DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

COURSE FILE

:

:

:

:

NAME OF THE STAFF

Mr. RAGHAVENDRACHAR.S

SUBJECT CODE/NAME

17CS73 / MACHINE LEARNING

(Sept 2020 – Jan 2021)(ODD)

YEAR/SEMESTER/SEC

MIC YEAR :

ACADEMIC YEAR

BRANCH

CSE

IV/VII/A

S.Royl **COURSE IN-CHARGE**

Jucurapin ()HOD

Head of the Department Dept. of Computer Science & Engg. K.S. Institute of Technology Bengaluru -560 109

K.S. INSTITUTE OF TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE ENGINEERING

Vision of the Institute

To impart quality technical education with ethical values, employable skills and research to achieve excellence

Mission of the Institute

- To attract and retain highly qualified, experienced & committed faculty.
- To create relevant infrastructure.
- Network with industry & premier institutions to encourage emergence of new ideas by providing research & development facilities to strive for academic excellence.
- To inculcate the professional & ethical values among young students with employable skills & knowledge acquired to transform the society.

Vision of the Department

To create competent professionals in Computer Science and Engineering with adequate skills to drive the IT industry

Mission of the Department

- Impart sound technical knowledge and quest for continuous learning.
- To equip students to furnish Computer Applications for the society through experiential learning and research with professional ethics.
- Encourage team work through inter-disciplinary project and evolve as leaders with social concerns.

On ucerapin

Head of the Department

Dept. of Computer Science & Engo K.S. Institute of Technology Bengaluru -560 109

K.S. INSTITUTE OF TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE ENGINEERING

Program Educational Objectives

- **PEO1:** Excel in professional career by acquiring knowledge in cutting edge technology and contribute to the society as an excellent employee or as an entrepreneur in the field of Computer Science & Engineering.
- **PEO2:** Continuously enhance their knowledge on par with the development in IT industry and pursue higher studies in Computer Science & Engineering.
- **PEO3:** Exhibit professionalism, cultural awareness, team work, ethics, and effective communication skills with their knowledge in solving social and environmental problems by applying computer technology.

Program Specific Outcomes (PSO)

- **PSO1:** Ability to understand, analyze problems and implement solutions in programming languages, as well to apply concepts in core areas of Computer Science in association with professional bodies and clubs.
- PSO2: Ability to use computational skills and apply software knowledge to develop effective solutions and data to address real world challenges.

Head of the Department Dept. of Computer Science & Engg. K.S. Institute of Technology

K.S. INSTITUTE OF TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE ENGINEERING

Program Outcomes

- **PO1:** Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- **PO2: Problem analysis:** Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **PO3:** Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **PO4:** Conduct investigations of complex problems: Use researchbased knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **PO5:** Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- **PO6:** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- **PO7:** Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

- **PO8:** Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **PO9:** Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **PO10:** Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **PO11: Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **PO12:** Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Jucal-upun

Head of the Department Dept. of Computer Science & Engg K.S. Institute of Technology Bengalury -560 109

K. S. INSTITUTE OF TECHNOLOGY

#14, Raghuvanahalli, Kanakapura Main Road, Bengaluru-560109

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

٦

Course: Mac	hine L	earn	ing			Vera . 2020 - 20	21	
Type: Core			Course Code: 17CS73	3	Academic	rear : 2020 - 20		
Faculty: Mr	. Ragh	aven	drachar S		Sem / Secti			
			No	of Hours	5			
Theory		Prac	tical/Field Work/Allied	То	tal/Week	al/Week Total teaching hou		
(Lecture Cla	ass)		Activities		4	4 50		
4			0	Marke	-7			
Internal Acc	accman	t 1	Examination	Marks	Total		Credits	
Internal Ass	essmer		60		100		4	
40	wee of	the						
Machine Lea by the indust 1. Reca reint 2. Und 3. Illus	arning i try. This all the forceme erstand trate co	is an s cou prot ent le theo oncep	important subject which urse lays down the following plems for machine learn earning. Fry of probability and station to learning, ANN, Bayes c	provides of ing objection ning and istics related classifier, l	exposure to new ives – select the eithe ed to machine le K nearest neighb	technology wh er supervised, arning. our.	ich is demanded unsupervised or	
Course Lea After comp	rning (Oute the c	omes course, the students will	be able t	.0			
CO#			COURSE	OUTCO	MES		K - LEVEL	
17CS73.1	Make algorit	use thm.	of concept learning to im	plement fi	ind s and candid	ate elimination	Applying (K3)	
17CS73.2	Const	truct	decision tree using appro	priate alg	orithms.		Applying (K3)	
17CS73.3	Choo	se ap	propriate algorithms to in	nplement a	artificial neural r	etworks.	Applying (K3)	
17CS73.4	Ident	ify B	ayes Classifier for solvin	g problem	S.	en en el seconomico Companya en el seconomico Companya en el seconomico de la seconomico Companya en el seconomico de la seconomico de	Applying (K3)	
17CS73.5	Deter	min	e Instance based and Rein	forcement	t Learning Techr	niques.	Applying (K3)	
			Syll	abus Con	tent			
Module - 1	l						CO1	
Introductio	on: We	il po	sed learning problems, D	Designing	a Learning syste	em, Perspective		
and Issues i	in Mach	nine l	Learning.				10 hrs	
Concept L	earning	g: Co	oncept learning task, Cond	cept learni	ing as search, Fin	nd-S algorithm,	DOL 1	
Version spa	ice, Car	ndida	te Elimination algorithm,	Inductive	Bias.		POI-3	
LO: At the	end of	this	session the student will be	able to			PO2- 2	
1 De	fine ma	chin	e learning and discuss va	rious issue	s in machine les	ming	POS-2	
2. Lis	t and en	xplai	n the different design issue	ies and an	proaches in mac	hine learning	PO10 - 1	
3. Illu	strate v	with s	suitable example of candi	date elimi	nation algorithm		PO12 - 1	

4 Describe the FIND-S algorithm and apply it on the given dataset.	PSO1-3
4. Desenve me i map-s algorium and apply it on the given dataset	PSO2- 2
	CO2
Module – 2	10 hrs
Decision Tree Learning: Decision tree representation, Appropriate problems for decision	10 113.
ree learning. Basic decision tree learning algorithm, hypothesis space search in decision	PO1-3
tree learning. Inductive bias in decision tree learning. Issues in decision tree learning.	PO2-2
LO: At the end of this session the student will be able to	PO3 - 2
1 What is decision tree learning? Illustrate ID2 algorithm for simplified version	PO5-2
with Boolean valued function	PO10 - 1
2. Explain the concept of entropy and information gain and apply the concepts to	PO12 - 1
solve the problems on the given dataset.	PSO1-3
	PSO2- 2
Madala 2	CO3
Module – 5 Artificial Neural Networks, Interded and Networks, Artificial Neural Networks, Interded	
Artificial Neural Networks: Introduction, Neural Network representation, Appropriate	8 hrs
problems, Perceptron, Back propagation algorithm.	
LO: At the end of this session the student will be able to	PO1-3
1. What are artificial neural networks (ANN)? Discuss different characteristics that	PO2-2
are appropriate for ANN problems.	PO3 - 2
2. What is perception? Discuss how a single perception can be used to represent the	PO10 - 1
Boolean functions such as AND and OR.	PO12 - 1
3. Explain the differentiable sigmoid threshold unit.	PSO1- 3
4. Explain BackPropagation algorithm. Why it is not likely to be trapped in local	PSO2- 2
minima	
	CO4
Module – 4	10hrs
Bayesian Learning: Introduction, Bayes theorem, Bayes theorem and concept learning,	
ML and LS error hypothesis. ML for predicting probabilities. MDL principle. Naive	PO1-3
Power classifier Bayesian belief networks. EM algorithm.	PO2-2
Dayes classifier, Dayesian bench networks, bit algoritaning	PO3 - 2
LU: At the end of this session the student will be able to	PO5-2
1. Explain Naïve bayes classifier	PO10 - 1
2. Explain mistake bound model for learning and apply it to FirdD-3 algorithm	PSO1-3
3. What is Bayesian learning? Discuss the learning of Bayesian learning method	PSO2- 2
Module – 5	CO5
Evaluating Hypothesis: Motivation. Estimating hypothesis accuracy, Basics of sampling	
theorem, General approach for deriving confidence intervals, Difference in error of two	12 hrs
hypotheses, Comparing learning algorithms.	PO1-3
Instance Based Learning: Introduction, k-nearest neighbor learning, locally weighted	PO2- 2
regression, radial basis function, cased-based reasoning,	PO3 - 2
Reinforcement Learning: Introduction, Learning Task, Q Learning	PO5-2
I O: At the end of this session the student will be able to	PO10 - 1
Do. At the one of this description for continuous valued target functions. Discuss on	e PO12 - 1

major drawback of this algorithm and how2. What is reinforcement learning?3. What is Q function and Q learning?	it can be corrected.	PSO1- 3 PSO2- 2
Text Books1. Tom M. Mitchell, Machine Learning, Ind	ia Edition 2013, McGraw Hill Education	
Reference Books (specify minimum two foreign	authors text books)	
 Trevor Hastie, Robert Tibshirani, Jerome F edition, Springer series in statistics. Ethem Alpavdin, Introduction to machin 	Friedman, The Elements of Statistical L e learning , second edition, MIT press,	earning, 2nd
Useful Websites	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
1. <u>https://nptel.ac.in/courses/106105152/</u>		
2. <u>https://www.coursera.org/learn/machine-le</u>	arning	
3. <u>https://www.slideshare.net/ColleenFarrelly</u>	/machine-learning-by-analogy-59094152	<u>2</u>
 <u>https://www.journals.elsevier.com/neural-netw</u> <u>http://jmlr.csail.mit.edu/</u> Teaching and Learning Methods Lecture class: 50 hrs Revision: 2hrs 	<u>orks</u>	
Assessment Type of test/examination: Written examination		
Continuous Internal Evaluation(CIE) : 40 marks	(Average of three tests will be considered	ed)
Semester End Exam (SEE): 100 marks (students)	have to answer 5 full questions)	
Test duration: 1 :30 hrs		
Examination duration: 3 hrs		
CO to	PO Mapping	
PO1: Science and engineering Knowledg	e PO7: Environment and Society	
PO2: Problem Analysis	PO8:Ethics	
PO3: Design & Development	PO9: Individual & Team Work	
PO4:Investigations of Complex Problems	PO11: Project Mngmt & Finance	
PO5: Modern Tool Usage	PO12:Life long Learning	
PO6: Engineer & Society		

PSO1: Ability to understand, analyze problems and implement solutions in programming languages, as well to apply concepts in core areas of Computer Science in association with professional bodies and clubs. **PSO2:** Ability to use computational skills and apply software knowledge to develop effective solutions and data to address real world challenges.

со	PO1	PO2	роз	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
170873.1	3	2	2	-	2	-		-	-	1	-	1
170873.2	3	2	2		2	-	-	-	-	1	-	1
170573.3	3	2	2	-	2	-	-	-	-	1	-	1
170573.4	3	2	2	-	2	-	-	-	-	1	-	1
17CS73.5	3	2	2	-	2	-	-	-	•	1		
17CS73	3	2	2	-	2	-	-	-	-	1	-	1

СО	PSO1	PSO2
17CS73.1	3	2
17CS73.2	3	2
17CS73.3	3	3
17CS73.4	3	2
17CS73.5	3	2
17CS73	3	2

3	Substantial (High) Correlation
2	Moderate (Medium) Correlation
1	Slight (Low) Correlation
-	No correlation.

Jucarapu

Module Coordinator

Duccurap (\cdot) HOD

Head of the Department Dept. of Computer Science & Engg. K.S. Institute of Technology Bengaluru -560 109

S. Port Course In charge

KSIT

K. S INSTITUTE OF TECHNOLOGY, BENGALURU-560109 DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING CALENDAR OF EVENTS: ODD SEMESTER (2020-2021)

