Snefru, N-Hash, MD4, MD5, e Hash Algorithm [SHA],One way hash functions using symmetric algorithms, Using public key algorithms, Choosing a one-way hash ons, Message Authentication Codes. Digital Signature Algorithm, te Logarithm Signature Scheme (Text 2: Chapter 18: Section 18.1 to 18.7, 18.11 to 18.14 and Chapter 20: Section 20.1, 20.4)	L1, L2, L3
Course	 Outcomes: After studying this course, students will be able to: Use basic cryptographic algorithms to encrypt the data. Generate some pseudorandom numbers required for cryptographic applications. Provide authentication and protection for encrypted data. 	
• 7 • H • 7 r	on paper pattern: The question paper will have 10 full questions carrying equal marks. Each full question consists of 16 marks with a maximum of Three sub questions from each module covering all the topics of nodule The students will have to answer 5 full questions, selecting one full questions ach module.	the
F 2. F	ooks : Villiam Stallings , "Cryptography and Network Security Principles and Pr Pearson Education Inc., 6 th Edition, 2014, ISBN: 978-93-325-1877-3 Bruce Schneier, "Applied Cryptography Protocols, Algorithms, and Sourc C", Wiley Publications, 2 nd Edition, ISBN: 9971-51-348-X	
Refere	nce Books:	
1. 0	Cryptography and Network Security, Behrouz A. Forouzan, TMH, 2007. Cryptography and Network Security, Atul Kahate, TMH, 2003.	

CAD for VLSI

B.E., VII Semester, Electronics & Communication Engineering [As per Choice Based Credit System (CBCS) scheme]

	1550745			
Subject Code	15EC745	IA Marks	20	
Number of Lecture	03	Exam	80	
Hours/Week		marks		
Total Number of	40	Exam	03	
Lecture Hours	(8 Hours per Module)	Hours		
	CREDITS – 0	3		
Course Objectives	s: This course will enable	students to:		
Understand v	various stages of Physical	design of VLS	SI circuits	
Know about a	napping a design problem	n to a realizab	le algorith	m
Become awar	e of graph theoretic, heur	istic and gene	etic algorit	hms
Compare per	formance of different algo	rithms	_	
	Modules			RBT
				Level
Module 1				
Data Structures a	nd Basic Algorithms:			L1, L2
	y, Complexity issues	and NP-H	ardness.	ŕ
	nential, heuristic, approx			
	ithms. Graph Algorithms		-	
•	th, min-cut and max		- 0	
-	ometry Algorithms: Line			
line sweep methods				
Module 2				
	tures. Atomic operatior	s for layout	editors	L1, L2
	ocks, Bin-based method	-		⊔1, ⊔≈
	fulti-layer operations, Li			
0	yout specification language		existing	
uala su ucluies. La	yout specification languag	ges.		
Graph algorithms	for physical design: (Classes of gr	aphs in	
	Relationship between gr			
	ical design, Algorithms	-	-	
	permutation graphs and circle graphs.			
Module 3	0 1			

Partitioning:Problemformulation,Designstylespecificpartitioning problems,Classification of Partitioning Algorithms.Group migration algorithms:Kernighan-Lin algorithm,Fiduccia-Mattheyses Algorithm,Simulated Annealing,Simulated Evolution.Floor Planning:Problemformulation,ConstraintDestangulardualizationSimulated	L1, L2,L3
planning, Rectangular dualization, Simulated evolution algorithms.	
Module 4	
Pin Assignment : Problem formulation. Classification of pin assignment problems, General pin assignment problem.	L1,L2,L3
Placement: Problem formulation, Classification of placement algorithms. Simulation based placement: Simulated annealing, simulated evolution, force directed placement. Partitioning based algorithms: Breur's Algorithm, Terminal propagation algorithm, Other algorithms for placement.	
Module 5	
Global Routing: Problem formulation, Classification of Global routing algorithms, Maze routing algorithms: Lee's algorithm, Soukup's algorithm and Hadlock's Algorithm, Line probe algorithms.	L1,L2,L3
Detailed Routing: Problem formulation, Routing considerations, models, channel routing and switch box routing problems. General river routing problem, Single row routing problem.	
Two-layer channel routing algorithms: Basic Left Edge Algorithm, Dogleg router, Symbolic router-YACR2.	
 Course Outcomes: After studying this course, students will be able Appreciate the problems related to physical design of VLSI Use genralized graph theoretic approach to VLSI problems Design Simulated Annealing and Evolutionary algorithms Know various approaches to write generalized algorithms 	
Question paper pattern:	
 The question paper will have 10 full questions carrying equal Each full question consists of 16 marks with a maximum of T questions. There will be 2 full questions from each module covering all the of the module The students will have to answer 5 full questions, selecting or question from each module. 	'hree sub he topics

Text Book:

Algorithms for VLSI Physical Design Automation, 3rd Ed, Naveed Sherwani, 1999 Kluwer Academic Publishers, Reprint 2009 Springer (India) Private Ltd. ISBN 978-81-8128-317-7.

DSP Algorithms and Architecture B.E., VII Semester, Electronics & Communication Engineering /**Telecommunication Engineering** [As per Choice Based Credit System (CBCS) scheme]

Subject Code	15EC751	IA Marks	20	
Number of Lecture	03	Exam Marks	80	
Hours/Week				
Total Number of	40 (8 Hours / Module)	Exam Hours	03	
Lecture Hours				
	CREDIT			
Course Objectives:	This course will enable	students to:		
• Understand th issues.	knowledge and concepts e computational buildin	ng blocks of DSP	processors and	d its speed
pipelining stru	he various addressing acture of TMS320C54xx interface the external	processor.	-	-
	sic DSP algorithms with	ı their implemen	itation.	
	Module-1			RBT Level
Introduction to Die	gital Signal Processing:			L1, L2
rouner fransform	(FFT), Linear Time-Inva	riant Systems,	Digital Filters,	
Decimation and Inte Computational Acc Number Formats fo	(FFT), Linear Time-Inva erpolation. curacy in DSP Impleme r Signals and Coefficier , Sources of Error in DS	ntations: nts in DSP Syst	ems, Dynamic	
Decimation and Inte Computational Acc Number Formats fo	rpolation. curacy in DSP Impleme r Signals and Coefficier	ntations: nts in DSP Syst	ems, Dynamic	
Decimation and Inte Computational Acc Number Formats fo Range and Precision Architectures for P Introduction, Basic Blocks, Bus Archit Address Generation	rpolation. curacy in DSP Impleme r Signals and Coefficier , Sources of Error in DS	ntations: nts in DSP Syst P Implementation ignal – Processi DSP Computat Data Addressing	ems, Dynamic on. ing Devices: ional Building g Capabilities,	L1, L2, L3
Decimation and Inte Computational Acc Number Formats fo Range and Precision Architectures for P Introduction, Basic Blocks, Bus Archit Address Generation	erpolation. Euracy in DSP Impleme r Signals and Coefficien , Sources of Error in DS Module-2 rogrammable Digital S Architectural Features, ecture and Memory, I Unit, Programmability a	ntations: nts in DSP Syst P Implementation ignal – Processi DSP Computat Data Addressing	ems, Dynamic on. ing Devices: ional Building g Capabilities,	L1, L2, L3
Decimation and Inte Computational Acc Number Formats fo Range and Precision Architectures for P Introduction, Basic Blocks, Bus Archit Address Generation Issues, Features for	rpolation. curacy in DSP Impleme r Signals and Coefficien a, Sources of Error in DS Module-2 rogrammable Digital S Architectural Features, ecture and Memory, I Unit, Programmability a External Interfacing. Module-3	ntations: nts in DSP Syst P Implementation ignal – Processi DSP Computat Data Addressing	ems, Dynamic on. ing Devices: ional Building g Capabilities,	L1, L2, L3
Decimation and Inter Computational Acc Number Formats fo Range and Precision Architectures for P Introduction, Basic Blocks, Bus Archit Address Generation Issues, Features for Programmable Digi Introduction, Com Addressing Modes Processors, Program Instructions and P	erpolation. Euracy in DSP Impleme r Signals and Coefficien A Sources of Error in DS Module-2 Togrammable Digital S Architectural Features, ecture and Memory, I Unit, Programmability a External Interfacing.	ntations: Its in DSP Syst P Implementation ignal – Processing DSP Computat DATA Addressing and Program Exec al-processing I nory Space of 12 dy of TMS3200 ip Peripherals,	ems, Dynamic on. ing Devices: cional Building g Capabilities, ecution, Speed Devices, Data TMS32OC54xx C54X & 54xx Interrupts of	L1, L2, L3