SESSION: SEP 2020 - JAN 2021

No. Mon Tue Wed Thu Fri Sat Days Activities Activities 1 SEP 1* 2 3 4 5 5 1^{12} -Commencement of Higher Semester 2 SEP 7 8 9 10 11 12 6 3 SEP 14 15 16 18 19 5 17. Mahalaya	Week	Month			D	av				Antidator	Department
1 SEP 1* 2 3 4 5 5 1*-Comment of Higher Semester 2 SEP 7 8 9 10 11 12 6 3 SEP 14 15 16 18 19 5 17- Mahalaya 4 SEP 21 22 23 24 25 26TA 6 5 SEP / 28 12 29 13 14 15 16 5 6 OCT 15 6BV 7ASD 8 9 10 6 5-10 First Field Back	No.	Month	Mon	Tue	Wed	Thu	Fri	Sat	Days	Activities	Activities
2 SEP 7 8 9 10 11 12 6 3 SEP 14 15 16 18 19 5 17. Mahalaya 4 SEP 21 22 23 24 25 26TA 6 5 SEP 21 22 23 24 25 26TA 6 6 OCT 5 6BV 7ASD 8 9 10 6 5-10 First Feed Back 7 OCT 13 14 15 16 5 24 · Monday Time Table 8 OCT 19 20 21 22 23 24 6 24 · Monday Time Table 9 OCT 27 28 29 3 3 6 74 / 8 7 · Wednesday Time Table 10 NOV 2 3 4 5 6 7 TA 6 7 · Wednesday Time Table 11 NOV 2 3	1	SEP		1*	2	3	4	5	5	1*-Commencement of Higher Somester	
3 SEP 14 15 16 18 19 5 17. Mahalaya 4 SEP 21 22 23 24 25 26TA 6 5 SEP/ OCT 28 Ti 29 Ti 30 Ti 1 3 5 2- Mahaima Gandhi Jayanthi 6 OCT 5 6BV 7ASD 8 9 10 6 5-10 First Feed Back 7 OCT 12 13 14 15 16 5 8 OCT 19 20 21 22 23 24 6 5-10 First Feed Back 9 OCT 27 28 29 3 30- Eid-Milad 31- Mahariah Valmiki 31- Mahar	2	SEP	7	8	9	10	11	12	6		
4 SEP / OCT 21 22 23 24 25 26TA 6 5 OCT 28 T1 29 T1 30 T1 1 3 5 Jayanthi 6 OCT 5 6BV 7ASD 8 9 10 6 5-10 First Feed Back 7 OCT 12 13 14 15 16 5 24 · Monday Time Table 8 OCT 19 20 21 22 23 24 6 Table 9 OCT 27 28 29 7 3 11-Maharishi Valmiki Project Zeroth Review Presentation 10 NOV 2 3 4 5 6 7TA 6 Table 7 11 NOV 2 3 4 5 6 7TA 6 7 7 8 16-Dalipedyami Despearing Despear	3	SEP	14	15	16		18	19	5	17- Mahalaya	
5 SEP / OCT 28 T1 29 T1 30 T1 1 3 5 2-Mahatma Gandhi Jayanthi 6 OCT 5 6BV 7ASD 8 9 10 6 5-10 First Feed Back	4	SEP	21	22	23	24	25	26TA	6		
6 OCT 5 6BV 7ASD 8 9 10 6 5-10 First Feed Back 7 OCT 12 13 14 15 16 5	5	SEP / OCT	28 T1	29 TI	30 T1	1		3	5	2- Mahatma Gandhi Jayanthi	
7 OCT 12 13 14 15 16 5 24 - Monday Time 8 OCT 19 20 21 22 23 24 6 74 - Monday Time 9 OCT 27 28 29 23 24 6 74 - Monday Time 10 NOV 2 3 4 5 6 7 TA 6 74 - Monday Time 10 NOV 2 3 4 5 6 7 TA 6 74 - Monday Time 11 NOV 2 3 4 5 6 7 TA 6 74 - Monday Time 11 NOV 9 10 11 12 13 5 74 - Monday Time 12 NOV 17 T2 18 T2 19 T2 20 21 5 16 - Balipadyami Decender 13 NOV 23 24 BV 25 ASD 26 27 5 5 Monday Time Pr	6	OCT	5	6BV	7ASD	8	9	10	6	5-10 First Feed Back	
8 OCT 19 20 21 22 23 24 6 24 · Monday Time Table 9 OCT 27 28 29 29 26 · Vigyadashami 3 3 26 · Vigyadashami 30 · Eid-Milad 31 · Maharishi Valmiki Jayani Presentation 10 NOV 2 3 4 5 6 7 TA 6 7 · Wednesday Time Table 3 11 NOV 2 3 4 5 6 7 TA 6 7 · Wednesday Time Table 3 11 NOV 9 10 11 12 13 5 Maharishi Valmiki Table 3 13 · 11 · 2020 Webiar of An Insight into Web Application Development 12 NOV 17 TZ 18 TZ 19 TZ 20 21 5 16 · Balipadyami Decepavalii 18 · 21 Second Feed Back 19 · 11 18 · 11 Second Feed Back 19 · 11 18 · 21 Second Feed Back 19 · 11 18 · 11 Second Feed Back 19 · 11	7	OCT	12	13	14	15	16		5		
9 OCT 27 28 29 26 3 3 26-Vijsyadashami 30-Eid-Milad 31-Maharishi Valmiki 30-Eid-Milad 31-Maharishi Valmiki 30-Eid-Milad 31-Maharishi Valmiki 30-Eid-Milad 31-Maharishi Valmiki 30-Eid-Milad 31-Maharishi Valmiki Project Zeroth Review Presentation 10 NOV 2 3 4 5 6 7 TA 6 7-Wednesday Time Table 13-11-2020 Webinar of An Insight into Web Application Development 11 NOV 9 10 11 12 13 5 13-11-2020 Webinar of An Insight into Web Application Development 12 NOV 9 10 11 12 13 5 16 - Balipadyami Decepavalli 18 - 21 Second Feed Back 21 - Friday Time Table 13-12 Second Feed Back 21 - Friday Time Table 16 18 - 21 Second Feed Back 21 - Friday Time Table 17 18 15 5 5 S-Monday Time Table 16 14 15 16 17 18 19 6 19-Monday Time Table 22-12-2020 & 23-12- 2020 34th C51 Namataka State Studeet Convention 18 DEC/ JAN 28 29 30 31 1 TA 2 6 2Thurday Time Table Review Presentation 19 JAN 11	8	ОСТ	19	20	21	22	23	24	6	24 - Monday Time Table	
10 NOV 2 3 4 5 6 7 TA 6 7 · Wednesday Time Table 11 NOV 9 10 11 12 13 5 Image: State of the state o	9	ост		27	28	29			3	26- Vijayadashami 30- Eid-Milad 31- Maharishi Valmiki Jayanti	Project Zeroth Review Presentation
11 NOV 9 10 11 12 13 5 (13-11-2020 Webinar of An Insight into Web Application Development 12 NOV 9 10 11 12 13 5 (13-11-2020 Webinar of An Insight into Web Application Development 12 NOV 17 T2 18 T2 19 T2 20 21 5 16 - Balipadyami Development Development 13 NOV 23 24BV 25ASD 26 27 5	10	NOV	2	3	4	5	6	7 TA	6	7 - Wednesday Time Table	
12 NOV 17 T2 18 T2 19 T2 20 21 5 16 - Balipadyami Deepavalli 18 - 21 Second Feed Back 21 - Friday Time Table 13 NOV 23 24 BV 25 ASD 26 27 5	11	NOV	9	10	11	12	13		5		13-11-2020 Webinar on An Insight into Web Application Development
13 NOV 23 24BV 25ASD 26 27 5 1 1 1 14 NOV /DEC 30 1 2 4 5 5 3. Kanakadasa Jayanti 5. Monday Time Table Project Zeroth Phase Re-Presentation 15 DEC 7 8 9 10 11 5 5 3. Kanakadasa Jayanti 5. Monday Time Project Zeroth Phase Re-Presentation 16 DEC 7 8 9 10 11 5 5 3. Kanakadasa Jayanti 5. Monday Time 22.020 X 22.01 22.020 X 23.01 11 5 5 5 3. Kanakadasa Jayanti 5. Monday Time 22.12.2020 & 2.3.12. 17 DEC 21 22 23 24 4 25. Christmas 22.12.2020 & 23.12. 18 DEC/ JAN 28 29 30 31 1 TA 2 6 2Thursday Time Table Project Phase - 1 Review Presentation 19 JAN 11 T3 12 T3 13 T3 15 16 * 5 14. Makara sankaranthi Sankaranthi	12	NOV		17 T2	18 T2	19 T2	20	21	5	16 - Balipadyami Deepavalli 18 - 21 Second Feed Back 21 - Friday Time Table	
14 NOV /DEC 30 1 2 4 5 5 3 · Kanakadasa Jayanti 5 · Monday Time Table Project Zeroth Phase Re-Presentation 15 DEC 7 8 9 10 11 5	13	NOV	23	24BV	25ASD	26	27		5		
15 DEC 7 8 9 10 11 5	14	NOV /DEC	30	1	2		4	5	5	3- Kanakadasa Jayanti 5 - Monday Time Table	Project Zeroth Phase Re-Presentation
16 DEC 14 15 16 17 18 19 6 19- Monday Time 17 DEC 21 22 23 24 4 25-Christmas 22-12-2020 & 23-12-2020	15	DEC	7	8	9	10	11		5		
17 DEC 21 22 23 24 4 25-Christmas 22-12-2020 & 23-12-2020 & 23-12-2020 & 23-12-2020 & 23-12-2020 & 23-12-2020 & 23-12-2020 & 34 th CS1 18 DEC/ JAN 28 29 30 31 1 TA 2 6 2Thursday Time Table Project Phase - 1 Review Presentation 19 JAN 4107 5007 6007 8 5 5 20 JAN 11 T3 12 T3 13 T3 15 16 * 5 14- Makara sankaranthi C	16	DEC	14	15	16	17	18	19	6	19- Monday Time	
18 DEC/ JAN 28 29 30 31 1 TA 2 6 2Thursday Time Table Project Phase - 1 Review Presentation 19 JAN 4 04 5 104 6 104 7 107 8 5 6 20 20 JAN 11 T3 12 T3 13 T3 15 16 * 5 14- Makara sankaranthi 5	17	DEC	21	22	23	24			4	25-Christmas	22-12-2020 & 23-12- 2020 34th CS1 Karnataka State Student Convention
19 JAN 6 D1 6 D1 7 D1 8 5 20 JAN 11 T3 12 T3 13 T3 15 16 * 5 14- Makara sankaranthi	18	DEC/ JAN	28	29	30	31	1 TA	2	6	2Thursday Time Table	Project Phase - 1 Review Presentation
20 JAN 11 T3 12 T3 13 T3 15 16 * 5 14-Makara sankaranthi	19	JAN	181.648	-144	Carles .		8		5		
	20	JAN	11 T3	12 T3	13 T3		15	16 •	5	14- Makara sankaranthi	

Total Number of working days (Excluding holidays and Tests)=87

u	Holiday
BV	Blue Book
T1,T2, T3	Tests 1,2, 3
ASD	Attendance &
DH	Declared Holiday
LT	Lab Test
TA	Tost attondance

Monday	16
Tuesday	16
Wednesday	16
Thursday	16
Friday	17
Saturday	6
Total	87

urara pm

24 8 2620 Head of the Department Dept. of Computer Science & Engg. K.S. Institute of Technology Bengalury -560 109

K. S INSTITUTE OF TECHNOLOGY, BENGALURU-560109 TENTATIVE CALENDAR OF EVENTS: ODD SEMESTER (2020-2021)

SESSION: SEP 2020 - JAN 2021

Week	Month			Da	y			Days	a Activities
No.	Nionta	Mon	Tue	Wed	Thu	Fri	Sat		titt Lon Connector
1	SEP		1*	2	3	4	5	5	1*-Commencement of Figher Semester
2	SEP	7	8	9	10	11	12	6	
3	SEP	14	15	16	17/196	18	19	5	17- Mahalaya Amavasya
4	SEP	21	22	23	24	25	26TA	6	
5	SEP / OCT	28 T I	29 T1	30 T1	1	211	3	5	2- Mahatma Gandhi Jayanthi
6	ост	5	6BV	7ASD	8	9	10	6	5-10 First Feed Back
7	ост	12	B	14	15	16	17 DH	5	
8	ост	19	20	21	22	23	24	6	24 - Monday Time Table
ŋ	ост	(27	28	29	;;;())]][;	30. Ří 1. říš	3	26- Vijayadashami 30- Eid-Milad 31- Maharishi Valmiki Jayanti
10	NOV	2	3	-1	5	6	7 TA	6	7 - Wednesday Time Table
11	NOV	9	10	11	12 .	13	14 DEL	5	
12	NOV	ikin.	17 T2	18 T2	19 T2	20	21	5	16 - Balipadyami Deepavalli 18 - 21 Second Feed Back 21 - Friday Time Table
13	NOV	23	24BV	25ASD	26	27	28 DH	5	
14	NOV /DEC	30	1	2	119	4	5	5	3- Kanakadasa Jayanti 5 - Monday Time Table
15	DEC	7	8	9	10	11	ក្រោលរាក	5	
16	DEC	14	15	16	17	18	19	6	19- Monday Time Table
17	DEC	21	22	23	24	2618	26DH	4	25-Christmas
18	DEC/ JAN	28	29	30	31	I TA	2	6	2Thursday Time Table
19	JAN	4 LT	5 LT	6 LT	7 LT	8	9DH	5	
20	JAN	11 T3	12 T3	13 T3	- petti	15	16 *	5	14- Makara sankaranthi 16* -Last Working Day
					Tot	al No of	Workin	g Days :	106

١

Total Number of working days (Excluding holidays and Tests)=87

11	Holiday	
BV	Blue Book Verification	-
T1, F2, F3	Tests 1.2. 3	
ASD	Attendance & Sessional Display	-
DH	Declared Holiday	
LT	Lab Test	-
14	Test attendance	-

16
16
16
16
17
6
87

PRINCIPAL K.S. INSTITUTE OF TECHNOLOGY BENGALURU - 560 109.

1

KSIT BANGLORE

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

STUDENTS DETAILS

Year/Semester/Section: IV/VII/A

SL. No	UI Number	Students name	Hostel/ day scholar	Total Arrears	Gender	Mail ID	Student Phone Number	Parents Phone Number
1.	1KS17CS001	AAFREEN HUSSAIN	Day Scholar	Nil	Female	aafreenhussain1999@gmail.com	9110670119	9900269695
2.	1KS17CS002	ABHISHEK GOWDA.M.V	Day Scholar	Nil	Male	abhishek.mvg@gmail.com	6361599901	8217357488
3.	1KS17CS003	AKSHATHA RAMESH	Day Scholar	Nil	Female	akshatharamesh@yahoo.com	8884029225	9916928620
4.	1KS17CS004	AKSHITHA.B.S	Day Scholar	Nil	Female	akshithabsyadav@gmail.com	9845713215	6363320784
5.	1KS17CS005	AMOGH.R	Day Scholar	1	Male	amoghpavan5363@gmail.com	9972875490	9449426028
6.	1KS17CS006	AMOGHA MANJUNATHA.K	Day Scholar	Nil	Female	amoghamanju@gmail.com	8147601563	8050837796
7.	1KS17CS007	AMRUTHA.V.DESHPANDE	Day Scholar	1	Female	amruthadeshpande292@gmail.com	9739953140	9686422133
8.	1KS17CS008	ANOOP.P.S	Day Scholar	Nil	Male	anoop.purohith.04@gmail.com	9742853412	9845048630
9.	1KS17CS010	ANUSHA.A.G	Day Scholar	Nil	Female	anushashrike1999@gmail.com	9036169586	9880890842
10.	1KS17CS011	ANUSHREE.J	Day Scholar	Nil	Female	anushreej.15@gmail.com	7619252293	9110682135
11.	1KS17CS013	ASHISH.K.AMAR	Day Scholar	Nil	Male	ashishamar 1999@gmail.com	9483952634	9480633453
12.	1KS17CS014	LAKSHMI PRASANNA.B	Day Scholar	Nil	Female	bodireddylakshmiprasanna@gmail.com	8310858767	9740981666
13.	1KS17CS016	BHAVESH BHANSALI	Day Scholar	0	Male	bbhansali18.bb@gmail.com	9341908369	9379449171
14.	1KS17CS017	CHAITRA	Day Scholar	Nil	Female	chaitrasharanayya@gmail.com	7019432308	9741660853
15.	1KS17CS018	CHANDANA.B.R	Day Scholar	Nil	Female	chandanaramesh107@gmail.com	9110867885	9902739361