Implementation of Basic DSP Algorithms: L1, L2, L3 Introduction, The Q – notation, FIR Filters, IIR Filters, Interpolation and L1, L2, L3 Decimation Filters (one example in each case). Implementation of FFT Algorithms: Introduction, An FFT Algorithm for DFT Computation, Overflow and Scaling, Bit – Reversed Index. Generation & Implementation on the Module-5 Interfacing Memory and Parallel I/O Peripherals to Programmable L1, L2, L3 DSP Devices: Introduction, Memory Space Organization, External Bus Interfacing L1, L2, L3 Signals. Memory Interface, Parallel I/O Interface, Programmed I/O, Interfacing Memory Access (DMA). L1, L2, L3
Implementation of FFT Algorithms: Introduction, An FFT Algorithm for DFT Computation, Overflow and Scaling, Bit – Reversed Index. Generation & Implementation on the IMS32OC54xx. Module-5 Interfacing Memory and Parallel I/O Peripherals to Programmable DSP Devices: Introduction, Memory Space Organization, External Bus Interfacing Signals. Memory Interface, Parallel I/O Interface, Programmed I/O,
Introduction, An FFT Algorithm for DFT Computation, Overflow and Scaling, Bit – Reversed Index. Generation & Implementation on the IMS32OC54xx. Module-5 Interfacing Memory and Parallel I/O Peripherals to Programmable Introduction, Memory Space Organization, External Bus Interfacing Signals. Memory Interface, Parallel I/O Interface, Programmed I/O,
Scaling, Bit – Reversed Index. Generation & Implementation on the IMS32OC54xx. Module-5 Interfacing Memory and Parallel I/O Peripherals to Programmable DSP Devices: Introduction, Memory Space Organization, External Bus Interfacing Signals. Memory Interface, Parallel I/O Interface, Programmed I/O,
Scaling, Bit – Reversed Index. Generation & Implementation on the IMS32OC54xx. Module-5 Interfacing Memory and Parallel I/O Peripherals to Programmable DSP Devices: Introduction, Memory Space Organization, External Bus Interfacing Signals. Memory Interface, Parallel I/O Interface, Programmed I/O,
Module-5Interfacing Memory and Parallel I/O Peripherals to ProgrammableDSP Devices:Introduction, Memory Space Organization, External Bus InterfacingSignals. Memory Interface, Parallel I/O Interface, Programmed I/O,
Interfacing Memory and Parallel I/O Peripherals to Programmable L1, L2, L3 DSP Devices: Introduction, Memory Space Organization, External Bus Interfacing Signals. Memory Interface, Parallel I/O Interface, Programmed I/O,
DSP Devices: Introduction, Memory Space Organization, External Bus Interfacing Signals. Memory Interface, Parallel I/O Interface, Programmed I/O,
Introduction, Memory Space Organization, External Bus Interfacing Signals. Memory Interface, Parallel I/O Interface, Programmed I/O,
Signals. Memory Interface, Parallel I/O Interface, Programmed I/O,
Interfacing and Applications of DSP Processors:
Introduction, Synchronous Serial Interface, A CODEC Interface Circuit,
DSP Based Bio-telemetry Receiver, A Speech Processing System, An Image
Processing System.
Course Outcomes: At the end of this course, students would be able to
• Comprehend the knowledge and concepts of digital signal processing
techniques.
Apply the knowledge of DSP computational building blocks to achieve
speed in DSP architecture or processor.
Apply knowledge of various types of addressing modes, interrupts,
peripherals and pipelining structure of TMS320C54xx processor.
 Develop basic DSP algorithms using DSP processors.
Discuss about synchronous serial interface and multichannel buffered
serial port (McBSP) of DSP device.
Demonstrate the programming of CODEC interfacing.
Question paper pattern:
• The question paper will have 10 full questions carrying equal marks.
• Each full question consists of 16 marks with a maximum of Three sub questions
 There will be 2 full questions from each module covering all the topics of the module
 The students will have to answer 5 full questions, selecting one full question from
each module.
Cext Book:
Digital Signal Processing", Avatar Singh and S. Srinivasan, Thomson Learning, 2004.
Reference Books:
1. "Digital Signal Processing: A practical approach", Ifeachor E. C., Jervis B. W Pearson-Education, PHI, 2002.
2. "Digital Signal Processors", B Venkataramani and M Bhaskar, TMH, 2nd, 2010
3. "Architectures for Digital Signal Processing", Peter Pirsch John Weily, 2008

IoT & WIRELESS SENSOR NETWORKS B.E., VII Semester, Electronics & Communication Engineering /Telecommunication Engineering

[As per Choice Based Credit System (CBCS) scheme]

Subject Code	15EC752	IA Marks	20	
Number of Lecture	03	Exam Marks	80	
Hours/Week	00			
Total Number of	40 (8 Hours / Module)	Exam Hours	03	
Lecture Hours				
	CREDIT			
Course Objectives:	This course will enable a	students to:		
Understand var	rious sources of IoT & M	12M communica	ation protocols.	
	l computing and design		1	
	of MQTT clients, MQTT			
	e architecture and desig	-	0 0	
	wledge about MAC and			
WSNs.	medge about mile and	fouring protoco		
	Module-1			RBT Level
Systems, data enric IoT/M2M Gateway,	amples of IoT. Modified hment, data consolidati web communication Aessage communication	l OSI Model fo on and device protocols used	r the IoT/M2M management at by connected	
Analitaatuna and		n IoT a Intonna	at compositivity	L1, L2
Internet-based comm	Design Principles fo nunication,IPv4, IPv6,6L tion layer protocols: H	oWPAN protoco	l, IP Addressing	L1, L2
Introduction, Cloud computing, Cloud se	Storage and Computir computing paradigm for prvice models, IoT Cloud	or data collection	on, storage and	
and computing servi	ces using Nimbits.	based data eo		

Prototyping and Designing Software for IoT Applications: Introduction, Prototyping Embedded device software, Programming Embedded Device Arduino Platform using IDE, Reading data from sensors and devices, Devices, Gateways, Internet and Web/Cloud services software development. Programming MQTT clients and MQTT server. Introduction to IoT privacy and security. Vulnerabilities, security requirements and threat analysis, IoT Security Tomography and layered attacker model.	L1, L2, L3
Module-4	
Overview of Wireless Sensor Networks: Challenges for Wireless Sensor Networks, Enabling Technologies for Wireless Sensor Networks.	L1, L2, L3
Architectures : Single-Node Architecture - Hardware Components, Energy Consumption of Sensor Nodes, Operating Systems and Execution Environments, Network Architecture-Sensor Network Scenarios, Optimization Goals and Figures of Merit, Design principles for WSNs, Service interfaces of WSNs Gateway Concepts.	
Module-5	
Communication Protocols: Physical Layer and Transceiver Design Considerations, MAC Protocols for Wireless Sensor Networks, Low Duty Cycle Protocols And Wakeup Concepts - S-MAC , The Mediation Device Protocol, Wakeup Radio Concepts, Contention based protocols(CSMA,PAMAS), Schedule based protocols (LEACH, SMACS, TRAMA) Address and Name Management in WSNs, Assignment of MAC Addresses, Routing Protocols- Energy-Efficient Routing, Geographic Routing, Hierarchical networks by clustering.	
 Course Outcomes: At the end of the course, students will be able to: Describe the OSI Model for the IoT/M2M Systems. Understand the architecture and design principles for IoT. Learn the programming for IoT Applications. Identify the communication protocols which best suits the WSNs. 	
 Question paper pattern: The question paper will have ten questions. Each full Question consisting of 16 marks. There will be 2 full questions (with a maximum of Three sub questions module. Each full question will have sub questions covering all the topics under The students will have to answer 5 full questions, selecting one full queach module. 	a module.