CS019 C CS020 D CS021 D CS022 D CS023 D CS024 G rCS025 G rCS026 C rCS027 F rCS028 F	CHENNAKESHAVA.N.T DARSHAN.S DEEKSHITHA.R DEEPIKA.S.H DIVYA YASHASWI KANNEY GANESH.G.B GANESH.G.B GANESH MAUDGHALYA.H.G GAUTHAM.C.R H.PRIYANKA	Scholar Day Scholar	Nil 2 Nil 1 2 3 Nil Nil	Male Male Female Female Female Male Male	chennakeshavant@gmail.com darshan.s.889@gmail.com manupatideekshu@gmail.com deepikahande06@gmail.com disney.kstew@gmail.com iganeshgb@gmail.com ganeshmaudghalya@gmail.com gauthamcr82@gmail.com	8296886785 9945499929 9845558728 9986457979 9663691519 9449088564 8792894800 6360618870	81239991: 98450308: 94488804: 872229777 901030109 944802864 944944634 906092009
CS020 D CS020 D CS021 D CS022 D rCS023 D rCS024 G rCS025 G rCS026 G rCS027 F rCS028 F	DARSHAN.S DEEKSHITHA.R DEEPIKA.S.H DIVYA YASHASWI KANNEY GANESH.G.B GANESH MAUDGHALYA.H.G GAUTHAM.C.R H.PRIYANKA	Day Scholar	2 Nil 1 Nil 2 3 Nil Nil	Male Female Female Male Male Male	darshan.s.889@gmail.com manupatideekshu@gmail.com deepikahande06@gmail.com disney.kstew@gmail.com iganeshgb@gmail.com ganeshmaudghalya@gmail.com gauthamcr82@gmail.com	9945499929 9845558728 9986457979 9663691519 9449088564 8792894800 6360618870	984503083 944888043 872229777 901030109 944802866 944944634 906092003
CS021 D CS021 D CS022 D CS023 D CS024 G 7CS025 G 7CS026 C 7CS027 F 7CS028 F	DEEKSHITHA.R DEEPIKA.S.H DIVYA YASHASWI KANNEY GANESH.G.B GANESH MAUDGHALYA.H.G GAUTHAM.C.R H.PRIYANKA	Day Scholar Day Scholar Day Scholar Day Scholar Hostler Day Scholar Day Scholar Day Scholar	Nil 1 Nil 2 3 Nil Nil	Female Female Female Male Male	manupatideekshu@gmail.com deepikahande06@gmail.com disney.kstew@gmail.com iganeshgb@gmail.com ganeshmaudghalya@gmail.com gauthamcr82@gmail.com	9845558728 9986457979 9663691519 9449088564 8792894800 6360618870	94488804 87222977 90103010 94480286 94494463 90609200
CS021 D CS022 D CS023 D CS024 G CS025 G CS026 G CS027 F CS028 F	DEEPIKA.S.H DIVYA YASHASWI KANNEY GANESH.G.B GANESH MAUDGHALYA.H.G GAUTHAM.C.R H.PRIYANKA	Day Scholar Day Scholar Hostler Day Scholar Day Scholar Day Scholar Day Scholar	1 Nil 2 3 Nil Nil	Female Female Male Male Male	deepikahande06@gmail.com disney.kstew@gmail.com iganeshgb@gmail.com ganeshmaudghalya@gmail.com gauthamcr82@gmail.com	9986457979 9663691519 9449088564 8792894800 6360618870	87222977 90103010 94480286 94494463 90609200
rCS022 D rCS023 D rCS024 G rCS025 G rCS026 C rCS027 F rCS028 F	DIVYA YASHASWI KANNEY GANESH.G.B GANESH MAUDGHALYA.H.G GAUTHAM.C.R H.PRIYANKA	Day Scholar Hostler Day Scholar Day Scholar Day Scholar Day Scholar	Nil 2 3 Nil Nil	Female Male Male Male	disney.kstew@gmail.com iganeshgb@gmail.com ganeshmaudghalya@gmail.com gauthamcr82@gmail.com	9663691519 9449088564 8792894800 6360618870	90103010 94480286 94494463 90609200
rcs024 G rcs025 G rcs026 G rcs027 F rcs028 F	GANESH.G.B GANESH MAUDGHALYA.H.G GAUTHAM.C.R H.PRIYANKA	Hostler Day Scholar Day Scholar Day Scholar	2 3 Nil Nil	Male Male Male	iganeshgb@gmail.com ganeshmaudghalya@gmail.com gauthamcr82@gmail.com	9449088564 8792894800 6360618870	94480286 94494463 90609200
7CS025 C 7CS026 C 7CS027 F 7CS028 F	GANESH MAUDGHALYA.H.G GAUTHAM.C.R H.PRIYANKA	Day Scholar Day Scholar Day Scholar	3 Nil Nil	Male Male	ganeshmaudghalya@gmail.com gauthamcr82@gmail.com	8792894800 6360618870	94494463 90609200
7CS026 C 7CS027 F 7CS028 F	GAUTHAM.C.R H.PRIYANKA	Day Scholar Day Scholar	Nil	Male	gauthamcr82@gmail.com	6360618870	90609200
7CS027 H	H.PRIYANKA	Day Scholar	Nil				
7CS028 F		200	1	Female	hannipriyanka@gmail.com	6364361270	9845537
	HANUMESH.V.T	Day Scholar	2	Male	hanumeshvt99@gmail.com	8073665310	8722302
7CS029 F	HARSHITHA.V	Day Scholar	Nil	Female	harshithasrirang@gmail.com	9036742864	9740285
7CS030 I	INDRASENA KALYANAM	Day Scholar	Nil	Female	kindrasena8@gmail.com	8892186871	8867349
7CS032	KARAN RAGHUNATH	Day Scholar	0	Male	karanraghunath@gmail.com	8861302491	9845106
7CS033	KARTHIK.T.C	Day Scholar	Nil	Male	dontmailme1999@gmail.com	8497085624	9343307
7CS034	KAVITHA.S	Day Scholar	0	Female	pavan.19346s@gmail.com	7019557683	998001
7CS035	KEERTHI.N	Day Scholar	Nil	Female	keerthin321@gmail.com	8884129614	810514
7CS036	KRITHIKA JAGANNATH	Day Scholar	Nil	Female	krithika1089@gmail.com	8197270285	984526
7CS037 1	LAVANYA.V	Day Scholar	Nil	Female	lavanya08.vasanth@gmail.com	8123406158	944838
7CS038 I	LOKESH.B.M	Day Scholar	Nil	Male	lokeshbm2021@gmail.com	7019152937	944849
	25033 25034 25035 25036 25037 25038	ISO33 KARTHIK.T.C ISO34 KAVITHA.S ISO35 KEERTHI.N ISO36 KRITHIKA JAGANNATH ISO37 LAVANYA.V ISO38 LOKESH.B.M	S033KARTHIK.T.CDay ScholarS034KAVITHA.SDay ScholarS035KEERTHI.NDay ScholarS036KRITHIKA JAGANNATHDay ScholarS037LAVANYA.VDay ScholarS038LOKESH.B.MDay Scholar	S033KARTHIK.T.CDay ScholarNilS034KAVITHA.SDay Scholar0S035KEERTHI.NDay ScholarNilS036KRITHIKA JAGANNATHDay ScholarNilS037LAVANYA.VDay ScholarNilS038LOKESH.B.MDay ScholarNil	S033KARTHIK.T.CDay ScholarNilMaceS034KAVITHA.SDay Scholar0FemaleS035KEERTHI.NDay ScholarNilFemaleS036KRITHIKA JAGANNATHDay ScholarNilFemaleS037LAVANYA.VDay ScholarNilFemaleS038LOKESH.B.MDay ScholarNilMale	S033KARTHIK.T.CDay ScholarNilNileContinuant of CogenerationS034KAVITHA.SDay Scholar0Femalepavan.19346s@gmail.comS035KEERTHI.NDay ScholarNilFemalekeerthin321@gmail.comS036KRITHIKA JAGANNATHDay ScholarNilFemalekrithika1089@gmail.comS037LAVANYA.VDay ScholarNilFemalelavanya08.vasanth@gmail.comS038LOKESH.B.MDay ScholarNilMalelokeshbm2021@gmail.com	S033KARTHIK.T.CDay ScholarOFemalepavan.19346s@gmail.com7019557683S034KAVITHA.SDay Scholar0Femalepavan.19346s@gmail.com8884129614S035KEERTHI.NDay ScholarNilFemalekeerthin321@gmail.com8884129614S036KRITHIKA JAGANNATHDay ScholarNilFemalekrithika1089@gmail.com8197270285S037LAVANYA.VDay ScholarNilFemalelavanya08.vasanth@gmail.com8123406158S038LOKESH.B.MDay ScholarNilMalelokeshbm2021@gmail.com7019152937

UI Number	Students name	Hostel/ day scholar	Total Arrears	Gender	Mail ID	Student Phone	Parents Phone
1KS17CS040	MANJUNATH.A	Day Scholar	Nil	Male	manjunaidu888@gmail.com	9880935251	9880237731
1KS17CS041	MEGHANA.C.V	Day Scholar	Nil	Female	meghana2832@gmail.com	8546840404	9448295109
1KS17CS042	MEGHANA.G	Day Scholar	Nil	Female	meghanagururaj99@gmail.com	9148313574	9379574129
1KS17CS043	MEGHANA.G.R	Day Scholar	Nil	Female	reddymeghana9931@gmail.com	9620776358	7259958737
1KS17CS044	MOUNIKA.M.K.L	Day Scholar	Nil	Female	mounika.marrey@gmail.com	9741902130	6375076447
1KS17CS045	NEHA.K	Day Scholar	Nil	Female	nehakunapalli623@gmail.com	9902310379	9483965499
1KS17CS046	NIKHIL SUBRAMANYA.K	Day Scholar	Nil	Male	nikhilsubramanya@yahoo.com	8073673068	9740485889
1KS17CS047	NIKITHA KATARI	Day Scholar	Nil	Female	nikita.katari@gmail.com	6361528821	9980592779
1KS17CS048	NISCHITHA.C	Hostler	Nil	Female	nishvnkma@gmail.com	8152014334	9945983663
1KS17CS049	NITISH KUMAR GUPTA	Hostler	Nil	Male	kkumarnitish61@gmail.com	7352374098	9934666725
1KS17CS050	NYDILE.G.R	Hostler	Nil	Female	grnydilegowda123@gmail.com	9110842902	9449414344
1KS17CS051	P.KISHORE	Day Scholar	Nil	Male	kishorep.shrivatsa@gmail.com	9845611328	9900566370
1KS17CS102	SHRIRAKSHA.S.KANAGO	Day Scholar	Nil	Female	shriraksha2000@gmail.com	9980190128	8073330382
1KS18CS401	KRUTHIKA.B.M	Day Scholar	8	Female	kruthikruthikabm@gmail.com	7353229125	9900320279
1KS16CS042	MEGHANA.H.S	Day Scholar	2	Female	meghana.hs12@gmail.com	8971711921	9845259148
1KS15CS050	LAXMI K V	Day Scholar	0	Female	lakshmikanda1996@gmail.com	9663591316	9448064857
1KS16CS090	SHASHANK KAVUR	Day Scholar	7	Male	shashankavoor05@gmailcom	9008198140	8050272705
	UI Number 1KS17CS040 1KS17CS041 1KS17CS042 1KS17CS043 1KS17CS044 1KS17CS045 1KS17CS046 1KS17CS046 1KS17CS047 1KS17CS049 1KS17CS050 1KS17CS050 1KS17CS050 1KS16CS042 1KS15CS050 1KS16CS090	UI NumberStudents name1KS17CS040MANJUNATH.A1KS17CS041MEGHANA.C.V1KS17CS042MEGHANA.G1KS17CS043MEGHANA.G.R1KS17CS044MOUNIKA.M.K.L1KS17CS045NEHA.K1KS17CS046NIKHIL SUBRAMANYA.K1KS17CS047NIKITHA KATARI1KS17CS048NISCHITHA.C1KS17CS050NYDILE.G.R1KS17CS051P.KISHORE1KS17CS052SHRIRAKSHA.S.KANAGO1KS18CS401KRUTHIKA.B.M1KS16CS050LAXMI K V1KS15CS050SHASHANK KAVUR	UI NumberStudents nameHostel/ day scholar1KS17CS040MANJUNATH.ADay Scholar1KS17CS041MEGHANA.C.VDay Scholar1KS17CS042MEGHANA.GDay Scholar1KS17CS043MEGHANA.G.RDay Scholar1KS17CS044MOUNIKA.M.K.LDay Scholar1KS17CS045NEHA.KDay Scholar1KS17CS046NIKHIL SUBRAMANYA.KDay Scholar1KS17CS047NIKITHA KATARIDay Scholar1KS17CS048NISCHITHA.CHostler1KS17CS049NITISH KUMAR GUPTAHostler1KS17CS050P.KISHOREDay Scholar1KS17CS041KRUTHIKA.B.MDay Scholar1KS18CS401KRUTHIKA.B.MDay Scholar1KS16CS050LAXMI K VDay Scholar1KS15CS050SHASHANK KAVURDay Scholar	UI NumberStudents nameHostel/ day scholarTotal Arrears1KS17CS040MANJUNATH.ADay ScholarNil1KS17CS041MEGHANA.C.VDay ScholarNil1KS17CS042MEGHANA.GDay ScholarNil1KS17CS043MEGHANA.G.RDay ScholarNil1KS17CS044MOUNIKA.M.K.LDay ScholarNil1KS17CS045NEHA.KDay ScholarNil1KS17CS046NIKHIL SUBRAMANYA.KDay ScholarNil1KS17CS047NIKHIL SUBRAMANYA.KDay ScholarNil1KS17CS048NISCHITHA.CHostlerNil1KS17CS049NISCHITHA.CHostlerNil1KS17CS050NYDILE.G.RHostlerNil1KS17CS051P.KISHOREDay ScholarNil1KS17CS050SHRIRAKSHA.S.KANAGODay ScholarS1KS16CS042MEGHANA.H.SDay Scholar31KS16CS050IAXMI K VDay Scholar21KS16CS090SHASHANK KAVURDay Scholar7	UI NumberStudents nameHostel/ day scholarTotal ArrearsGender1KS17CS040MANJUNATH.ADay ScholarNilMale1KS17CS041MEGHANA.C.VDay ScholarNilFemale1KS17CS042MEGHANA.G.RDay ScholarNilFemale1KS17CS043MEGHANA.G.RDay ScholarNilFemale1KS17CS044MOUNIKA.M.K.LDay ScholarNilFemale1KS17CS045NEHA.KDay ScholarNilFemale1KS17CS046NIKHIL SUBRAMANYA.KDay ScholarNilMale1KS17CS047NIKITHA KATARIDay ScholarNilMale1KS17CS048NISCHITHA.CHostlerNilFemale1KS17CS050NYDILE.G.RHostlerNilMale1KS17CS041KRUTHIKA.B.MDay ScholarNilMale1KS17CS050JHRIRAKSHA.S.KANAGODay ScholarNilMale1KS17CS050JKITHA.KATARIDay ScholarNilMale1KS17CS050NYDILE.G.RHostlerNilMale1KS17CS051P.KISHOREDay ScholarNilFemale1KS17CS051KRUTHIKA.B.MDay ScholarNilFemale1KS16CS042MEGHANA.H.SDay ScholarNilFemale1KS16CS050LAXMI K VDay ScholarQFemale1KS16CS090SHASHANK KAVURDay Scholar7Male	UI NumberStudents nameHostel/ day scholarTotal ArrearsGenderMail ID1KS17CS040MANJUNATH.ADay ScholarNilMalemanjunaidu888@gmail.com1KS17CS041MEGHANA.C.VDay ScholarNilFemalemeghana2832@gmail.com1KS17CS042MEGHANA.G.RDay ScholarNilFemalemeghana9931@gmail.com1KS17CS043MEGHANA.G.RDay ScholarNilFemalemeghana9931@gmail.com1KS17CS044MOUNIKA.M.K.LDay ScholarNilFemalemounika.marrey@gmail.com1KS17CS045NEHA.KDay ScholarNilFemalemounika.marrey@gmail.com1KS17CS046NIKHI SUBRAMANYA.KDay ScholarNilFemalenikith.subramanya@ghoo.com1KS17CS047NIKITHA KATARIDay ScholarNilFemalenikith.subramanya@ghoo.com1KS17CS048NISCHITHA.CHostlerNilFemalenikith.subramanya@ghaol.com1KS17CS049NITISH KUMAR GUPTAHostlerNilFemalenikith.subramanya@ghaol.com1KS17CS049NITISH KUMAR GUPTAPay ScholarNilMaleishorenshritafs@gmail.com1KS17CS040NIDLE.G.RDay ScholarNilMaleishorenshritafs@gmail.com1KS17CS041SHRIRAKSHA.S.KANAGODay ScholarNilMaleishorenshritafs@gmail.com1KS17CS042MEGHAN.H.SDay ScholarNilFemaleishuraktad00@gmail.com1KS17CS043SHRIRAKSHA.S.KANAGODay ScholarSilFemale	UI NumberStudents nameHostel/ day scholarTotal ArrearGenderMail IDStudents Phone Number1KS17CS040MANJUNATHADay ScholarNilMalenanjunaidu888@mail.com980935211KS17CS041MEGHANA.C.VDay ScholarNilFenaleneghana232@gmail.com8546840401KS17CS042MEGHANA.GDay ScholarNilFenaleneghanagururaj99@gmail.com9143135741KS17CS043MEGHANA.G.RDay ScholarNilFenaleneghanagururaj99@gmail.com9620763581KS17CS044MOUNIKA.M.K.LDay ScholarNilFenalenounika.marrey@gmail.com97419021301KS17CS045NEHA.KDay ScholarNilFenalenounika.marrey@gmail.com9023103791KS17CS046NIKHIL SUBRAMANYA.KDay ScholarNilFenalenikilubaranany@jahoo.com807663681KS17CS047NIKITHA KATARIDay ScholarNilFenalenikilubaranany@jahoo.com63615288211KS17CS049NISCHITHA.CHostlerNilFenalenikilubaranid.com73523740761KS17CS040NISH KUMAR GUPTAHostlerNilMalekiunarnitish61@gmail.com73523740761KS17CS040NISHRAKSHA.SKANAODay ScholarNilFenaleinikinkah2000@gmail.com980191281KS17CS040NISHRAKSHA.SKANAODay ScholarNilMalekiunarnitish61@gmail.com7352374071KS17CS040KRIRAKSHA.SKANAODay ScholarNilFenaleinikinkah

Signature of the class Coordinator

Lucatapm

Signature in the Honort Freedom the Science & Engg. K.S. Institute of Technology Bengaluru -560 109

K.S. INSTITUTE OF TECHNOLOGY, BENGALURU-109 DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING INDIVIDUAL ONLINE TIME TABLE FOR THE YEAR 2020-21 (ODD SEMESTER)

W.E.F: 01-09-2020 NAME OF THE FACULTY: Mr. RAGHAVENDRACHAR.S

DESIGNATION: ASST. PROF.