Text Books:

- 1. Raj Kamal, "Internet of Things-Architecture and design principles", McGraw Hill Education.
- 2. Holger Karl & Andreas Willig, "Protocols And Architectures for Wireless Sensor Networks", John Wiley, 2005.
- 3. Feng Zhao & Leonidas J. Guibas, "Wireless Sensor Networks- An Information Processing Approach", Elsevier, 2007.

Reference Books:

- 1. Kazem Sohraby, Daniel Minoli, & Taieb Znati, "Wireless Sensor Networks-Technology, Protocols, And Applications", John Wiley, 2007.
- 2. Anna Hac, "Wireless Sensor Network Designs", John Wiley, 2003.

PATTERN RECOGNITION

B.E., VII Semester, Electronics & Communication Engineering/ Telecommunication Engineering

[As per Choice Based Credit System (CBCS) scheme]

Subject Code	15EC753	IA Marks	20	
Number of Lecture	03	Exam Marks	80	
Hours/Week				
Total Number of	40 (8 Hours / Module)	Exam Hours	03	
Lecture Hours				
CREDITS – 03				
Common Objectives The ship stimes of this country are to:				

Course Objectives: The objectives of this course are to:

- Introduce mathematical tools needed for Pattern Recognition
- Impart knowledge about the fundamentals of Pattern Recognition.
- Provide knowledge of recognition, decision making and statistical learning problems
- Introduce parametric and non-parametric techniques, supervised learning and clustering concepts of pattern recognition

Modules	
Module-1	RBT Level
Introduction: Importance of pattern recognition, Features, Feature Vectors, and Classifiers, Supervised, Unsupervised, and Semi-supervised learning, Introduction to Bayes Decision Theory, Discriminant Functions and Decision Surfaces, Gaussian PDF and Bayesian Classification for Normal Distributions.	L1, L2
Module-2	
Data Transformation and Dimensionality Reduction: Introduction, Basis Vectors, The Karhunen Loeve (KL) Transformation, Singular Value Decomposition, Independent Component Analysis (Introduction only). Nonlinear Dimensionality Reduction, Kernel PCA.	L1, L2
Module-3	
Estimation of Unknown Probability Density Functions: Maximum Likelihood Parameter Estimation, Maximum a Posteriori Probability estimation, Bayesian Interference, Maximum Entropy Estimation, Mixture Models, Naive-Bayes Classifier, The Nearest Neighbor Rule.	L1, L2, L3
Module-4	
Linear Classifiers: Introduction, Linear Discriminant Functions and Decision Hyperplanes, The Perceptron Algorithm, Mean Square Error Estimate, Stochastic Approximation of LMS Algorithm, Sum of Error Estimate.	L1, L2, L3
Module-5	
Nonlinear Classifiers: The XOR Problem, The two Layer Perceptron, Three Layer Perceptron, Back propagation Algorithm, Basic Concepts of Clustering, Introduction to Clustering, Proximity Measures.	L1, L2, L3

Course outcomes: At the end of the course, students will be able to:

- Identify areas where Pattern Recognition and Machine Learning can offer a solution.
- Describe the strength and limitations of some techniques used in computational Machine Learning for classification, regression and density estimation problems
- Describe genetic algorithms, validation methods and sampling techniques
- Describe and model data to solve problems in regression and classification
- Implement learning algorithms for supervised tasks

Question paper pattern:

The question paper will have ten questions.

- Each full question consists of 16 marks.
- There will be 2 full questions (with a maximum of Three sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module. The students will have to answer 5 full questions, selecting one full question from each module.

Text Book:

Pattern Recognition: Sergios Theodoridis, Konstantinos Koutroumbas, Elsevier India Pvt. Ltd (Paper Back), 4th edition.

Reference Books:

- 1. The Elements of Statistical Learning: Trevor Hastie, Springer-Verlag New York, LLC (Paper Back), 2009.
- 2. Pattern Classification: Richard O. Duda, Peter E. Hart, David G. Stork. John Wiley & Sons, 2012.
- **3.** Pattern Recognition and Image Analysis Earl Gose: Richard Johnsonbaugh, Steve Jost, ePub eBook.

ADVANCED COMPUTER ARCHITECTURE B.E., VII Semester, Electronics & Communication Engineering /Telecommunication Engineering [As per Choice Based Credit System (CBCS) scheme]

Subject Code	15EC754	IA Marks	20	
Number of Lecture	03	Exam Marks	80	
Hours/Week				
Total Number of	40 (8 Hours / Module)	Exam Hours	03	
Lecture Hours				
	CREDIT			
0	This course will enable			
	e various parallel compu		1	rallelism
-	ntrol flow, dataflow and			
č	SC, superscalar, VLIW a	-		S
 Understand the 	e concept of pipelining a	nd memory hier	carchy design	
Explain cache	coherence protocols.			
	Module-1			RBT Level
Parallel Computer	Models: The state of	computing C	lassification of	L1, L2
	Multiprocessors and m			□ 1, □ ~
SIMD computers.	manuprocessors and m	anticomputer, m	and the could all a	
	ork Properties: Condit	ions of paralle	lism Data and	
	ces, Hardware and s			
	eduling, Grain Size and			
par di		laceriejt		
	Module-2			
	hanisms: Control flow			L1, L2, L3
	and driven mechanis	sms, Comparis	sons of flow	
mechanisms.				
–	ole Performance: Perfor			
0	Applications, Speedup	Performance La	ws, Scalability	
Analysis and Approa	ches.			
	Module-3			
Speedup Performan	nce Laws: Amdhal's la	aw. Gustafson's	s law. Memory	L1. L2. L3
	nodel, Scalability Analys		6	_,,,
	ors: Advanced process			
	C Scalar Processors			
	ors, VLIW Architectures		,	
1	Module-4			
Dinalining: Lincor	pipeline processor, r	onlinger ning	ine processor	L1, L2, L3
	Design, Mechanisms		1	LI, L&, LO
	n scheduling, Branch			
prediction, Arithmeti			nques, branch	
	Design: Cache basics &	cache perform	ance reducing	
	penalty, multilevel cac			
			mani memory	
organizations design	n of memory hierarchies			

	Module-5					
distr cach over prot	tiprocessor Architectures: Symmetric shared memory architectures, ributed shared memory architectures, models of memory consistency, the coherence protocols (MSI, MESI, MOESI), scalable cache coherence, view of directory based approaches, design challenges of directory pocols, memory based directory protocols, cache based directory pocols.					
Co •	urse Outcomes: At the end of the course, the students will be able to: Explain parallel computer models and conditions of parallelism					
•	Differentiate control flow, dataflow, demand driven mechanisms					
•	Explain the principle of scalable performance					
•	 Discuss advanced processors architectures like CISC, RISC, superscalar and VLIW 					
•	Understand the basics of instruction pipelining and memory technologies					
•	Explain the issues in multiprocessor architectures					
Que	stion paper pattern:					
The	question paper will have ten questions.					
•	Each full question consists of 16 marks.					
•	• There will be 2 full questions (with a maximum of Three sub questions) from each module.					
•	• Each full question will have sub questions covering all the topics under a module.					
Tex	t Book: Kai Hwang, "Advanced computer architecture"; TMH.					
Ref	erence Books:					
	 Kai Hwang and Zu, "Scalable Parallel Computers Architecture"; MGH. M.J Flynn, "Computer Architecture, Pipelined and Parallel Processor Design"; Narosa Publishing. 					
3	D.A.Patterson, J.L.Hennessy, "Computer Architecture :A quantitative approach"; Morgan Kauffmann Feb, 2002.					