PERIOD	1	2	11.00 AM	3	4		5	6
TIME DAY	9:00 AM-10:00 AM	10:00 AM-11.00 AM	11.30 AM	11:30 AM- 12:30 PM	12:30 PM-1.30 PM	1:30 PM- 02:00 PM	02:00 PM - 03:00 PM	03:00 PM- 04:00 PM
MON				ML(A)			< ML LAB(A1,A2&A3)
TUE			×			AK	ML LAB	(B1,B2&B3)
WED	ML(A)		REAI			BRE/	< PROJECT SEM	PHASE 1 +
THUR			EA B			NCH]		
FRI		ML(A)	F			rn	PROJECT PHASE 1 + SEMINAR	
SAT				ML(A)		ľ		

۶۰۴ بیسار

TIME TABLE COORDINATOR

(Durarapu

HOD Head of the Department Dept. of Computer Science & Engg K.S. Institute of Technology Bengaluru -560 109

E

K.S. INSTITUTE OF TECHNOLOGY, BENGALURU-109 DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING VII SEMESTER ONLINE CLASS TIME TABLE FOR THE YEAR 2020-21 (ODD SEMESTER)(TENTATIVE)

W.E.F: 01-09-2020 CLASS TEACHER: Mrs. Sougandhika Narayan

SEC: 'A'											
PERIOD	1	2	11-00 AM	3	4			6			
TIME	9:00 AM-	10:00 AM-11.00	11.30 AM	11-30 AM-17-30 PM	12:30 PM-1.30	1:30 PM-	2:00 PM-	03:00 PM- 04:00			
DAY	10:00 AM	AM		11.50 AM-12.50 I M	PM	2:00 PM	3:00 PM	PM			
MON	INS WT ML		ML	ACA		ML LAB					
							WTIAD				
TUE	ACA	WT		SAN	INS	X	K	←>			
						E	PROJECT PHASE 1	+ SEMINAR			
WED	ML	SAN	SAF	INS ACA		BR	<				
TIUD	PLACEMENT ACTIVITIES		- R	PLACEMENT ACTIVITIES		H	TUTORIAL / PEDAGOGY				
THUR	-	,	1 🖷	<	>	ž	ACTIVITIES				
FRI	SAN	ML		ΨT	ACA	5	PROJECT PHASE 1	+ SEMINAR			
					nen	-					
SAT	WT	SAN		ML	INS		TUTORIAL / PEDAGOGY ACTIVITIES				

Subject Code	Subject Name	Faculty Name
17CS71	WEB TECHNOLOGY AND ITS APPLICATION	Mr. Harshavardhan J R
17CS72	ADVANCED COMPUTER ARCHITECHTURE	Mr.Aditya Pai H
17CS73	MACHINE LEARNING	Mr. Raghavendrachar S
17CS743	INFORMATION NETWORK SECURITY (ELECTIVE)	Mrs. Sougandhika Narayan
17CS754	STORAGE AREA NETWORK (ELECTIVE)	Mr. Roopesh Kumar B N
17CSL76	MACHINE LEARNING LABORATORY	Mr. Raghavendrachar S & Dr. Rekha B Venkatapur
17CSL77	WEB TECHNOLOGY LABORATORY WITH MINI PROJECT	Mr. Aditya Pai H & Mr. Roopesh Kumar B N
17CSP78	PROJECT PHASE 1 + PROJECT WORK SEMINAR	Dr. Rekha B Venkatapur, Mr.Venkata Rao, Mrs. Vaneeta M.Mr.Raghavendrachar S , Mr. Aditya Pai H, Mrs. Sneha Karamadi

TIME TABLE INCHARGE

Head of the Department Dept. of Computer Science * "ngg. K.S. Institute of Tr. Bengaluru -560 10.

K.S. INSTITUTE OF TECHNOLOGY BENGALURU - 560 109

I IIIII	MACHINE LE.	ARNING			
[As per Choice	Based Credit S	System (CBCS) sche	mej		
(Effective fi	rom the acaden	nic year 2017 - 2018)			
Subject Code	SEMESTER	- VII	- <u>r</u>	10	
Subject Code	170573	IA Marks		40	
Number of Lecture Hours/Week	03	Exam Marks		00	
Total Number of Lecture Hours	50	Exam Hours		03	
M. 1.1. 1	CREDITS	- 04			
Module – 1				Teaching Hours	
Introduction: Well posed learni	ng problems,	Designing a Learni	ing system,	10 Hours	
Perspective and Issues in Machine L	earning.	0 0	0 9		
Concept Learning: Concept learn	ning task, Con	cept learning as sea	rch, Find-S		
algorithm, Version space, Candidate	Elimination alg	orithm, Inductive Bia	s.		
Text Book1, Sections: 1.1 - 1.3, 2.1	l-2.5, 2.7				
Module – 2					
Decision Tree Learning: Decision	n tree represent	ation, Appropriate p	roblems for	10 Hours	
decision tree learning, Basic decision tree learning algorithm, hypothesis space search					
in decision tree learning, Inductive bias in decision tree learning, Issues in decision					
tree learning.					
Text Book1, Sections: 3.1-3.7					
Module – 3					
Artificial Neural Networks: I	ntroduction, N	eural Network rep	resentation,	08 Hours	
Appropriate problems, Perceptrons,	Backpropagation	n algorithm.			
Text book 1, Sections: 4.1 – 4.6					
Module – 4					
Bayesian Learning: Introduction,	Bayes theorer	n, Bayes theorem a	nd concept	10 Hours	
learning, ML and LS error hypo	othesis, ML for	predicting probabil	ities, MDL		
principle, Naive Bayes classifier, Ba	yesian belief ne	works, EM algorithm			
Text book 1, Sections: 6.1 – 6.6, 6.	9, 6.11, 6.12				
Module – 5	E et et				
Evaluating Hypothesis: Motivation	on, Estimating	hypothesis accuracy,	Basics of	12 Hours	
sampling theorem, General approac	In for deriving co	onfidence intervals, D	ifference in		
Instance Resed Learning: Intro	duction k non	iiiis. Tost noighbor loomi			
unighted regression radial basis fur	oction cased bas	est heighbor rearrie	ing, locally		
Reinforcement Learning. Introduc	tion Learning T	ask Ω Learning			
Text book 1 Sections: 5.1-5.6. 8.1	-8.5. 13.1-13.3	ush, Q Dearning			
Course Outcomes: After studying t	his course, stude	ents will be able to			
Recall the problems for mac	hine learning A	nd select the either su	nervised une	unersvised	
or reinforcement learning.	interioritatione in the second second	ing solder the entited su	perviseu, uns	upersvised	
Understand theory of probab	ility and statistic	s related to machine l	earning		
Illustrate concept learning, A	NN, Bayes class	sifier, k nearest neight	bor, O.		
Question paper pattern:		0			
The question paper will have ten que	estions.				

There will be 2 questions from each module.

Each question will have questions covering all the topics under a module.

The students will have to answer 5 full questions, selecting one full question from each module. Text Books:

1. Tom M. Mitchell, Machine Learning, India Edition 2013, McGraw Hill Education. Reference Books:

- 1. Trevor Hastie, Robert Tibshirani, Jerome Friedman, h The Elements of Statistical Learning, 2nd edition, springer series in statistics.
- 2. Ethem Alpaydin, Introduction to machine learning, second edition, MIT press.

Head of the Department Dept. of Computer Science & Engg. K.S. Institute of Technology Bengaluru -560 100

K S INSTITUTE OF TECHNOLOGY, BENGALURU **DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING**

SUBJECT CODE/NAME : 17CS73/ MACHINE LEARNING SEMESTER/SEC/YEAR : VII / A / IV ACADEMIC YEAR

NAME OF THE STAFF : Mr. RAGHAVENDRACHAR.S

: 2020-2021 [ODD SEMESTER]

SL No.	Topic to be covered	Mode of Delivery	Teaching Aid	No. of Periods	Cumulative No. of Periods	Proposed Date
MODI	JLE 1: Introduction, Concept Learning					
1	Introduction: Well posed learning problems,	L+D	Microsoft Teams	1	1	02-09-2020
2	Designing a Learning system,	L+D	Microsoft Teams	1	2	04-09-2020
3	Perspective, Issues in Machine Learning.	L+D	Microsoft Teams	1	3	05-09-2020
4	Concept Learning: Concept learning task,	L+D	Microsoft Teams	1	4	07-09-2020
5	Concept learning as search,	L+D	Microsoft Teams	1	5	09-09-2020
6	Find-S algorithm,	L+D	Microsoft Teams	1	6	11-09-2020
7	Example on Find-S algorithm	L+D	Microsoft Teams	1	7	12-09-2020
8	Version space,	L+D	Microsoft Teams	1	8	14-09-2020
9	Candidate Elimination algorithm and its examples	L+D	Microsoft Teams	1	9	16-09-2020
10	Inductive Bias	L+D	Microsoft Teams	1	10	18-09-2020

11	Decision tree representation	L+D	Microsoft	1	11	19-09-202
12	Appropriate problems for decision tree learning	L+D	Microsoft Teams	1	12	21-09-202
13	Basic decision tree learning algorithm	L+D	Microsoft Teams	1	13	23-09-202
14	Example on ID3 algorithm	L+D	Microsoft Teams	1	14	25-09-202
15	Example on ID3 algorithm	L+D	Microsoft Teams	1	15	26-09-202
16	Fi	rst Test				29-09-202
17	hypothesis space search in decision tree learning	L+D	Microsoft Teams	1	16	03-10-202
18	hypothesis space search in decision tree learning	L+D	Microsoft Teams	1	17	05-10-202
19	Inductive bias in decision tree learning	L+D	Microsoft Teams	1	18	07-10-202
20	Issues in decision tree learning.	L+D	Microsoft Teams	1	19	09-10-202
21	Revision	L+D	Microsoft Teams	1	20	10-10-202
AOD	ULE 3: Artificial Neural Networks		ange en an Alan Al	- · ·		
22	Introduction	L+D	Microsoft Teams	1	21	12-10-202
23	Neural Network representation	L+D	Microsoft Teams	1	22	14-10-202
24	Neural Network representation	L+D	Microsoft Teams	1	23	16-10-202
25	Appropriate problems	L+D	Microsoft Teams	1	24	19-10-202
26	Appropriate problems	L+D	Microsoft	1	25	21-10-202

07	Perceptron		Teams			1		
	Demonst	L+D	Microsoft Teams	1	26	23-10-2020		
28	Perceptron	L+D	Microsoft	1	27	24-10-2020		
29	Back propagation algorithm	L+D	Microsoft	1	28	28-10-2020		
30	Back propagation algorithm	L+D	Microsoft	1	29	02-11-2020		
31	Revision	L+D	Microsoft Teams	1	30	04-11-2020		
MOD	ULE 4: Bayesian Learning							
32	Introduction,	L+D	Microsoft Teams	1	31	06-11-2020		
33	Bayes theorem	L+D	Microsoft Teams	1	32	07-11-2020		
34	4 Second Test							
35	Bayes theorem	L+D	Microsoft Teams	1	33	13-11-2020		
36	Concept Learning	L+D	Microsoft Teams	1	34	18-11-2020		
37	ML and LS error hypothesis	L+D	Microsoft Teams	1	35	20-11-2020		
38	ML for predicting probabilities	L+D	Microsoft Teams	1	36	21-11-2020		
39	MDL principle	L+D	Microsoft Teams	1	37	23-11-2020		
40	Naive Bayes classifier	L+D	Microsoft Teams	1	38	25-11-2020		
41	Bayesian belief networks	L+D	Microsoft Teams	1	39	27-11-2020		
42	EM algorithm	L+D	Microsoft Teams	1	40	30-11-2020		

•

MOD	ULE 5: Evaluating Hypothesis, Instance Based Lear	ning, Reinf	forcement Learn	ning		
43	Motivation	L+D	Microsoft Teams	1	41	02-12-2020
44	Estimating hypothesis accuracy	L+D	Microsoft Teams	1	42	04-12-2020
45	Basics of sampling theorem	L+D	Microsoft Teams	1	43	04-12-2020
46	General approach for deriving confidence intervals	L+D	Microsoft Teams	1	44	04-12-2020
47	Difference in error of two hypotheses	L+D	Microsoft Teams	1	45	05-12-2020
48	Comparing learning algorithms.	L+D	Microsoft Teams	1	46	05-12-2020
49	Instance Based Learning: Introduction	L+D	Microsoft Teams	1	47	05-12-2020
50	k-nearest neighbor learning	L+D	Microsoft Teams	1	48	07-12-2020
51	Learning Task,	L+D	Microsoft Teams	1	52	07-12-2020
52	Q Learning	L+D	Microsoft Teams	1	53	07-12-2020
53	Th	ird Test				15-12-2020

Text Books

1. Tom M. Mitchell, Machine Learning, India Edition 2013, McGraw Hill Education.

Reference Books (specify minimum two foreign authors text books)

- 1. Trevor Hastie, Robert Tibshirani, Jerome Friedman, The Elements of Statistical Learning, 2nd edition, Springer series in statistics.
- 2. Ethem Alpaydin, Introduction to machine learning, second edition, MIT press.

Useful Websites

- 1. https://nptel.ac.in/courses/106105152/
- 2. https://www.coursera.org/learn/machine-learning
- 3. https://www.slideshare.net/ColleenFarrelly/machine-learning-by-analogy-59094152

S. Roy J. Signature of Course in charge

Ducarapm

Signature of Module Coordinator

Wincarapm 6 Signature of H.O.D

Head of the Department Dept. of Computer Science & Engg. K.S. Institute of Technology Bengaluru -560 109

KSIT, Bengaluru

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING ASSIGNMENT QUESTIONS

Academic Year	2020-2021 [Odd Semester]		
Batch	2017-2021		
Year/Semester/section	IV/VII/A		
Subject Code-Title			
Name of the Instructor	Mr.RAGHAVENDRACHAR S	Dept	CSE

Assignment No: 1

Total marks:10 Date of Submission: 07/10/2020

Date of Issue: 30/09/2020

Dutte				
Sl.No	Assignment Questions	K Level	CO	Marks
1.	 a. Identify various applications of Machine Learning. b. Make use of following examples to explain well posed learning problem. i. Checkers learning problem ii. Handwriting Recognition learning problem iii. Robot Driving learning problem 	Applying	C01	1
2.	 Determine the following with respect to checkers learning problem. i. Choosing training experience ii. Choosing Target function iii. Choosing Representation of Target function iv. Choosing function Approximation Algorithm 	Applying	C01	1
3.	 a. Design Checkers learning system using four distinct program modules. b. Identify different issues in machine learning. 	Applying	C01	1
4.	 a. Design Find - S Algorithm. b. Apply Find - S Algorithm for the given below target concept Enjoy sport. Example Sky AirTemp Humidity Wind Water Forecast EnjoySport Sunny Warm Normal Strong Warm Same Yes Sunny Warm High Strong Warm Same Yes Rainy Cold High Strong Warm Change No Sunny Warm High Strong Cool Change Yes 	Applying	C01	1

5.		Example	Sky	AirTemp	Humidity	Wind	Water	Forecast	EnjoySport	Applying	C01	1
		1	Sunny	Warm	Normal	Strong	Warm	Same	Yes		01	
		2	Sunny	Warm	High	Strong	Warm	Same	Yes			
		3	Rainy	Cold	High	Strong	Warm	Change	No			
		4	Sunny	Warm	High	Strong	Cool	Change	Ycs			
6.	a. b.	Design Determ i. I ii. I iii. I	List-T nine Ir Biased Unbias Futility	Then Elim nductive I Hypothe sed Learn y of Bias-	inate Al Bias Wit sis Spac er Free Lea	lgorith th resp ce arning	m bect to t	he follo	owing	Applying	C01	1
7.	Identi	fy Appr	opriat	e problen	ns for de	ecision	tree le	arning.		Applying	coz	1
8.	Desig	n ID3 /	Algorit	hm				1.		Applying	C02	1
9.	Identi for bui	fy the lding de	necess ecisior gorith	ary meas tree usin m to cons	sure req ng ID3 A struct th	luired Algorith he dec	to selection.	ree for	the given	Applying	CO2	1
9.	Identi for bui Apply target	fy the solution of the solutio	necess ecision gorithi t Play	ary meas n tree usin m to cons tennis. Temperatur	sure req ng ID3 A struct th re Hun	luired Algorith he dec	to selection.	ree for	the given	Applying	CO2	1
9.	Identi for bui Apply target	fy the solution of the solutio	necess ecisior gorithi t Play	ary meas n tree usin m to cons tennis. Temperatur	sure req ng ID3 A struct th re Hun	uired Algorith he dec nidity	to selection.	ree for PlayT	the given	Applying	CO2	1
9.	Identi for bui Apply target Day D1	fy the indicating de liding de lidin	necess ecision gorithi t Play	ary meas n tree usin m to cons tennis. Temperatur Hot	sure req ng ID3 A struct th re Hun Hun	juired Algorith he dec nidity igh	to selection.	ree for PlayT	the given	Applying	CO2	1
9.	Identi for bui Apply target Day D1 D2 D3	fy the solution of the solutio	necess ecision gorithi t Play book	ary meas tree usin m to cons tennis. Temperatus Hot Hot Hot Hot	sure req ng ID3 A struct th re Hun Hi Hi Hi	uired Algorith he dec nidity igh igh	Wind Weak Strong Weak	ree for PlayT N Y	the given	Applying	CO2	1
9.	Identi for bui Apply target Day D1 D2 D3 D4	fy the s Iding do ID3 Alg concept Outlo Sum Over Rai	necess ecision gorithm t Play book	Temperature Hot Hot Mild	sure req ng ID3 A struct th re Hun Hi Hi Hi Hi	uired Algorith he dec nidity igh igh igh	Wind Weak Weak Weak	ree for PlayI N Y Y	the given	Applying	CO2	1
9.	Identi for bui Apply target Day D1 D2 D3 D4 D5	fy the solution of the solutio	necess ecision gorithi t Play book ny ny cast n n	Temperature Hot Hot Mild Cool	ng ID3 A struct th re Hum Hi Hi Hi Hi	uired Algorith he dec nidity igh igh igh igh	Wind Weak Strong Weak Weak	ree for PlayT N Ya Ya	the given	Applying	CO2	1
9.	Identi for bui Apply target Day D1 D2 D3 D4 D5 D6	fy the s lding do ID3 Al concept Outlo Sum Sum Rai Rai	necess ecision gorithm t Play book ny ny cast n n n	Temperature Hot Hot Mild Cool	sure req ng ID3 A struct th re Hun Hi Hi Hi Noo Noo	igh igh igh rmal rmal	Wind Weak Strong Weak Weak Weak Strong Strong	ree for PlayI N Ya Ya Ya	the given	Applying	CO2	1
9.	Identi for bui Apply target Day D1 D2 D3 D4 D5 D6 D7	fy the solution of the solutio	necess ecision gorithi t Play ny ny cast n n cast	Temperature Hot Hot Mild Cool Cool Mild	sure req ng ID3 A struct th re Hun Hi Hi Hi Nor Nor Nor Nor	iuired Algorith he dec midity igh igh igh igh rmal rmal rmal igh	Wind Weak Weak Weak Weak Strong Strong Weak	ree for PlayT N Ya Ya N Ya N	Tennis	Applying Applying	CO2	1
9.	Identi for bui Apply target Day D1 D2 D3 D4 D5 D6 D7 D8 D9	fy the s lding do ID3 Al concept Outlo Sum Sum Rai Rai Rai Sum Sum Sum	necess ecision gorithm t Play ny ny cast n n n cast n n n n n n	Temperature Hot Hot Hot Mild Cool Cool Mild Cool	re Hun Nor Nor Nor Nor Nor Nor Nor	igh igh igh igh igh igh igh rmal rmal igh rmal	Wind Wind Weak Strong Weak Weak Weak Strong Strong Weak Weak Weak	ree for PlayT N Ya Ya N Ya Ya	the given the given	Applying	CO2	1
9.	Identi for bui Apply target Day D1 D2 D3 D4 D5 D6 D7 D8 D9 D10	fy the s Iding do ID3 Al concept Outlo Sum Over Rai Rai Sum Sum Sum Rai	necess ecision gorithm t Play t Play ny cast n n cast n n cast n n cast n n	Temperature Hot Hot Hot Cool Cool Mild Cool Mild	sure req ng ID3 A struct th re Hun Hi Hi Hi Nor Nor Nor Nor Nor Nor	igh igh igh indity igh igh igh indity indity indity indity indity indity	Wind Wind Weak Strong Weak Weak Strong Strong Weak Weak Weak Weak	PlayT PlayT N Ya Ya N Ya Ya Ya	the given the given	Applying	CO2	1
9.	Identi for bui Apply target Day D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11	fy the solution of the solutio	necess ecision gorithi t Play ny cast n n n cast n n n ay n	ary meas tree usin m to const tennis. Temperatur Hot Hot Hot Mild Cool Cool Cool Mild Cool Mild Mild Mild	re Hun Hi Hi Nor Nor Nor Nor Nor Nor Nor Nor Nor Nor	juired Algorith he dec midity igh igh igh igh rmal rmal rmal rmal rmal	Wind Wind Weak Strong Weak Weak Strong Strong Weak Weak Weak Weak Strong Strong Weak	ree for PlayT N Ya Ya Ya Ya Ya	the given the given	Applying Applying	CO2	1
9.	Identi for bui Apply target Day D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D12 D12 D12	fy the solution of the solutio	necess ecision gorithm t Play ny cast n n cast n n cast n n cast n n cast	Temperature Hot Hot Hot Mild Cool Cool Mild Mild Mild Mild Mild	sure req ng ID3 A struct th re Hun Hi Hi Hi Nor Nor Nor Nor Nor Nor Nor Nor Nor Nor	igh igh igh igh igh igh igh igh igh igh	to selen hm. ision th Wind Weak Strong Weak Weak Strong Strong Weak Strong Strong Weak Strong Strong Weak	ree for PlayT N Ya Ya Ya Ya Ya Ya Ya	the given the given <i>Tennis</i> to to to to to to to to to to to to to	Applying	CO2	1
9.	Identi for bui Apply target Day D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14	fy the s Iding do ID3 Al concept Outlo Sum Sum Rai Rai Sum Sum Sum Rai Sum Rai Sum Rai Sum Rai	necess ecision gorithm t Play ny ny cast n n n cast n n n n cast n n n n n cast n n n n n n n n n n n n n n n n n n n	Temperature Hot Hot Hot Mild Cool Cool Mild Mild Mild Mild Mild Mild Mild	re Hun Hi Hi Hi Hi Hi Nor Nor Nor Nor Nor Nor Nor Nor	igh igh igh igh igh igh igh igh irmal irmal igh rmal igh rmal igh rmal igh	Wind Wind Weak Strong Weak Weak Strong Strong Weak Weak Strong St	ree for PlayT N Ya Ya Ya Ya Ya Ya Ya Ya Ya Ya Ya	the given the given	Applying	CO2	1
9.	Identi for bui Apply target Day D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14	fy the solution of the solutio	necess ecision gorithm t Play ny ny cast n n cast n n cast n n cast n n cast n n n cast n n	ary meas tree usin m to const tennis. Temperature Hot Hot Hot Mild Cool Cool Mild Mild Mild Mild Mild Mild Mild Mild Mild	sure req ng ID3 A struct th re Hun Hi Hi Hi Nor Nor Nor Nor Nor Nor Nor Nor Nor Nor	juired Algorith he dec midity igh igh igh igh igh rmal rmal rmal rmal igh rmal igh rmal igh	to selen hm. ision th Wind Weak Strong Weak Weak Strong Strong Weak Strong Strong Strong Strong Strong Strong Strong Strong Strong Strong Strong Strong Strong	ree for PlayT N Ya Ya Ya Ya Ya Ya Ya Ya	the given the given	Applying	CO2	1

K.S. INSTITUTE OF TECHNOLOGY, BANGALORE - 560109 ASSIGNMENT I 2020 – 21 ODD SEMESTER

SCHEME AND SOLUTION

Degree	:	B.E	Semester	:	VII A&B
Branch	:	Computer Science & Engineering	Course Code	:	17CS73
Course Title	:	Machine Learning	Max Marks	:	10

Q.NO	POINTS	Marks
1.8		
	 Applications of Machine Learning Learning to recognize spoken words Learning to drive an autonomous vehicle Learning to classify new astronomical structures Learning to play world-class backgammon Explanation of each application in detail 	
b	 Well-Defined Learning Problem Explanation of individual problem in detail A checkers learning problem: Task T: playing checkers Performance measure P: percent of games won against opponents Training experience E: playing practice games against itself A handwriting recognition learning problem: Task T: recognizing and classifying handwritten words within images Performance measure P: percent of words correctly classified Training experience E: a database of handwritten words with given classifications A robot driving learning problem: Task T: driving on public four-lane highways using vision sensors Performance measure P: average distance travelled before an error (as judged by human overseer) Training experience E: a sequence of images and steering commands recorded while observing a human driver 	1
2.	 Designing a Learning System Explanation of each step-in detail (i)Choosing the Training Experience There are three attributes which impact on success or failure of the learner Whether the training experience provides direct or indirect feedback regarding the choices made by the performance system. The degree to which the learner controls the sequence of training examples 	
	How well it represents the distribution of examples over which the final system performance P must be measured	

	 learning problem? What is the best way to reduce the learning task to one or more function 	
	 approximation problems? How can the learner automatically alter its representation to improve its 	
	ability to represent and learn the target function?	
	FIND-S Algorithm	
	1. Initialize h to the most specific hypothesis in H	
4 a	2. For each positive training instance x For each attribute constraint a in h	
	If the constraint a_i is satisfied by x	
	Then do nothing	
	Else replace a_i in h by the next more general constraint that is satisfied by x	1
	3. Output hypothesis h	•
	$x_1 = \langle Sunny Warm Normal Strong Warm Same \rangle$, + Observing the first training example, it is clear that our hypothesis is too specific.	
b	In particular, none of the "Ø" constraints in h are satisfied by this example, so each	
	is replaced by the next more general constraint that fits the example	
	$h_1 = \langle Sunny Warm Normal Strong Warm Same \rangle$	
	This h is still very specific; it asserts that all instances are negative except for the	
	$x_2 = \langle Sunny, Warm, High, Strong, Warm, Same \rangle, +$	
	The second training example forces the algorithm to further generalize h, this time	
	substituting a "?" in place of any attribute value in h that is not satisfied by the new	
	example h_= <sunny ?="" same="" strong="" warm=""></sunny>	
	$x_3 = \langle Rainy, Cold, High, Strong, Warm, Change \rangle, -$	
	Upon encountering the third training the algorithm makes	
	no change to n. The FIND-S algorithm simply ignores every negative example.	
	h3 = < Sunny Warm ? Strong Warm Same>	
	x4 = <sunny change="" cool="" high="" strong="" warm="">, +</sunny>	
	The fourth example leads to a further generalization of h	
	h4 = < Sunny Warm? Strong??>	
	The CANDIDATE-ELIMINTION algorithm computes the version space	
5.0	containing an hypotheses from 11 that are consistent with an observed sequence of	
Ja		
	Initialize G to the set of maximally general hypotheses in H	
	Initialize S to the set of maximally specific hypotheses in H	1
	• If d is a positive example	
	Remove from G any hypothesis inconsistent with d	
	• For each hypothesis s in S that is not consistent with d	
	• Remove s from S	
	 Add to S all minimal generalizations if or s such that h is consistent with d, and some member of G is 	
	more general than h	

		1
8	ID3(Examples, Target_attribute, Attributes) Examples are the training examples. Target_attribute is the attribute whose value is to be predicted by the tree. Attributes is a list of other attributes that may be tested by the learned decision tree. Returns a decision tree that correctly classifies the given Examples.	
	 Create a Root node for the tree If all Examples are positive, Return the single-node tree Root, with label = 	
	 + If all Examples are negative, Return the single-node tree Root, with label = 	
	 If Attributes is empty, Return the single-node tree Root, with label = most common value of Target_attribute in Examples 	1
	 Otherwise Begin A ← the attribute from Attributes that best* classifies Examples 	
	 The decision attribute for Root ← A For each possible value, v_i, of A, Add a new tree branch below <i>Root</i>, corresponding to the test A = v_i 	
	 Let <i>Examples</i> vi, be the subset of Examples that have value vi for A If <i>Examples</i> vi, is empty Then below this new branch add a leaf node with label = most common 	
	 Then below this new branch add a teat hode with laber where common value of Target_attribute in Examples Else below this new branch add the subtree ID3(<i>Examples vi</i>, 	ið Henter
	 Targe_tattribute, Attributes - {A})) End Return Root 	
9	 The central choice in the ID3 algorithm is selecting which attribute to test at each node in the tree. A statistical property called <i>information gain</i> that measures how well a given attribute separates the training examples according to their target classification. ID3 uses <i>information gain</i> measure to select among the candidate attributes at each step while growing the tree. To define information gain, we begin by defining a measure called entropy. <i>Entropy measures the impurity of a collection of examples.</i> Given a collection S, containing positive and negative examples of some target concept, the entropy of S relative to this Boolean classification is <i>Entropy (S)</i> ≡ -p_⊕ log₂ p_⊕ - p_⊖ log₂ p_⊖. 	1
10	 The information gain values for all four attributes are Gain(S, Outlook)=0.246 Gain(S, Humidity)=0.151 Gain(S, Wind)=0.048 Gain(S, Temperature)=0.029 Final decision tree after analysing entire training dataset 	1
	 Gain(S, Wind)=0.048 Gain(S, Temperature)=0.029 Final decision tree after analysing entire training dataset 	

S.L Course in charge **Module Coordinator**

HOD

KSIT, Bengaluru

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING ASSIGNMENT QUESTIONS

Academic Year	2020-2021 [Odd Semester]			
Batch	2017-2021			
Year/Semester/section	III/VII/A			
Subject Code-Title	17CS73- MACHINE LEARNING			
Name of the Instructor	Mr.RAGHAVENDRACHAR S	Dept	CSE	

Assignment No: 2 Date of Issue: 10/11/2020

Total marks:10 Date of Submission: 17/11/2020

Sl.No	Assignment Questions	K Level	CO	Marks
1.	 Make use of suitable example, explain the following i. Hypothesis Space Search In Decision Tree Learning ii. Inductive Bias In Decision Tree Learning iii. Issues In Decision Tree Learning 	Applying	CO2	2
2.	 i. Determine the application of neural network which is used for learning to steer an autonomous vehicle. ii. Identify the appropriate problem for Neural Network Learning. 	Applying	CO3	2
3.	 i. Make use of suitable diagram, explain the concept of single perceptron. ii. Design and derive The Gradient Descent Rule 	Applying	CO3	2
4.	 i. Determine why stochastic approximation is needed to Gradient descent rule? i. Design Back propagation algorithm. 	Applying	CO3	2
5.	ii. Derive Back propagation Rule (Case i and Case ii). iii.Identify the remarks on Back propagation Algorithm.	Applying	CO3	2
6.	i. Identify features of Bayesian learning methods ii. Determine Brute Force MAP Learning Algorithm	Applying	C04	2
	call On we carapon	5-	Jue	araph

Course in charge

Module Coordinator

HOD

K.S. INSTITUTE OF TECHNOLOGY, BANGALORE - 560109 ASSIGNMENT II 2020 – 21 ODD SEMESTER

SCHEME AND SOLUTION

Degree	:	B.E	Semester	:	VII A&B
Branch	:	Computer Science & Engineering	Course Code	:	17CS73
Course Title	:	Machine Learning	Max Marks	:	10

$$\frac{\partial E}{\partial w_i} = \frac{\partial}{\partial w_i} \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2$$

$$= \frac{1}{2} \sum_{d \in D} \frac{\partial}{\partial w_i} (t_d - o_d)^2$$

$$= \frac{1}{2} \sum_{d \in D} 2(t_d - o_d) \frac{\partial}{\partial w_i} (t_d - o_d)$$

$$= \sum_{d \in D} (t_d - o_d) \frac{\partial}{\partial w_i} (t_d - \vec{w} \cdot \vec{x}_d)$$

$$\frac{\partial E}{\partial w_i} = \sum_{d \in D} (t_d - o_d) (-x_{id})$$

where x_{id} denotes the single input component x_i for training example *d*. We now have an equation that gives $\frac{\partial E}{\partial w_i}$ in terms of the linear unit inputs x_{id} , outputs O_d , and target values t_d associated with the training examples. Substituting Equation (4.6) into Equation (4.5) yields the weight update rule for gradient descent

$$\Delta w_i = \eta \sum_{d \in D} (t_d - o_d) x_{id}$$

Gradient descent is an important general paradigm for learning. It is a strategy for searching through a large or infinite hypothesis space that can be applied whenever (1) the hypothesis space contains continuously parameterized hypotheses (e.g., the weights in a linear unit), and (2) the error can be differentiated with respect to these hypothesis parameters. The key practical difficulties in applying gradient descent are (1) converging to a local minimum can sometimes be quite slow (i.e., it can require many thousands of gradient descent steps), and (2) if there are multiple local minima in the error surface, then there is no guarantee that the procedure will find the global minimum.

ii.

i.