SATELLITE COMMUNICATION

B.E., VII Semester, Electronics & Communication Engineering

IA Marks

20

[As per Choice Based Credit System (CBCS)]

15EC755

Subject Code

Number of Leater	02	Energy Marila	90	
Number of Lecture Hours/Week	03	Exam Marks	80	
Total Number of	40 (8 Hours / Module)	Exam Hours	03	
Lecture Hours	· (· · · · · · · · · · · · · · · · · ·			
	CREDIT			
Course Objectives: 7	This course will enable s	tudents to		
 Understand the basic principle of satellite orbits and trajectories. Study of electronic systems associated with a satellite and the earth station. Understand the various technologies associated with the satellite communication. Focus on a communication satellite and the national satellite system. Study of satellite applications focusing various domains services such as remote sensing, weather forecasting and navigation. 				
	Module-1			RBT Level
Satellite Orbits and Trajectories: Definition, Basic Principles, Orbital parameters, Injection velocity and satellite trajectory, Types of Satellite orbits, Orbital perturbations, Satellite stabilization, Orbital effects on satellite's performance, Eclipses, Look angles: Azimuth angle, Elevation angle.			L1, L2	
	Module-2			
Satellite subsystem: Power supply subsystem, Attitude and Orbit control, Tracking, Telemetry and command subsystem, Payload.				L1, L2
Earth Station: Types of earth station, Architecture, Design considerations, Testing, Earth station Hardware, Satellite tracking.				
	Module-3			
	chniques : Introduction ems, TDMA, CDMA, SD		erivation), SCPC	L1, L2, L3
Satellite Link Design Fundamentals : Transmission Equation, Satellite Link Parameters, Propagation considerations.				
Module-4				
Communication Satellites: Introduction, Related Applications, Frequency Bands, Payloads, Satellite Vs. Terrestrial Networks, Satellite Telephony, Satellite Television, Satellite radio, Regional satellite Systems, National Satellite Systems.				L1, L2
	Module-5			
	in out of the output of the ou			1

Remote Sensing Satellites: Classification of remote sensing systems,	L1, L2,
orbits, Payloads, Types of images: Image Classification, Interpretation, Applications.	L3
Weather Forecasting Satellites : Fundamentals, Images, Orbits, Payloads, Applications.	
Navigation Satellites : Development of Satellite Navigation Systems, GPS system, Applications.	
Course Outcomes: At the end of the course, the students will be able to:	
• Describe the satellite orbits and its trajectories with the definitions of paramassociated with it.	neters

- Describe the electronic hardware systems associated with the satellite subsystem and earth station.
- Describe the various applications of satellite with the focus on national satellite system.
- Compute the satellite link parameters under various propagation conditions with the illustration of multiple access techniques.

Question Paper pattern:

- The Question paper will have ten questions.
- Each full Question consisting of 16 marks
- There will be 2 full Questions (with a maximum of Three sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The Students will have to answer 5 full Questions, selecting one full Question from each module.

Text Book:

Anil K. Maini, Varsha Agrawal, Satellite Communications, Wiley India Pvt. Ltd., 2015, ISBN: 978-81-265-2071-8.

Reference Books :

- 1. Dennis Roddy, Satellite Communications, 4th Edition, McGraw- Hill International edition, 2006
- 2. Timothy Pratt, Charles Bostian, Jeremy Allnutt, Satellite Communications, 2nd Edition, Wiley India Pvt. Ltd , 2017, ISBN: 978-81-265-0833-4

ADVANCED COMMUNICATION LAB B.E., VII Semester, Electronics & Communication Engineering

[As per Choice Based Credit System (CBCS) scheme]

[h5 per enoice Dased eredit System (ebeb) seneme]			
Subject Code	15ECL76	IA Marks	20
Number of Lecture	01Hr Tutorial (Instructions)	Exam Marks	80
Hours/Week	+ 02 Hours Laboratory = 03		
RBT Levels	L1, L2, L3	Exam Hours	03

CREDITS - 02

Course objectives: This course will enable students to:

- Design and demonstrate the digital modulation techniques
- Demonstrate and measure the wave propagation in microstrip antennas
- Characteristics of microstrip devices and measurement of its parameters.
- Model an optical communication system and study its characteristics.
- Simulate the digital communication concepts and compute and display various parameters along with plots/figures.

Laboratory Experiments

PART-A: Following Experiments No. 1 to 4 has to be performed using discrete components.

- 1. Time Division Multiplexing and Demultiplexing of two bandlimited signals.
- 2. ASK generation and detection
- 3. FSK generation and detection
- 4. PSK generation and detection
- 5. Measurement of frequency, guide wavelength, power, VSWR and attenuation in microwave test bench.
- 6. Measurement of directivity and gain of microstrip dipole and Yagi antennas.
- 7. Determination of
 - a. Coupling and isolation characteristics of microstrip directional coupler.
 - b. Resonance characteristics of microstrip ring resonator and computation of dielectric constant of the substrate.
 - c. Power division and isolation of microstrip power divider.
- 8. Measurement of propagation loss, bending loss and numerical aperture of an optical fiber.

PART-B: Simulation Experiments using SCILAB/MATLAB/Simulink or LabView

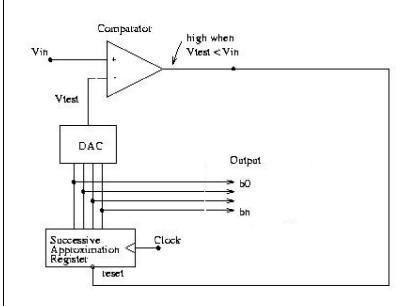
- 1. Simulate NRZ, RZ, half-sinusoid and raised cosine pulses and generate eye diagram for binary polar signaling.
- 2. Simulate the Pulse code modulation and demodulation system and display the waveforms.
- 3. Simulate the QPSK transmitter and receiver. Plot the signals and its constellation diagram.
- **4.** Test the performance of a binary differential phase shift keying system by simulating the non-coherent detection of binary DPSK.

Course outcomes: On the completion of this laboratory course, the students will be able to:

- Determine the characteristics and response of microwave devices and optical waveguide.
- Determine the characteristics of microstrip antennas and devices and compute the parameters associated with it.
- Simulate the digital modulation schemes with the display of waveforms and computation of performance parameters.
- Design and test the digital modulation circuits/systems and display the waveforms.

Conduct of Practical Examination:

- All laboratory experiments are to be considered for practical examination.
- For examination one question from **PART-A** and one question from **PART-B** or only one question from **PART-B** experiments based on the complexity, to be set.
- Students are allowed to pick one experiment from the lot.
- Strictly follow the instructions as printed on the cover page of answer script for breakup of marks.
- Change of experiment is allowed only once and Marks allotted to the procedure part to be made zero.


<u>VLSI LAB</u> B.E., VII Semester, Electronics & Communication Engineering

[As per Choice Based Credit System (CBCS) scheme]

Number of Lecture	15ECL77	IA Marks	20		
Humber of Beecure	01Hr Tutorial (Instructions)	Exam Marks	80		
Hours/Week	+ 02 Hours Laboratory = 03				
RBT Levels	L1, L2, L3	Exam Hours	03		
	CREDITS – 02				
	: This course will enable students to:				
-	AD tool and understand the flow of the		gn cycle.		
	VS and Parasitic Extraction of the vario		na ina lairdh an		
	mulate the various basic CMOS analog ata converters using design abstraction		m in nigner		
	nulate the various basic CMOS digital		n in higher		
	ders and shift registers using design a		ii iii iiigiici		
	0 0 0	1			
Exports con	be conducted using any of the falls	wing or aquivalant	dasign		
	be conducted using any of the follo ynopsis/Mentor Graphics/Microwin		design		
	Laboratory Experiments PART - A	5			
	ASIC-DIGITAL DESIGN				
 Write Verilog Code for the following circuits and their Test Bench for verification, observe the waveform and synthesize the code with technological library with given constraints*. Do the initial timing verification with gate level simulation. An inverter A Buffer Transmission Gate Basic/universal gates Flip flop -RS, D, JK, MS, T Serial & Parallel adder vii. 4-bit counter [Synchronous and Asynchronous counter] Successive approximation register [SAR] 					

PART - B
ANALOG DESIGN
 Design an Inverter with given specifications**, completing the design flow mentioned below: a. Draw the schematic and verify the following
 2. Design the (i) Common source and Common Drain amplifier and (ii) A Single Stage differential amplifier, with given specifications**, completing the design flow mentioned below: a. Draw the schematic and verify the following i) DC Analysis ii) AC Analysis iii) Transient Analysis b. Draw the Layout and verify the DRC, ERC c. Check for LVS d. Extract RC and back annotate the same and verify the Design.
 3. Design an op-amp with given specification** using given differential amplifier Common source and Common Drain amplifier in library*** and completing the design flow mentioned below: a. Draw the schematic and verify the following i) DC Analysis ii) DC Analysis iii) Transient Analysis b. Draw the Layout and verify the DRC, ERC c. Check for LVS d. Extract RC and back annotate the same and verify the Design.
 4. Design a 4 bit R-2R based DAC for the given specification and completing the design flow mentioned using given op-amp in the library***. a. Draw the schematic and verify the following i) DC Analysis ii) AC Analysis iii) Transient Analysis b. Draw the Layout and verify the DRC, ERC

5. For the SAR based ADC mentioned in the figure below draw the mixed signal schematic and verify the functionality by completing ASIC Design FLOW. [Specifications to GDS-II]

- * An appropriate constraint should be given.
- ** Appropriate specification should be given.
- *** Applicable Library should be added & information should be given to the Designer.

Course outcomes: On the completion of this laboratory course, the students will be able to:

- Write test bench to simulate various digital circuits.
- Interpret concepts of DC Analysis, AC Analysis and Transient Analysis in analog circuits.
- Design and simulate basic CMOS circuits like inverter, common source amplifier and differential amplifiers.
- Use basic amplifiers and further design higher level circuits like operational amplifier and analog/digital converters to meet desired parameters.
- Use transistors to design gates and further using gates realize shift registers and adders to meet desired parameters.

Conduct of Practical Examination:

- All laboratory experiments are to be included for practical examination.
- For examination, one question from **PART-A** and one question from **PART-B** to be set.
- Students are allowed to pick one experiment from the lot.
- Change of experiment is allowed only once and Marks allotted to the procedure part to be made zero.

B.E E&C EIGTH SEMESTER SYLLABUS

<u>Wireless Cellular and LTE 4G Broadband</u> B.E., VIII Semester, Electronics &Communication Engineering/ Telecommunication Engineering

[As per Choice Based Credit System (CBCS) scheme]

Subject Code	15EC81	IA Marks	20	
Number of	04	Exam Marks	80	
Lecture				
Total Number	50 (10 Hours / Module)	Exam Hours	03	
CREDITS – 04				

Course Objectives: This course will enable students to:

- Understand the basics of LTE standardization phases and specifications.
- Explain the system architecture of LTE and E-UTRAN, the layer of LTE, based on the use of OFDMA and SC-FDMA principles.
- Analyze the role of LTE radio interface protocols to set up, reconfigure and release the Radio Bearer, for transferring the EPS bearer.
- Analyze the main factors affecting LTE performance including mobile speed and transmission bandwidth.

Module – 1	RBT
	Level
Key Enablers for LTE features: OFDM, Single carrier FDMA, Single carrier FDE, Channel Dependent Multiuser Resource Scheduling, Multi antenna Techniques, IP based Flat network Architecture, LTE Network Architecture. (Sec 1.4- 1.5 of Text).	L1, L2
Wireless Fundamentals: Cellular concept, Broadband wireless	
channel (BWC), Fading in BWC, Modeling BWC – Empirical and Statistical models, Mitigation of Narrow band and Broadband Fading	
(Sec 2.2 – 2.7of Text).	
Module – 2	
Multicarrier Modulation: OFDM basics, OFDM in LTE, Timing and Frequency Synchronization, PAR, SC-FDE (Sec 3.2 – 3.6 of Text).	L1, L2
OFDMA and SC-FDMA: OFDM with FDMA,TDMA,CDMA, OFDMA, SC-FDMA, OFDMA and SC-FDMA in LTE (Sec 4.1 – 4.3, 4.5 of Text).	
Multiple Antenna Transmission and Reception: Spatial Diversity	
overview, Receive Diversity, Transmit Diversity, Interference cancellation and signal enhancement, Spatial Multiplexing, Choice	
between Diversity, Interference suppression and Spatial Multiplexing	
(Sec 5.1 – 5.6 of Text).	
Module – 3	
Overview and Channel Structure of LTE: Introduction to LTE, Channel Structure of LTE, Downlink OFDMA Radio Resource, Uplink	L1, L2

SC-FDMA Radio Resource(Sec 6.1 – 6.4 of Text).	
Downlink Transport Channel Processing: Overview, Downlink	
shared channels, Downlink Control Channels, Broadcast channels,	
Multicast channels, Downlink physical channels, H-ARQ on	
Downlink(Sec 7.1 – 7.7 of Text).	
Module - 4	
Uplink Channel Transport Processing: Overview, Uplink shared channels, Uplink Control Information, Uplink Reference signals, Random Access Channels, H-ARQ on uplink (Sec 8.1 – 8.6 of Text).	L1, L2
Physical Layer Procedures: Hybrid – ARQ procedures, Channel	
Quality Indicator CQI feedback, Precoder for closed loop MIMO	
Operations, Uplink channel sounding, Buffer status Reporting in	
uplink, Scheduling and Resource Allocation, Cell Search, Random	
Access Procedures, Power Control in uplink(Sec 9.1- 9.6, 9.8, 9.9, 9.10	
Text). Module – 5	
Radio Resource Management and Mobility Management:	L1, L2
PDCP overview, MAC/RLC overview, RRC overview, Mobility	L1, L2
Management, Inter-cell Interference Coordination(Sec 10.1 – 10.5 of	
Text).	
Course Outcomes: At the end of the course, students will be able to:	
 Understand the system architecture and the functional standard sp LTE 4G. Analyze the role of LTE radio interface protocols and EPS Data corr protocols to set up, reconfigure and release data and voice from users Demonstrate the UTRAN and EPS handling processes from set up t including mobility management for a variety of data call scenarios. Test and Evaluate the Performance of resource management and pace processing and transport algorithms. 	overgence 5. o release
Question Paper pattern:	
• The Question paper will have ten questions.	
• Each full Question consisting of 16 marks	· · · · · · · · · · · · · · · · · · ·
• There will be 2 full Questions (with a maximum of Three sub q from each module.	uestions)
 Each full question will have sub questions covering all the topics 	under a
module.	o unuti a
 The Students will have to answer 5 full Questions, selecting Question from each module. 	one full
Text Book:	
Arunabha Ghosh, Jan Zhang, Jefferey Andrews, Riaz Mohammed, 'Fundamentals of LTE', Prentice Hall, Communications Engg. and Emerg Technologies.	ging