4

BACKPROPAGATION(training_examples. g. nin, now, nuidden)

Each training example is a pair of the form (\tilde{z}, \tilde{i}) , where \tilde{z} is the vector of network input values, and \tilde{i} is the vector of target network output values.

q is the learning rate (e.g., .05). n_{in} is the number of network inputs, n_{billen} the number of units in the hidden layer, and n_{out} the number of output units.

The input from unit i into unit j is denoted x_{ji} , and the weight from unit i to unit j is denoted w_{ji} .

a Create a feed-forward network with nie inputs, nudden hidden units, and new output units.

→ Initialize all network weights to small random numbers (e.g., between -.05 and .05).

- · Until the termination condition is met, Do
 - . For each (I, I) in training_examples, Do

Propagate the input forward through the network:

1. Input the instance \bar{z} to the network and compute the output o_{α} of every unit u in the network.

Propagate the errors backward through the network:

2. For each network output unit k, calculate its error term δ_k

$$\delta_k \leftarrow o_k(1-o_k)(t_k-o_k) \tag{T4.3}$$

3. For each hidden unit h, calculate its error term da

$$\delta_k \leftarrow o_k (1 - o_k) \sum_{k \in exception} w_{kk} \delta_k \qquad (14.4)$$

4. Update each network weight my

Awg = n \$1 xH

where.

(74.5)

2

Case I: Training Rule for Output Unit Weights. Just as w_{ji} can influence the rest of the network only through net_j , net_j can influence the network only through o_i . Therefore, we can invoke the chain rule again to write

$$\frac{\partial E_d}{\partial net_j} = \frac{\partial E_d}{\partial o_j} \frac{\partial o_j}{\partial net_j}$$
(4.23)

To begin, consider just the first term in Equation (4.23)

$$\frac{\partial E_d}{\partial \sigma_j} = \frac{\partial}{\partial \sigma_j} \frac{1}{2} \sum_{k \in \text{maximized}} (t_k - \sigma_k)^2$$

The derivatives $\frac{1}{k_0}(t_k - a_k)^2$ will be zero for all output units k except when k = j. We therefore drop the summation over output units and simply set k = j.

$$\frac{\partial E_{ij}}{\partial o_j} = \frac{\partial}{\partial o_j} \frac{1}{2} (t_j - o_j)^2$$
$$= \frac{1}{2} 2(t_j - o_j) \frac{\partial (t_j - o_j)}{\partial o_j}$$
$$= -(t_j - o_j) \qquad (4.24)$$

Next consider the second term in Equation (4.23). Since $o_j = \sigma(net_j)$, the derivative $\frac{ho_j}{hort_j}$ is just the derivative of the sigmoid function, which we have already noted is equal to $\sigma(net_j)(1 - \sigma(net_j))$. Therefore,

$$\frac{\partial o_j}{\partial net_j} = \frac{\partial \sigma(net_j)}{\partial net_j}$$

$$= o_j(1 - o_j) \qquad (4.25)$$

Substituting expressions (4.24) and (4.25) into (4.23), we obtain

$$\frac{\partial E_j}{\partial not_i} = -(t_j - o_j) o_j(1 - o_j) \qquad (4.26)$$

and combining this with Equations (4.21) and (4.22), we have the stochastic gradient descent rule for output units

$$\Delta w_{ji} = -\eta \frac{\delta E_j}{\delta w_{ji}} = \eta \left(u_j - o_j \right) o_j (1 - o_j) x_{ji} \qquad (4.27)$$

Case 2: Training Rale for Hidden Unit Weights. In the case where j is an internal, or hidden unit in the network, the derivation of the training rule for w_{ji} must take into account the indirect ways in which w_{ji} can influence the network computs and hence E_{ji} . For this reason, we will find it useful to refer to the set of all units immediately downstream of unit j in the network (i.e., all units whose direct imputs include the output of unit j). We denote this set of units by *Downstream*(j). Notice that *net*_j can influence the network computs (and therefore E_{d}) only through the units in *Downstream*(j). Therefore, we can write

$$\frac{\partial E_{eff}}{\partial net_{f}} = \sum_{\substack{s \in Deconstruction}(j)} \frac{\partial E_{eff}}{\partial net_{f}} \frac{\partial net_{h}}{\partial net_{f}}$$

$$= \sum_{\substack{s \in Deconstruction}(j)} - \frac{\partial n}{\partial n} \frac{\partial net_{h}}{\partial net_{f}}$$

$$= \sum_{\substack{s \in Deconstruction}(j)} - \frac{\partial n}{\partial n} \frac{\partial net_{h}}{\partial net_{f}}$$

$$= \sum_{\substack{s \in Deconstruction}(j)} - \frac{\partial n}{\partial net_{f}} \frac{\partial n_{f}}{\partial net_{f}}$$

$$= \sum_{\substack{s \in Deconstruction}(j)} - \frac{\partial n}{\partial net_{f}} \frac{\partial n_{f}}{\partial net_{f}}$$

$$= \sum_{\substack{s \in Deconstruction}(j)} - \frac{\partial n}{\partial net_{f}} \frac{\partial n_{f}}{\partial net_{f}}$$

(4.28)

2

5

i.
ii.

- a. Convergence and Local Minima
- b. Representational Power of Feedforward Networks
- c. Hypothesis Space Search and Inductive Bias
- d. Hidden Layer Representations
- e. Generalization, Overfitting, and Stopping Criterion

6

i.

- Each observed training example can incrementally decrease or increase the estimated probability that a hypothesis is correct. This provides a more flexible approach to learning than algorithms that completely eliminate a hypothesis if it is found to be inconsistent with any single example.
- Prior knowledge can be combined with observed data to determine the final probability of a hypothesis. In Bayesian learning, prior knowledge is provided by asserting (1) a prior probability for each candidate hypothesis, and (2) a probability distribution over observed data for each possible hypothesis.
- Bayesian methods can accommodate hypotheses that make probabilistic predictions (e.g., hypotheses such as "this pneumonia patient has a 93% chance of complete recovery").
- New instances can be classified by combining the predictions of multiple hypotheses, weighted by their probabilities.
- Even in cases where Bayesian methods prove computationally intractable, they can provide a standard of optimal decision making against which other practical methods can be measured.

ii.

We can design a straightforward concept learning algorithm to output the maximum a posteriori hypothesis, based on Bayes theorem, as follows:

BRUTE-FORCE MAP LEARNING algorithm

1. For each hypothesis h in H, calculate the posterior probability

$$P(h|D) = \frac{P(D|h)P(h)}{P(D)}$$

2. Output the hypothesis h_{MAP} with the highest posterior probability

 $h_{MAP} = \operatorname*{argmax}_{h \in H} P(h|D)$

Course in charge

Hucarapon

() I succurap

2

Module Coordinator

KSIT, Bengaluru

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING ASSIGNMENT QUESTIONS

Academic Year	2020-2021 [Odd Semester]				
Batch	2017-2021				
Year/Semester/section	IV/VII/A				
Subject Code-Title	17CS73- MACHINE LEARNING				
Name of the Instructor	Mr.RAGHAVENDRACHAR S	Dept	CSE		

Assignment No: 3 Date of Issue: 29/12/2020

Total marks:10 Date of Submission: 05/01/2021

Sl.No	Assignment Questions	K Level	со	Marks
1.	 i. Determine Minimum Description Length Principle ii. Apply naïve bayes classifier for the given training data to classify the instance (outlook = sunny, temperature = cool, humidity = high, wind = strong) Day Outlook Temperature Humidity Wind PlayTennis Di Sunny Hot High Weak No D2 Sunny Hot High Weak Yes D4 Rain Mild High Weak Yes D5 Rain Cool Normal Strong No D7 Overcast Cool Normal Strong Yes D8 Sunny Mild High Weak Yes D9 Sunny Cool Normal Strong Yes D10 Rain Mild Normal Strong Yes D11 Sunny Mild High Strong Yes D12 Overcast Hot Normal Weak Yes 	Applying	CO4	2
2.	 Determine the following. i. Conditional independence ii. EM Algorithm iii. Derivations of K means Algorithm 	Applying	C04	2

3.	Determine the following i. Estimating Hypothesis Accuracy ii. Sample Error and True Error iii. Binomial Distribution	Applying	CO5	2
4.	Determine the following i. Confidence Intervals ii. Central limit Theorem iii. Comparing learning algorithms with paired t Tests.	Applying	CO5	2
5.	Determine the following i. Reinforcement learning ii. Learning Task iii. Q Learning (Q Function and Algorithm)	Applying	C05	2

Ster Course in charge

Module Co coordinator

HOD \bigcirc

K.S. INSTITUTE OF TECHNOLOGY, BANGALORE - 560109 ASSIGNMENT III 2020 – 21 ODD SEMESTER

SCHEME AND SOLUTION

Degree	:	B.E	Semester	:	VII A&B
Branch	:	Computer Science & Engineering	Course Code	:	17CS73
Course Title	:	Machine Learning	Max Marks	:	10

Q.NO	POINTS	Marks
	•	
	The Minimum Description Length principle is motivated by interpreting the definition of h_{MAP} in the light of basic concepts from information theory. Consider again the now familiar definition of h_{MAP} .	
	$h_{MAP} = \operatorname*{argmax}_{h \in H} P(D h) P(h)$	
	which can be equivalently expressed in terms of maximizing the log ₂	
	$h_{MAP} = \underset{h \in H}{\operatorname{argmax}} \log_2 P(D h) + \log_2 P(h)$	
	or alternatively, minimizing the negative of this quantity	
	$h_{MAP} = \underset{h \in H}{\operatorname{argmin}} - \log_2 P(D h) - \log_2 P(h)$	
ii	Our task is to predict the target value (yes or no) of the target concept PlayTennis for this new instance. Instantiating Equation (6.20) to fit the current task, the target value v_{NB} is given by	2
	$v_{NB} = \underset{v \in [ver, se]}{\operatorname{argmax}} P(v_j) \prod_i P(a_i v_j)$	
	$= \underset{v_j \in \{y \in z, ao\}}{\operatorname{argmax}} P(v_j) P(Outlook = sunny v_j) P(Temperature = cool v_j)$	
	$P(Humidity = high v_j)P(Wind = strong v_j) (6.21)$	
	Notice in the final expression that a_i has been instantiated using the particular attribute values of the new instance. To calculate v_{NB} we now require 10 probabilities that can be estimated from the training data. First, the probabilities of the different target values can easily be estimated based on their frequencies over the 14 training examples	
		1
	P(PlayTennis = yes) = 9/14 = .04	

Similarly, we can estimate the conditional probabilities. For example, those for Wind = strong are

$$P(Wind = strong|PlayTennis = yes) = 3/9 = .33$$

 $P(Wind = strong|PlayTennis = no) = 3/5 = .60$

Using these probability estimates and similar estimates for the remaining attribute values, we calculate v_{NB} according to Equation (6.21) as follows (now omitting attribute names for brevity)

 $\begin{array}{l} P(yes) \ P(sunny|yes) \ P(cool|yes) \ P(high|yes) \ P(strong|yes) = .0053 \\ P(no) \ P(sunny|no) \ P(cool|no) \ P(high|no) \ P(strong|no) = .0206 \end{array}$

Thus, the naive Bayes classifier assigns the target value PlayTennis = no to this new instance, based on the probability estimates learned from the training data.

iii.

FIGURE

i.

2.

A Bayesian belief network. The network on the left represents a set of conditional independence assumptions. In particular, each node is asserted to be conditionally independent of its nondescendants, given its immediate parents. Associated with each node is a conditional probability table, which specifies the conditional distribution for the variable given its immediate parents in the graph. The conditional probability table for the *Campfire* node is shown at the right, where *Campfire* is abbreviated to *C*, *Storm* abbreviated to *S*, and *BusTourGroup* abbreviated to *B*.

Let us begin our discussion of Bayesian belief networks by defining precisely the notion of conditional independence. Let X, Y, and Z be three discrete-valued random variables. We say that X is *conditionally independent* of Y given Z if the probability distribution governing X is independent of the value of Y given a value for Z; that is, if

$$(\forall x_i, y_j, z_k) P(X = x_i | Y = y_j, Z = z_k) = P(X = x_i | Z = z_k)$$

where $x_i \in V(X)$, $y_j \in V(Y)$, and $z_k \in V(Z)$. We commonly write the above expression in abbreviated form as P(X|Y, Z) = P(X|Z). This definition of conditional independence can be extended to sets of variables as well. We say that the set of variables $X_1 \dots X_l$ is conditionally independent of the set of variables $Y_1 \dots Y_m$ given the set of variables $Z_1 \dots Z_n$ if

$$P(X_1 \ldots X_l | Y_1 \ldots Y_m, Z_1 \ldots Z_n) = P(X_1 \ldots X_l | Z_1 \ldots Z_n)$$

2

Note the correspondence between this definition and our use of conditional independence in the definition of the naive Bayes classifier. The naive Bayes classifier assumes that the instance attribute A_1 is conditionally independent of instance attribute A_2 given the target value V. This allows the naive Bayes classifier to calculate $P(A_1, A_2|V)$ in Equation (6.20) as follows

....

$$P(A_1, A_2|V) = P(A_1|A_2, V)P(A_2|V)$$
(6.23)

$$= P(A_1|V)P(A_2|V)$$
(6.24)

Equation (6.23) is just the general form of the product rule of probability from Table 6.1. Equation (6.24) follows because if A_1 is conditionally independent of A_2 given V, then by our definition of conditional independence $P(A_1|A_2, V) = P(A_1|V)$.

ii.

- Step 1: Calculate the expected value $E[z_{ij}]$ of each hidden variable z_{ij} , assuming the current hypothesis $h = (\mu_1, \mu_2)$ holds.
- Step 2: Calculate a new maximum likelihood hypothesis $h' = \langle \mu'_1, \mu'_2 \rangle$, assuming the value taken on by each hidden variable z_{ij} is its expected value $E[z_{ij}]$ calculated in Step 1. Then replace the hypothesis $h = \langle \mu_1, \mu_2 \rangle$ by the new hypothesis $h' = \langle \mu'_1, \mu'_2 \rangle$ and iterate.

iii.

$$E[\ln P(Y|h')] = E\left[\sum_{i=1}^{m} \left(\ln \frac{1}{\sqrt{2\pi\sigma^2}} - \frac{1}{2\sigma^2} \sum_{j=1}^{k} z_{ij} (x_i - \mu'_j)^2\right)\right]$$
$$= \sum_{i=1}^{m} \left(\ln \frac{1}{\sqrt{2\pi\sigma^2}} - \frac{1}{2\sigma^2} \sum_{j=1}^{k} E[z_{ij}] (x_i - \mu'_j)^2\right)$$

To summarize, the function Q(h'|h) for the k means problem is

$$Q(h'|h) = \sum_{i=1}^{m} \left(\ln \frac{1}{\sqrt{2\pi\sigma^2}} - \frac{1}{2\sigma^2} \sum_{j=1}^{k} E[z_{ij}](x_i - \mu'_j)^2 \right)$$

where $h' = \langle \mu'_1, \ldots, \mu'_k \rangle$ and where $E[z_{ij}]$ is calculated based on the current hypothesis h and observed data X. As discussed earlier

$$E[z_{ij}] = \frac{e^{-\frac{1}{2\sigma^2}(x_i - \mu_j)^2}}{\sum_{n=1}^k e^{-\frac{1}{2\sigma^2}(x_i - \mu_n)^2}}$$
(6.29)

2

When evaluating a learned hypothesis we are most often interested in estimating the accuracy with which it will classify future instances. At the same time, we would like to know the probable error in this accuracy estimate (i.e., what error bars to associate with this estimate).

we consider the following setting for the learning problem. There is some space of possible instances X (e.g., the set of all people) over which various target functions may be defined (e.g., people who plan to purchase new skis this year). We assume that different instances in X may be encountered with different frequencies. A convenient way to model this is to assume there is some unknown probability distribution $\mathcal D$ that defines the probability of encountering each instance in X

ii.

3

Definition: The sample error (denoted $error_{S}(h)$) of hypothesis h with respect to target function f and data sample S is

2

$$error_{S}(h) = \frac{1}{n} \sum_{x \in S} \delta(f(x), h(x))$$

Where n is the number of examples in S, and the quantity $\delta(f(x), h(x))$ is 1 if $f(x) \neq h(x)$, and 0 otherwise.

The true error of a hypothesis is the probability that it will misclassify a single randomly drawn instance from the distribution \mathcal{D} .

Definition: The true error (denoted $error_{\mathcal{D}}(h)$) of hypothesis h with respect to target function f and distribution D, is the probability that h will misclassify an instance drawn at random according to \mathcal{D} .

$$error_{\mathcal{D}}(h) \equiv \Pr_{x \in \mathcal{D}}[f(x) \neq h(x)]$$

Here the notation $\Pr_{x \in \mathcal{D}}$ denotes that the probability is taken over the instance distribution \mathcal{D} .

iii.

A Binomial distribution gives the probability of observing r heads in a sample of n independent coin tosses, when the probability of heads on a single coin toss is p. It is defined by the probability function

$$P(r) = \frac{\pi i}{r!(n-r)!} p^r (1-p)^{n-1}$$

If the random variable X follows a Binomial distribution, then: The probability Pr(X = r) that X will take on the value r is given by P(r)

The expected, or mean value of X, E[X], is

E[X] = np

Var(X) = np(1-p)

The variance of X. Var(X), is

The standard deviation of X. σ_X , is

 $\sigma_X = \sqrt{np(1-p)}$

For sufficiently large values of n the Binomial distribution is closely approximated by a Normal distribution (see Table 5.4) with the same mean and variance. Most statisticians recommend using the Normal approximation only when $np(1-p) \ge 5$.

The Binomial distribution.

i.

3

4

i.

One common way to describe the uncertainty associated with an estimate is to give an interval within which the true value is expected to fall, along with the probability with which it is expected to fall into this interval. Such estimates are called *confidence interval* estimates.

Definition: An N% confidence interval for some parameter p is an interval that is expected with probability N% to contain p.

ii.

Theorem Central Limit Theorem. Consider a set of independent, identically distributed random variables $Y_1 ldots Y_n$ governed by an arbitrary probability distribution with mean μ and finite variance σ^2 . Define the sample mean, $\bar{Y}_n \equiv \frac{1}{n} \sum_{i=1}^n Y_i$.

Then as $n \to \infty$, the distribution governing

$$\frac{\bar{Y}_n - \mu}{\frac{\sigma}{\sqrt{n}}}$$

approaches a Normal distribution, with zero mean and standard deviation equal to 1.

iii.

i.

5

Above we described one procedure for comparing two learning methods given a fixed set of data. This section discusses the statistical justification for this procedure, and for the confidence interval defined by Equations (5.17) and (5.18). It can be skipped or skimmed on a first reading without loss of continuity.

The best way to understand the justification for the confidence interval estimate given by Equation (5.17) is to consider the following estimation problem:

- We are given the observed values of a set of independent, identically distributed random variables Y_1, Y_2, \ldots, Y_k .
- We wish to estimate the mean μ of the probability distribution governing these Y_{l} .
- The estimator we will use is the sample mean \bar{Y}

$$\bar{Y} = \frac{1}{k} \sum_{l=1}^{k} Y_l$$

Agent
State Reward Action
Environment

$$s_0 = \frac{a_0}{r_0} + s_1 = \frac{a_1}{r_1} + s_2 = \frac{a_2}{r_2} + \cdots$$

Goal: Learn to choose actions that maximize
 $r_0 + Yr_1 + Y^2r_2 + \cdots$, where $0 \le Y \le 1$

g.f.o Course in charge

On wecarapun

W we atap m HOD 0

Module Coordinator

K.S. INSTITUTE OF TECHNOLOGY, BENGALURU - 560109 I SESSIONAL TEST QUESTION PAPER 2020 ODD SEMESTER

Set A

		USN
Degree	: B.E	Semester : VII
Branch	: Computer Science and Engineering	Course Code : 17CS73
Course Title	: Machine Learning	Date : 06-10-2020
Duration	: 90 Minutes	Max Marks : 30

Note: Answer ONE full question from each part.

Q No.				Qı	lestion				Marks	CO mapping	K- Level
						P	ART-A				
1(a)	Identify	various	applicatio	ns of Mac	hine Le	arning.	i A bit dij		6	C01	Applying(K3)
(b)	Design C	heckers	learning	system usi	ng four	distinct	program	modules.	6	C01	Applying(K3)
	Design a sport.	and app	ly Find –	S Algorith	nm for t	he giver	target co	oncept Enjoy			
	Example	Sky	AirTemp	Humidity	Wind	Water	Forecast	EnjoySport			
(c)	1 2	Sunny Sunny	Warm Warm	Normal High	Strong Strong	Warm Warm	Same Same	Yes Yes	6	CO1	Applying(K3)
	3 4	Rainy Sunny	Cold Warm	High High	Strong Strong	Warm Cool	Change Change	No Yes			
							OR				
2(a)	Determine the following with respect to checkers learning problem.i.Choosing training experienceii.Choosing Target function						blem.	6	C01	Applying(K3)	
(b)	Identify different issues in machine learning.						6	C01	Applying(K3)		
(c)	Design and apply Candidate Elimination Algorithm for the given target concept Enjoy sport (Refer Question 1(c)).					6	C01	Applying(K3)			
l						PA	RT-B				

3(a)	Identify	Identify Appropriate problems for decision tree learning.						CO2	Applying(K3)
(b)	Design	ID3 Algorith	m				6	CO2	Applying(K3)
					OR		1		
4(a)	Identify decision	the necessa tree using II	ry measure requ D3 Algorithm.	ired to select	t the attrib	utes for building	6	CO2	Applying(K3)
(b)	Day Concept Day D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D14	Outlook Sunny Sunny Overcast Rain Rain Rain Overcast Sunny Sunny Rain Sunny Overcast Overcast Rain	Temperature Hot Hot Hot Mild Cool Cool Cool Mild Mild Mild Mild Mild Hot Mild	Humidity High High High High Normal Normal Normal Normal Normal Normal High Normal High	Wind Weak Strong Weak Weak Strong Strong Weak Strong Strong Strong Weak Strong Strong Strong Strong Strong	PlayTennis No No Yes Yes Yes No Yes No Yes Yes Yes Yes Yes Yes Yes Yes Yes No	6	CO2	Applying(K3)

Signature of Course in charge

On verawapon

Signature of HOD

Signature of Module Coordinator

K.S. INSTITUTE OF TECHNOLOGY, BANGALORE - 560109 I SESSIONAL TEST QUESTION PAPER 2020 – 21 ODD SEMESTER

SCHEME AND SOLUTION

Set A

Degree		:	B.E	Semester	:	VII
Branch	1	:	CSE	Course Code	:	17CS73
Course	Title	:	Machine Learning	Max Marks	:	30
			H			
Q.NO.			POINTS			MARKS
1(a)	Appl	icati	ons of Machine Learning			6M
	Expla	Le Le Le Le				
(b)	The f	inal am r	design of checkers learning system can nodules that represent the central compo New problem (Initial game loard) Performance System Solution trace (game history) Critic	be described by four distinct onents in many learning syst Hypothesis (V) Constrained Training examples $(b_1) > . < b_2. V_{max}(b_2) > $	ems	6М
(c)	FINI 1. 2. For each If the	-S A Ini Fo ach a cons	Algorithm itialize h to the most specific hypothesis or each positive training instance x attribute constraint a_i in h straint a_i is satisfied by x	s in <i>H</i>		3+3=6

Then do nothing Else replace a_i in h by the next more general constraint that is satisfied by x 3. Output hypothesis hAnalysis of EnjoySport $x_1 = \langle Sunny Warm Normal Strong Warm Same \rangle$, + Observing the first training example, it is clear that our hypothesis is too specific. In particular, none of the "Ø" constraints in h are satisfied by this example, so each is replaced by the next more general constraint that fits the example h₁ = <Sunny Warm Normal Strong Warm Same> This h is still very specific; it asserts that all instances are negative except for the single positive training example $x_2 = \langle Sunny, Warm, High, Strong, Warm, Same \rangle, +$ The second training example forces the algorithm to further generalize h, this time substituting a "?' in place of any attribute value in h that is not satisfied by the new example h₂ = <Sunny Warm ? Strong Warm Same> $x3 = \langle Rainy, Cold, High, Strong, Warm, Change \rangle,$ makes algorithm the third training Upon encountering the h. change to no The FIND-S algorithm simply ignores every negative example. h3 = < Sunny Warm ? Strong Warm Same> $x4 = \langle Sunny Warm High Strong Cool Change \rangle, +$ The fourth example leads to a further generalization of h h4 = < Sunny Warm ? Strong ? ? > 6 Designing a Learning System 2(a)Explanation of each step-in detail

	Incre are three attributes which impact on success or failure of the learner	
	 Whether the training experience provides direct or indirect feedback regarding the choices made by the performance system. The degree to which the learner controls the sequence of training examples. How well it represents the distribution of examples over which the final system performance P must be measured 	
	(ii)Choosing the Target Function	
	Let ChooseMove be the target function and the notation is	
	ChooseMove : $B \rightarrow M$	
	which indicate that this function accepts as input any board from the set of legal	
	board states B and produces as output some move from the set of legal moves M.	
	An alternative target function is an <i>evaluation function</i> that assigns a <i>numerical</i> score to any given board state	
	Let the target function V and the notation	
	$V: B \rightarrow R$	
	which denote that V maps any legal board state from the set B to some real value	
)	Issues in Machine Learning	6M.
	 What algorithms exist for learning general target functions from specific training examples?? How much training data is sufficient? When and how can prior knowledge held by the learner guide the process 	
	 What is the best strategy for choosing a useful next training experience, and how does the choice of this strategy alter the complexity of the learning problem? 	
	 What is the best way to reduce the learning task to one or more function approximation problems? How can the learner automatically alter its representation to improve its ability to represent and learn the target function? 	
;)	The CANDIDATE-ELIMINTION algorithm computes the version space	212 21
	containing all hypotheses from H that are consistent with an observed sequence of	3+3=6M

	problems with the following characteristics:	
	1. Instances are represented by attribute-value pairs – Instances are described by a fixed set of attributes and their values	
	 The target function has discrete output values – The decision tree assigns a Boolean classification (e.g., yes or no) to each example. Decision tree methods easily extend to learning functions with more than two possible output values. 	
	 Disjunctive descriptions may be required 4. The training data may contain errors – Decision tree learning methods are robust to errors, both errors in classifications of the training examples and errors in the attribute values that describe these examples. 	
	5. The training data may contain missing attribute values – Decision tree methods can be used even when some training examples have unknown values	
(b)	ID3(Examples, Target_attribute, Attributes)	6M
	Examples are the training examples. Target_attribute is the attribute whose value is to be predicted by the tree. Attributes is a list of other attributes that may be tested by the learned decision tree. Returns a decision tree that correctly classifies the given Examples.	
	 Create a Root node for the tree If all Examples are positive, Return the single-node tree Root, with label = + If all Examples are negative, Return the single-node tree Root, with label 	
	 = - If Attributes is empty, Return the single-node tree Root, with label = most common value of Target_attribute in Examples Otherwise Bagin 	
	 Otherwise Begin A ← the attribute from Attributes that best* classifies Examples The decision attribute for Root ← A For each possible value, v_i, of A. 	
	 Add a new tree branch below <i>Root</i>, corresponding to the test A = v_i Let <i>Examples</i> v_i, be the subset of Examples that have value v_i for A If <i>Examples</i> v_i, is empty 	
	 Then below this new branch add a leaf node with label = most common value of Target_attribute in Examples Else below this new branch add the subtree ID3(<i>Examples</i> view) 	
	Targe_tattribute, Attributes – {A})) • End Return Root	
4(a)	The central choice in the ID3 algorithm is selecting which attribute to test at each	6M
n(u)	The contral choice in the host algorithm is selecting which altribute to test at each	6M

Signature of Course in charge

rucarapu

& ucarapu Signature of HOD

Signature of Module Coordinator

2

K.S. INSTITUTE OF TECHNOLOGY, BENGALURU - 560109 I SESSIONAL TEST QUESTION PAPER 2020 ODD SEMESTER

Set B

		USN			
Degree	: B.E	Semeste	r :	VII	
Branch	: Computer Science and Engineering	Course Code	e :	17CS73	
Course Title	: Machine Learning	Date	e :	06-10-2020	
Duration	: 90 Minutes	Max Mark	s :	30	

Note: Answer ONE full question from each part.

Q No.				Qu	estion				Marks	CO mapping	K- Level
						P	ART-A				
1(a)	Design]	Design List-Then Eliminate Algorithm							6	CO1	Applying(K3)
(b)	Design Cl	neckers	learning s	ystem usi	ng four	distinct	program	modules.	6	C01	Applying(K3)
	Apply Find – S Algorithm for the given target concept Enjoy sport.										
	Example	Sky	AirTemp	Humidity	Wind	Water	Forecast	EnjoySport			
(c)	1 2 3	Sunny Sunny Rainy	Warm Warm Cold	Normal High High	Strong Strong Strong	Warm Warm Warm	Same Same Change	Yes Yes No	6	CO1	Applying(K3)
	4	Sunny	Warm	High	Strong	C001	Change	Y C3		.p.	h de la
							OR			1.11	
2(a)	Determin i. ii.	e the fo C C	llowing w hoosing ti hoosing T	ith respec raining ex `arget fune	t to chec perience ction	ekers lea	arning pro	blem.	6	CO1	Applying(K3)
(b)	Design I	₹ind –	S Algori	thm.					6	CO1	Applying(K3)
(c)	Design and apply Candidate Elimination Algorithm for the given target 6 concept Enjoy sport (Refer Question 1(c)). CO1 Applying(K3							Applying(K3)			
						P.	ART-B				
8											

3(a)	Identify	Appropriate	problems for de	cision tree le	arning.		6	CO2	Applying(K3)
(b)	Design]	D3 Algorith	m				6	CO2	Applying(K3)
		12			OR				
4(a)	Identify decision	the necessa tree using II	ry measure requ D3 Algorithm.	ired to selec	t the attrib	outes for building	6	CO2	Applying(K3)
(b)	Concept Day D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14	Play tennis. Outlook Sunny Sunny Overcast Rain Rain Rain Overcast Sunny Sunny Rain Sunny Overcast Sunny Sunny Rain Sunny Rain Sunny Sunny Rain Sunny Sunny	Temperature Hot Hot Mild Cool Cool Cool Mild Mild Mild Mild Hot Mild	Humidity High High High Normal Normal Normal Normal Normal High Normal High	Wind Weak Strong Weak Weak Strong Weak Weak Strong Strong Strong Weak Strong Strong Strong Strong	PlayTennis No No Yes Yes Yes No Yes No Yes Yes Yes Yes Yes No	6	CO2	Applying(K3)