Reference Books:

- **1.** LTE for UMTS Evolution to LTE-Advanced' Harri Holma and Antti Toskala, Second Edition - 2011, John Wiley & Sons, Ltd. Print ISBN: 9780470660003.
- **2.** 'EVOLVED PACKET SYSTEM (EPS) ; THE LTE AND SAE EVOLUTION OF 3G UMTS' by Pierre Lescuyer and Thierry Lucidarme, 2008, John Wiley & Sons, Ltd. Print ISBN:978-0-470-05976-0.
- 3. 'LTE The UMTS Long Term Evolution ; From Theory to Practice' by Stefania Sesia, Issam Toufik, and Matthew Baker, 2009 John Wiley & Sons Ltd, ISBN 978-0-470-69716-0.

FIBER OPTICS and NETWORKS

B.E., VIII Semester, Electronics & Communication Engineering

[As per Choice Based Credit System (CBCS)]

Subject Code	15EC82	IA Marks	20	
Number of Lecture	101002		~0	
Hours/Week	4	Exam Marks	80	
Total Number of	50(10 Hours /	БИ	0.0	
Lecture Hours	Module)	Exam Hours	03	
		ITS – 04		
Course Objectives	This course will er	nable students to:		
• Learn the basic	principle of optical t	fiber communication	with di	fferent
modes of light p	ropagation.			
• Understand the	transmission chara	cteristics and losses	in optic	al fiber.
v 1	components and its	s applications in opti	cal com	munication
networks.				
		ical fiber and unders	stand th	e network
architectures alo	ong with its function	nalities.		
Ontion Con	Module -1	atorical development	t The	RBT Level
		storical developmen		L1, L2
		cal fiber communi-		
Optical fiber waveguides: Ray theory transmission, Modes in planar guide, Phase and group velocity, Cylindrical fiber: Modes,				
Step index fibers, Graded index fibers, Single mode fibers,				
Cutoff wavelength, Mode field diameter, effective refractive				
index. Fiber Materials, Photonic crystal fibers. (Text 2)				
Module -2				
Transmission cha	aracteristics of o	ptical fiber: Attenu	lation,	L1, L2
		cattering losses, Nor		
0		s, Dispersion, Chr		
dispersion, Interme	odal dispersion: Mu	lltimode step index f	iber.	
			T •1	
	ectors: Fiber aligi	nment and joint loss	, Fiber	
splices, Fiber collin	ectors, Fiber couple	ers. (rext 2)		
		lule -3		
		ct and Indirect Band		L1, L2
		s, Light Source Mate		
Quantum Efficiency and LED Power, Modulation. Laser				
Diodes: Modes and Threshold conditions, Rate equation, External Quantum Efficiency, Resonant frequencies, Laser				
		ms: Single mode lase		
		113. Shigit mout idst	.1.3.	
Photodetectors:	Physical princi	iples of Photod	iodes	
	e, Detector respons	1	,	
Optical Receiver:	Optical Receiver	Operation: Error sou	urces,	

Front End Amplifiers, Receiver sensitivity, Quantum Limit.	
(Text 1)	
Module -4	
WDM Concepts and Components: Overview of WDM: Operational Principles of WDM, WDM standards, Mach-Zehnder Interferometer Multiplexers, Isolators and Circulators, Fiber grating filters, Dielectric Thin-Film Filters, Diffraction Gratings, Active Optical Components, Tunable light sources,	L1, L2
Optical amplifiers: Basic application and Types, Semiconductor optical amplifiers, Erbium Doped Fiber Amplifiers, Raman Amplifiers, Wideband Optical Amplifiers. (Text 1)	
Module -5	
Optical Networks: Optical network evolution and concepts: Optical networking terminology, Optical network node and switching elements, Wavelength division multiplexed networks, Public telecommunication network overview. Optical network transmission modes, layers and protocols: Synchronous networks, Asynchronous transfer mode, OSI reference model, Optical transport network, Internet protocol, Wavelength routing networks: Routing and wavelength assignment, Optical switching networks: Optical circuit switched networks, packet switched networks, Multiprotocol Label Switching, Optical burst switching networks, Optical network deployment: Long- haul networks, Metropoliton area networks, Access networks, Local area networks. (Text 2)	L1, L2
Course Outcomes: At the end of the course, students will be able	to:
 Classification and working of optical fiber with different mod propagation. Describe the transmission characteristics and losses in optic communication. Describe the construction and working principle of optical co multiplexers and amplifiers. Describe the constructional features and the characteristics sources and detectors. Illustrate the networking aspects of optical fiber and describe standards associated with it. 	es of signal cal fiber onnectors, of optical
Question Paper pattern:	
 The Question paper will have ten questions. Each full Question consisting of 16 marks There will be 2 full Questions (with a maximum of Three su from each module. 	ub questions)
 Each full question will have sub questions covering all the to module. The Students will have to answer 5 full Questions, selections 	-
Question from each module. Text Books:	
1. Gerd Keiser , Optical Fiber Communication, 5th Edition, McGrav	w Hill

Education(India) Private Limited, 2015. ISBN:1-25-900687-5.

2. John M Senior, Optical Fiber Communications, Principles and Practice, 3rd Edition, Pearson Education, 2010, ISBN:978-81-317-3266-3

Reference Book:

Joseph C Palais, Fiber Optic Communication , Pearson Education, 2005, ISBN:0130085103

<u>Micro Electro Mechanical Systems</u> B.E., VIII Semester, Electronics &Communication Engineering/ Telecommunication Engineering [As per Choice Based Credit System (CBCS) scheme]

Subject Code	15EC831	IA Marks	20	
Number of Lecture	03	Exam	80	
Hours/Week		marks		
Total Number of	40	Exam	03	
Lecture Hours	(8 Hours per Module)	Hours		
	CREDITS - 03		1	
Course Objectives	s: This course will enable st	udents to:		
Understand of	overview of microsystems, th	heir fabricat	tion and	
application a	reas.			
 Working prin 	ciples of several MEMS dev	ices.		
 Develop math 	nematical and analytical mo	dels of MEN	MS devices	S.
Know method	ls to fabricate MEMS device	es.		
 Various appli 	ication areas where MEMS	devices can	be used.	
	Module 1			RBT
				Level
Overview of MEMS	S and Microsystems: MEM	S and Micro	osystem,	L1, L2
Typical MEMS a	and Microsystems Produ	icts, Evolu	ition of	
Microfabrication, Microsystems and Microelectronics,				
Multidisciplinary Nature of Microsystems, Miniaturization.				
Applications and M				
	Module 2			
0	ples of Microsystem			L1, L2
	croactuation, MEMS wit	th Microa	ctuators,	
Microaccelerometer	rs, Microfluidics.			
E				
0 0	ence for Microsyster	0		
	luction, Molecular Theory		na inter-	
molecular Forces, F	Plasma Physics, Electrocher	nistry.		
Engineering Mark	Module 3	o at an a Trat	duation	111010
6 6	anics for Microsystems D	6		LI,LZ,L3
0	of Thin Plates, Mec.			
	Fracture Mechanics, Thi	II FIIII IVIE	chamics,	
Overview on Finite	Element Stress Analysis.			
	Module 4			
	mouule 4			

Scali	ng Laws in Miniaturization: Introduction, Scaling in L1,L2,L
Geon	netry, Scaling in Rigid-Body Dynamics, Scaling in
Elect	rostatic Forces, Scaling in Fluid Mechanics, Scaling in Heat
Tran	sfer.
	Module 5
Over	view of Micromanufacturing: Introduction, Bulk L1,L2
	omanufacturing, Surface Micromachining, The LIGA Process,
	mary on Micromanufacturing.
	se Outcomes: After studying this course, students will be able to:
	opreciate the technologies related to Micro Electro Mechanical Systems.
	nderstand design and fabrication processes involved with MEMS evices.
• A	nalyse the MEMS devices and develop suitable mathematical models
• K	now various application areas for MEMS device
Ques	tion paper pattern:
•	The question paper will have 10 full questions carrying equal marks.
•	Each full question consists of 16 marks with a maximum of Three sub questions.
•	There will be 2 full questions from each module covering all the topics of the module
•	The students will have to answer 5 full questions, selecting one full question from each module.
Text	Book:
Та	ni-Ran Hsu, MEMS and Micro systems: Design, Manufacture and
	anoscale Engineering, 2 nd Ed, Wiley.
	rence Books:
1	Hans H. Gatzen, Volker Saile, JurgLeuthold, Micro and Nano
1.	Fabrication: Tools and Processes, Springer, 2015.
2.	Dilip Kumar Bhattacharya, Brajesh Kumar Kaushik,
	Microelectromechanical Systems (MEMS), Cenage Learning.

SPEECH PROCESSING B.E., VIII Semester, Electronics & Communication Engineering/ Telecommunication Engineering

[As per Choice Based Credit System (CBCS) scheme]

Subject Code	15EC832	IA Marks	20
Number of Lecture	03	Exam Marks	80
Hours/Week			
Total Number of	40 (8 Hours /	Exam Hours	03
Lecture Hours	Module)		
CREDITS – 03			

Course Objectives: This course enables students to:

- Introduce the models for speech production
- Develop time and frequency domain techniques for estimating speech parameters
- Introduce a predictive technique for speech compression
- Provide fundamental knowledge required to understand and analyse speech recognition, synthesis and speaker identification systems.

Modules	
Module-1	RBT Level
Fundamentals of Human Speech Production: The Process of Speech Production, Short-Time Fourier Representation of Speech, The Acoustic Theory of Speech Production, Lossless Tube Models of the Vocal Tract, Digital Models for Sampled Speech Signals	L1, L2
Module-2	
Time-Domain Methods for Speech Processing: Introduction to Short- Time Analysis of Speech, Short-Time Energy and Short-Time Magnitude, Short-Time Zero-Crossing Rate, The Short-Time Autocorrelation Function, The Modified Short-Time Autocorrelation Function, The Short-Time Average Magnitude Difference Function.	L1, L2
Module-3	
Frequency Domain Representations: Discrete-Time Fourier Analysis, Short-Time Fourier Analysis, Spectrographic Displays, Overlap Addition(OLA),Method of Synthesis, Filter Bank Summation(FBS) Method of Synthesis, Time-Decimated Filter Banks, Two-Channel Filter Banks, Implementation of the FBS Method Using the FFT, OLA Revisited, Modifications of the STFT.	L1, L2
Module-4	
The Cepstrum and Homomorphic Speech Processing: Homomorphic Systems for Convolution, Homomorphic Analysis of the Speech Model, Computing the Short-Time Cepstrum and Complex Cepstrum of Speech, Homomorphic Filtering of Natural Speech, Cepstrum Analysis of All-Pole Models, Cepstrum Distance Measures.	L1, L2, L3
Module-5	
Linear Predictive Analysis of Speech Signals: Basic Principles of Linear	L1, L2,

Doma Equat Polyno	tive Analysis, Computation of the Gain for the Model, Frequency In Interpretations of Linear Predictive Analysis, Solution of the LPC Ions, The Prediction Error Signal, Some Properties of the LPC Iomial A(z), Relation of Linear Predictive Analysis to Lossless Tube
Model	s, Alternative Representations of the LP Parameters.
 M Ex Cl 	e outcomes: Upon completion of the course, students will be able to: odel speech production system and describe the fundamentals of speech. stract and compare different speech parameters. noose an appropriate speech model for a given application. nalyse speech recognition, synthesis and speaker identification systems
	tion paper pattern:
	The question paper will have ten questions.
•]	Each full question consists of 16 marks.
•] 1	There will be 2 full questions (with a maximum of Three sub questions) from each module. Each full question will have sub questions covering all the topics under a module. The students will have to answer 5 full questions, selecting one full question from each module.
Text	Book:
	Theory and Applications of Digital Speech Processing -Rabiner and Schafer, Pearson Education 2011
Refe	rence Books:
	Indamentals of Speech Recognition - Lawrence Rabiner and Biing-Hwang Iang, Pearson Education, 2003.
Pi	beech and Language Processing-An Introduction to Natural Language ocessing, Computational Linguistics, and Speech Recognition- Daniel urafsky and James H Martin, Pearson Prentice Hall 2009.

	Radar Engineer		
B.E., VIII Se	emester, Electronics & Comm	8 8	
	Telecommunication Eng	5	
[AS pe	er Choice Based Credit System	m (CBCS) schemej	
Subject Code	15EC833	IA Marks	20
Number of Lecture	03	Exam Marks	80
Hours/Week			
Total Number of	40 (8 Hours / Module)	Exam Hours	03
Lecture Hours			
	CREDITS - 03		
Course objectives: Thi	s course will enable students	s to:	
• Understand the Rad	ar fundamentals and analyze	e the radar signals.	
• Understand various	technologies involved in the	e design of radar transmitt	ers and
receivers.			
• Learn various radars	s like MTI, Doppler and track	ing radars and their compa	rison
Modules			DDT
Modules			RBT Level
Module-1			Level
	traduction Maximum Una	mbiguous Dongo Dodon	L1, L2,
	troduction, Maximum Una		L1, L2, L3
	with respect to pulse wavefo r, Average transmitter Power		LS
	0		
	dar Equation, Radar Block I plications of Radar, The Origi		
Problems. (Chapter 1 of	8	ins of Radal, musualive	
Module-2	n rextj		
	Prediction of Range Performa	nco Detection of signal in	L1, L2,
	ctable Signal, Receiver Noi		L1, L2, L3
	elope Detector — False Ala		LJ
Probability of Detection		and riobability,	
	, f Targets: simple targets – s	phere cone-sphere	
	F and Range Ambiguities, Sys		
	Problems. (Chapter 2 of Tex	· 1	
2.11)		it, <i>Except 2</i> :1, 2:0, 2:0 a	
Module-3			
	er Radar: Introduction, Prin	nciple Doppler Frequency	L1, L2,
	dar, Sweep to Sweep sub	1 11 1 5	L3
	ith – Power Amplifier Transm		10
	e of Single Delay- Line Canc		
1 5 1	wement Factor, N- Pulse Dela	-	
	\mathbf{g} – Blind phases, I and Q Cha		
	or, Moving Target Detector- C		
3.1, 3.2, 3.5, 3.6 of Te	0 0	6 (p-co. 0.	
Module-4			
Tracking Radar:			L1, L2,
	ypes of Tracking Radar Syst	ems. Monopulse Tracking-	L3
Amplitude Comparis		two-coordinates), Phase	20
Comparison Monopulse	· ·		
	nical Scan Tracking, Block D	Diagram of Conical Scan	

Tracking Radar, Tracking in Range, Comparison of Trackers. (Chapter 4: 4.1,	
4.2, 4.3 of Text)	
Module-5	
The Radar Antenna: Functions of The Radar Antenna, Antenna Parameters, Reflector Antennas and Electronically Steered Phased array Antennas. (Chapter 9: 9.1, 9.2 9.4, 9.5 of Text)	L1, L2, L3
Radar Receiver: The Radar Receiver, Receiver Noise Figure, Super	
Heterodyne Receiver, Duplexers and Receivers Protectors, Radar Displays.	
(Chapter 11 of Text)	
 Course outcomes: At the end of the course, students will be able to: Understand the radar fundamentals and radar signals. Explain the working principle of pulse Doppler radars, their application 	one and
limitations	JIIS allu
 Describe the working of various radar transmitters and receivers. 	
 Analyze the range parameters of pulse radar system which affect the performance 	system
Question paper pattern:	
• The question paper will have ten questions.	
Each full Question consisting of 16 marks	
• There will be 2 full questions (with a maximum of Three sub questions) fro each module.	om
• Each full question will have sub questions covering all the topics under a module.	
• The students will have to answer 5 full questions, selecting one full questi each module.	on from
Text Book:	
Introduction to Radar Systems- Merrill I Skolink, 3e, TMH, 2001.	
Reference Books:	
1. Radar Principles, Technology, Applications — Byron Edde, Pearson Ed 2004.	ucation,
 Radar Principles - Peebles. Jr, P.Z. Wiley. New York, 1998. Principles of Modem Radar: Basic Principles - Mark A. Rkhards, James A Scheer, William A. HoIm. Yesdee, 2013 	

MACHINE LEARNING

B.E., VIII Semester, Electronics & Communication Engineering/ Telecommunication Engineering

[As per Choice Based Credit System (CBCS) scheme]

Subject Code	15EC834	IA Marks	20
Number of Lecture	03	Exam Marks	80
Hours/Week			
Total Number	40 (8 Hours /	Exam Hours	03
of Lecture	Module)		
Hours			
CREDITS – 03			

Course Objectives: This course will enable students to:

- Introduce some concepts and techniques that are core to Machine Learning.
- Understand learning and decision trees.
- Acquire knowledge of neural networks, Bayesian techniques and instant based learning.
- Understand analytical learning and reinforced learning.

Modules	
Module-1	RBT Level
Learning: Designing Learning systems, Perspectives and Issues, Concept Learning, Version Spaces and Candidate Elimination Algorithm, Inductive bias.	L1, L2
Module-2	
Decision Tree and ANN: Decision Tree Representation, Hypothesis Space Search, Inductive bias in decision tree, issues in Decision tree. Neural Network Representation, Perceptrons, Multilayer Networks and Back Propagation Algorithms.	L1, L2
Module-3	
Bayesian and Computational Learning: Bayes Theorem, Bayes Theorem Concept Learning, Maximum Likelihood, Minimum Description Length Principle, Bayes Optimal Classifier, Gibbs Algorithm, Naïve Bayes Classifier.	L1, L2
Module-4	
Instant Based Learning and Learning set of rules: K- Nearest Neighbour Learning, Locally Weighted Regression, Radial Basis Functions, Case-Based Reasoning. Sequential Covering Algorithms, Learning Rule Sets, Learning First Order Rules, Learning Sets of First Order Rules.	L1, L2
Module-5	
 Analytical Learning and Reinforced Learning: Perfect Domain Theories, Explanation Based Learning, Inductive-Analytical Approaches, FOCL Algorithm, Reinforcement Learning. Course outcomes: At the end of the course, students should be able to: 	L1, L2

- Understand the core concepts of Machine learning.
- Appreciate the underlying mathematical relationships within and across Machine Learning algorithms.
- Explain paradigms of supervised and un-supervised learning.
- Recognize a real world problem and apply the learned techniques of Machine Learning to solve the problem.

Question paper pattern:

- The question paper will have ten questions.
- Each full question consists of 16 marks.
- There will be 2 full questions (with a maximum of Three sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module. The students will have to answer 5 full questions, selecting one full question from each module.

Text Book:

Machine Learning-Tom M. Mitchell, McGraw-Hill Education, (INDIAN EDITION), 2013.

Reference Books:

- 1. **Introduction to Machine Learning-** Ethem Alpaydin, 2nd Ed., PHI Learning Pvt. Ltd., 2013.
- 2. **The Elements of Statistical Learning-**T. Hastie, R. Tibshirani, J. H. Friedman, Springer; 1st edition, 2001.

NETWORK AND CYBER SECURITY B.E., VIII Semester, Electronics & Communication Engineering [As per Choice Based credit System (CBCS) Scheme

Subject Code	15EC835	IA Marks	20	
Number of Lecture	03	Exam	80	
Hours/Week		marks		
Total Number of	40	Exam	03	
Lecture Hours	(8 Hours per Module)	Hours		
CREDITS – 03				
Course Objectives: This course will enable students to:				
Understand oList the prob	security concerns in Ema cyber security concepts. lems that can arise in cyl various cyber security fra	ber security.	Protocol.	
Module-1				RBT Level
Transport Level S	Transport Level Security: Web Security Considerations, Secure			
Sockets Layer, Transport Layer Security, HTTPS, Secure Shell (SSH) (Text 1: Chapter 15)				L1, L2
Module-2				
E-mail Security: Pretty Good Privacy, S/MIME, Domain keys identified mail (Text 1: Chapter 17)				L1, L2
Module-3				
IP Security: IP Security Overview, IP Security Policy, Encapsulation Security Payload (ESP), Combining security Associations Internet Key Exchange. Cryptographic Suites(Text 1: Chapter 18)				L1, L2
· · · · · · · · · · · · · · · · · · ·	Module-4			
Cyber network security concepts: Security Architecture, antipattern: signature based malware detection versus polymorphic threads, document driven certification and accreditation, policy driven security certifications. Refactored solution: reputational, behavioural and entropy based malware detection.				L1, L2, L3
The problems: cyber antipatterns concept, forces in cyber antipatterns, cyber anti pattern templates, cyber security antipattern catalog (Text-2: Chapter1 & 2)				
	Module-5			
Cyber network security concepts contd. : Enterprise security using Zachman framework Zachman framework for enterprise architecture, primitive models versus composite models, architectural problem solving patterns,				L1, L2, L3
enterprise workshop, matrix mining, mini patterns for problem solving meetings. Case study: cyber security hands on – managing administrations				

and root accounts, installing hardware, reimaging OS, installing system protection/ antimalware, configuring firewalls (Text-2: Chapter 3 & 4).

Course Outcomes: After studying this course, students will be able to:

- Explain network security protocols
- Understand the basic concepts of cyber security
- Discuss the cyber security problems
- Explain Enterprise Security Framework
- Apply concept of cyber security framework in computer system administration

Question paper pattern:

- The question paper will have 10 full questions carrying equal marks.
- Each full question consists of 16 marks with a maximum of Three sub questions.
- There will be 2 full questions from each module covering all the topics of the module
- The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

- 1. William Stallings, "Cryptography and Network Security Principles and Practice", Pearson Education Inc., 6th Edition, 2014, ISBN: 978-93-325-1877-3.
- 2. Thomas J. Mowbray, "Cyber Security Managing Systems, Conducting Testing, and Investigating Intrusions", Wiley.

Reference Books:

- 1. Cryptography and Network Security, Behrouz A. Forouzan, TMH, 2007.
- 2. Cryptography and Network Security, Atul Kahate, TMH, 2003.

Stremas.6

PRINCIPAL K.S. INSTITUTE OF TECHNOLOGY BENGALURU - 560 109.