Signature of Course in charge

Signature of Module Coordinator

On our cur apu

Signature of HOD

K.S. INSTITUTE OF TECHNOLOGY, BANGALORE - 560109 I SESSIONAL TEST QUESTION PAPER 2020 – 21 ODD SEMESTER

SCHEME AND SOLUTION

Set B

Degree		:	B.E	Semester :		VII
Branch	1	:	CSE	Course Code :		17CS73
Course	- Title	:	Machine Learning	Max Marks :		30
		-				
Q.NO.			POINTS			MARKS
1(a)	Menti algori	ion tl thm	he list then algorithm with its steps and works with example	explain briefly how the		6M
(b)	The final design of checkers learning system can be described by four distinct program modules that represent the central components in many learning systems $ \begin{array}{c} $					6М
(c)	Analy	vsis c	of EnjoySport			0-57
	$x_l = \langle$	Sun	ny Warm Normal Strong Warm Same>,	, т		
	Obser	ving	the first training example, it is clear the ar none of the "Ø" constraints in h are	at our hypothesis is too specifi satisfied by this example. so	c.	
	each i	s rep	placed by the next more general constra	int that fits the example		
	h1=<	Sun	ny Warm Normal Strong Warm Same	>		
	This l	ı is s	till very specific; it asserts that all insta	nces are negative except for th	e	

	single positive training example	
	$x_2 = \langle Sunny, Warm, High, Strong, Warm, Same \rangle, +$	
	The second training example forces the algorithm to further generalize h, this time substituting a "?' in place of any attribute value in h that is not satisfied by the new example	
	h ₂ = <sunny ?="" same="" strong="" warm=""></sunny>	
	$x3 = \langle Rainy, Cold, High, Strong, Warm, Change \rangle$, -	
	Upon encountering the third training the algorithm makes no change to h.	
	The FIND-S algorithm simply ignores every negative example.	
	h3 = < Sunny Warm ? Strong Warm Same>	
	$x4 = \langle Sunny Warm High Strong Cool Change \rangle, +$	
	The fourth example leads to a further generalization of h	
	h4 = < Sunny Warm ? Strong ? ? >	
2(a)	Designing a Learning System	6
	Explanation of each step-in detail	
	(i)Choosing the Training Experience	
	There are three attributes which impact on success or failure of the learner	
	 Whether the training experience provides direct or indirect feedback regarding the choices made by the performance system. The degree to which the learner controls the sequence of training examples.How well it represents the distribution of examples over which the final system performance P must be measured 	
	3. (ii)Choosing the Target Function	
	Let <i>ChooseMove</i> be the target function and the notation is	
	ChooseMove : $B \rightarrow M$	
	which indicate that this function accepts as input any board from the set of legal	

	board states B and produces as output some move from the set of legal moves M.	
	An alternative target function is an <i>evaluation function</i> that assigns a <i>numerical</i> score to any given board state	
	Let the target function V and the notation	
	$V: B \rightarrow R$	
	which denote that V maps any legal board state from the set B to some real value	
(b)	FIND-S Algorithm	6M
	1.Initialize h to the most specific hypothesis in H 2.For each positive training instance x For each attribute constraint a_i in h	
	If the constraint a_i is satisfied by x	
	Then do nothing	
	Else replace a_i in h by the next more general constraint that is satisfied by x	
	3.Output hypothesis h	
(c)	The CANDIDATE-ELIMINTION algorithm computes the <i>version space</i> containing all hypotheses from H that are consistent with an observed sequence of training examples	3+3=6M
	Initialize G to the set of maximally general hypotheses in H	
	Initialize S to the set of maximally specific hypotheses in H	
	For each training example d, do	
	 If d is a positive example Remove from G any hypothesis inconsistent with d For each hypothesis s in S that is not consistent with d Remove s from S Add to S all minimal generalizations h of s such that h is consistent with d, and some member of G is more general than h Remove from S any hypothesis that is more general than another hypothesis in S If d is a negative example 	
	• Remove from S any hypothesis inconsistent with d	

b)	ID3(Examples, Target_attribute, Attributes)	6M
	5. The training data may contain missing attribute values – Decision tree methods can be used even when some training examples have unknown values	
	errors in the attribute values that describe these examples.	
	4. The training data may contain errors – Decision tree learning methods are	
	output values. 3 Disjunctive descriptions may be required	
	a Boolean classification (e.g., yes or no) to each example. Decision tree methods easily extend to learning functions with more than two possible	
	2. The target function has discrete output values – The decision tree assigns	
	1. Instances are represented by attribute-value pairs – Instances are described by a fixed set of attributes and their values	
	problems with the following characteristics:	
a)	Decision tree learning is generally best suited to	6M
	G ₄ { <i><sunny.< i=""> ?, ?, ?, ?, ?>, <i><</i>?, Warm, ?, ?, ?, ?>}</sunny.<></i>	
	<sunny, ?="" ?,="" strong,=""> <sunny, ?="" ?,="" warm,=""> <?, Warm, ?, Strong, ?, ?></sunny,></sunny,>	
	S ₄ { <i><sunny< i="">, <i>Warm</i>, <i>?</i>, <i>Strong</i>, <i>?</i>, <i>?></i> }</sunny<></i>	
	Analysis of Enjoy Sport	
	Remove from G any hypothesis that is less general than another hypothesis in C	
	more specific than h	
	 h is consistent with d, and some member of S is 	

	 Examples are the training examples. Target_attribute is the attribute whose value is to be predicted by the tree. Attributes is a list of other attributes that may be tested by the learned decision tree. Returns a decision tree that correctly classifies the given Examples. Create a Root node for the tree 	
	 If all Examples are positive, Return the single-node tree Root, with label = If all Examples are negative. Return the single-node tree Root, with label 	
	 If all Examples are negative, retain the ongle dependence of the provided of the pro	
F i	 Else below this new branch add the subtree ID3(Examples vi, Targe_tattribute, Attributes - {A})) End Return Root 	a di pi Maria di sa
4(a)	The central choice in the ID3 algorithm is selecting which attribute to test at each node in the tree.	6M
	 A statistical property called <i>information gain</i> that measures how well a given attribute separates the training examples according to their target classification. ID3 uses <i>information gain</i> measure to select among the candidate attributes at each step while growing the tree. To define information gain, we begin by defining a measure called entropy. <i>Entropy measures the impurity of a collection of examples.</i> Given a collection S, containing positive and negative examples of some target concept, the entropy of S relative to this Boolean classification is <i>Entropy (S)</i> ≡ -p_⊕ log₂ p_⊕ - p_⊖ log₂ p_⊖ 	
(b)	The information gain values for all four attributes are	6M
	Gain(S, Outlook)=0.246	

Signature of Course in charge

Nurarapu ()

()Ducarapu

Signature of Module Coordinator

Signature of HOD

K.S. INSTITUTE OF TECHNOLOGY, BENGALURU - 560109 II SESSIONAL TEST QUESTION PAPER 2020 ODD SEMESTER Set A

		USN
Degree	: B.E	Semester : VII
Branch	: Computer Science and Engineering	Course Code : 17CS73
Course Title	: Machine Learning	Date : 18-11-2020
Duration	: 90 Minutes	Max Marks : 30

Note: Answer ONE full question from each part.

Q No.	Question	Marks	CO mapping	K- Level				
	PART-A							
1(a)	Make use of suitable diagram, explain the concept of single perceptron.	6	C03	Applying(K3)				
(b)	Determine the application of neural network which is used for learning to steer an autonomous vehicle.	6	C03	Applying(K3)				
(c)	Design Back propagation algorithm.	6	C03	Applying(K3)				
	OR							
2(a)	Design and derive Gradient Descent Rule	6	C03	Applying(K3)				
(b)	Identify the appropriate problem for Neural Network Learning	6	C03	Applying(K3)				
(c)	Derive Back propagation Rule (i) with respect to output layer	6	C03	Applying(K3)				
	PART-B							
3(a)	Make use of suitable example, explain the Hypothesis Space Search in Decision Tree Learning	6	C02	Applying(K3)				
(b)	Identify features of Bayesian learning methods	6	C04	Applying(K3)				
	OR							
4(a)	Identify various issues In Decision Tree Learning	6	C02	Applying(K3)				
(b)	Determine Brute Force MAP Learning Algorithm	6	C04	Applying(K3)				

9.8 Signature of Course in charge

muccurapu

On we arapen

Signature of Module Coordinator

Signature of HOD

K.S. INSTITUTE OF TECHNOLOGY, BANGALORE - 560109 II SESSIONAL TEST QUESTION PAPER 2020 – 21 ODD SEMESTER

SCHEME AND SOLUTION

Set A

Degree	A	•	BE	Semester	: VII
Branc	ь h		CSE	Course Code	: 17CS73
Cours	e Title	:	Machine Learning	Max Marks	: 30
			B		
Q.NO.	1		POINTS		MARKS
1(a)	Diagrai	m and	$x_{1} \qquad w_{1} \qquad x_{0}=1 \qquad \qquad$	$o = \begin{cases} 1 \text{ if } \sum_{i=0}^{n} w_i x_i > 0 \\ -1 \text{ otherwise} \end{cases}$	2M + 4M
(b)	Diagram	n and	explanation	30 Cotpot Units	2M + 4M
	Diagram	n and	explanation		

(a)	values, and \tilde{t} is the vector of target network output values. η is the learning rate (e.g., 05), n_i is the number of network inputs, n_{bidden} the number of units in the hidden layer, and n_{wit} the number of output units. The input from unit i into unit j is denoted x_{ji} , and the weight from unit i to unit j is denoted w_{ji} . \in Create a feed-forward network with n_{ii} inputs, n_{bidden} hidden units, and n_{war} output units. = Initialize all network weights to small random numbers (e.g., between05 and .05). = Until the termination condition is met. Do \bullet For each (\tilde{x}, \tilde{t}) in training examples, Do Propagate the input forward through the network: 1. Input the instance \tilde{x} to the network and compute the output σ_w of every unit u in the network. Propagate the errors backward through the network: 2. For each network output unit k_i calculate its error term δ_k $\delta_k + \sigma_k(1 - \sigma_k)(t_k - \sigma_k)$ 3. For each hidden unit h_i calculate its error term δ_k $\delta_k \leftarrow o_k(1 - \sigma_k) = w_{kk}\delta_k$ 4. Update each network weight w_{ji} $w_{ji} + w_{ji} + \Delta w_{ji}$ where $\Delta w_{ji} = \eta \delta_j x_{ji}$ GRADIENT-DESCENT(training_examples, η) Each training example is a pair of the form (\tilde{x}, t) , where \tilde{x} is the vector of input values, and t is the target output value. η is the learning rate (e.g., .05). A initialize each w_i to some small random value	3+3=6
(a)	9 is the learning rate (e.g., .05). n _i is the number of network inputs, n _{kiden} the number of units in the hidden layer, and n _{out} the number of output units. The input from unit i into unit j is denoted x _{ji} , and the weight from unit i to unit j is denoted w _{ji} . Create a feed-forward network with n _i inputs, n _{kiden} hidden units, and n _{out} output units. Initialize all network weights to small random numbers (e.g., between05 and .05). Until the termination condition is met, Do • For each (\$\vec{x}\$, \$\vec{t}\$) in training_examples, Do Propagate the input forward through the network: Input the instance \$\vec{x}\$ to the network and compute the output o_x of every unit \$\vec{u}\$ in the network. Propagate the errors backward through the network: Input the instance \$\vec{x}\$ to the network and compute the output o_x of every unit \$\vec{u}\$ in the network. Propagate the errors backward through the network: For each network output unit \$\vec{h}\$, calculate its error term \$\delta_k\$ \$\delta_k \leftarrow o_k(1 - o_k)(\$\vec{h}\$, -0\$\vec{h}\$) For each hidden unit \$\vec{h}\$, calculate its error term \$\delta_k\$ \$\delta_k \leftarrow o_k(1 - o_k) \$\vec{k}\$, \$\vec{k}\$	3+3=6
(a)	The input from unit i into unit j is denoted x_{ji} , and the weight from unit i to unit j is denoted w_{ji} . Create a feed-forward network with n_{in} inputs, n_{bldden} hidden units, and n_{out} output units. Initialize all network weights to small random numbers (e.g., between05 and .05). Until the termination condition is met, Do For each (\bar{z}, \bar{z}) in training_examples, Do Propagate the input forward through the network: 1. Input the instance \bar{z} to the network and compute the output σ_n of every unit u in the network. Propagate the errors backward through the network: 2. For each network output unit k, calculate its error term δ_k $\delta_k \leftarrow o_k(1 - o_k)(t_k - o_k)$ 3. For each hidden unit h, calculate its error term δ_h $\delta_k \leftarrow o_k(1 - o_k) \sum_{k \in output} w_{kk}\delta_k$ 4. Update each network weight w_{ji} $w_{ji} \leftarrow w_{ji} + \Delta w_{ji}$ where $\Delta w_{ji} = \eta \delta_j x_{ji}$ GRADIENT-DESCENT(training_examples, η) Each training example is a pair of the form (\bar{x}, t) , where \bar{x} is the vector of input values, and t is the target output value. η is the learning rate (e.g., .05). A Initialize each w_i to some small random value	3+3=6
(a)	w _{ji} . = Create a feed-forward network with n _i inputs, n _{hidden} hidden units, and n _{out} output units. = Initialize all network weights to small random numbers (e.g., between05 and .05). = Until the termination condition is met, Do = For each (\bar{x}, \bar{x}) in training_examples, Do Propagate the input forward through the network: 1. Input the instance \bar{x} to the network and compute the output σ_x of every unit u in the network. Propagate the errors backward through the network: 2. For each network output unit k, calculate its error term δ_k $\delta_k \leftarrow o_k(1 - o_k)(b_k - o_k)$ 3. For each hidden unit h, calculate its error term δ_k $\delta_k \leftarrow o_k(1 - o_k) \sum_{k \in output} w_{kk} \delta_k$ 4. Update each network weight w_{ji} where $\Delta w_{ji} = \eta \delta_j x_{ji}$ GRADIENT-DESCENT(training_examples, η) Each training example is a pair of the form (\bar{x}, t), where \bar{x} is the vector of input values, and t is the target output value. η is the learning rate (e.g., .05). • Initialize each w _i to some small random value	3+3=6
(a)	 Clears a free-forward network with n_i, inputs, n_i, inputs, n_i, index index inits, and n_{out} output duts. Initialize all network weights to small random numbers (e.g., between05 and .05). Until the termination condition is met, Do For each (\$\overline{x}, \$\overline{t}\$) in training_examples, Do Propagate the input forward through the network: Input the instance \$\overline{x}\$ to the network and compute the output \$\vertilde{u}\$ of every unit \$\vertilde{u}\$ in the network. Propagate the errors backward through the network: Input the instance \$\overline{x}\$ to the network and compute the output \$\vertilde{u}\$ of every unit \$\vertilde{u}\$ in the network. Propagate the errors backward through the network: For each network output unit \$\vertilde{u}\$, calculate its error term \$\vertilde{u}\$ \$\vertilde{u}\$ for each hidden unit \$\vertilde{u}\$, calculate its error term \$\vertilde{u}\$ \$\vertilde{u}\$ for each hidden unit \$\vertilde{u}\$, calculate its error term \$\vertilde{u}\$ For each hidden unit \$\vertilde{u}\$, calculate its error term \$\vertilde{u}\$ \$\vertilde{u}\$ for \$\vertilde{u}\$, \$\vertilde{u}\$ for \$\vertilde{u}\$, \$\ver	3+3=6
(a)	 Until the termination condition is met. Do For each (x̄, ī) in training_examples, Do Propagate the input forward through the network: Input the instance x̄ to the network and compute the output o_x of every unit x in the network. Propagate the errors backward through the network: For each network output unit k, calculate its error term δ_k δ_k ← o_k(1 - o_k)(t_k - o_k) For each hidden unit h, calculate its error term δ_k δ_k ← o_k(1 - o_k) ∑_{k∈outputs} w_{kh}δ_k Update each network weight w_{ji} w_{ji} ← w_{ji} + Δw_{ji} where Δw_{ji} = η δ_j x_{ji} GRADIENT-DESCENT(training_examples, η) Each training example is a pair of the form (x̄, t), where x̄ is the vector of input values, and t is the target output value. η is the learning rate (e.g., .05). Initialize each w_i to some small random value 	3+3=6
(a)	 For each (x̄, ī) in training_examples, Do Propagate the input forward through the network: Input the instance x̄ to the network and compute the output o_x of every unit u in the network. Propagate the errors backward through the network: For each network output unit k, calculate its error term δ_k δ_k ← o_k(1 - o_k)(t_k - o_k) For each hidden unit h, calculate its error term δ_k δ_k ← o_k(1 - o_k) ∑_{k ∈ output} w_{kk} δ_k Update each network weight w_{ji} w_{ji} ← w_{ji} + Δw_{ji} where Δw_{ji} = η δ_j x_{ji} GRADIENT-DESCENT(training_examples, η) Each training example is a pair of the form (x̄, t), where x̄ is the vector of input values, and t is the target output value. η is the learning rate (e.g., .05). Initialize each w_i to some small random value 	3+3=6
(a)	Propagate the input forward through the network: 1. Input the instance \bar{x} to the network and compute the output σ_n of every unit u in the network. Propagate the errors backward through the network: 2. For each network output unit k , calculate its error term δ_k $\delta_k \leftarrow o_k(1-o_k)(t_k-o_k)$ 3. For each hidden unit h , calculate its error term δ_h $\delta_k \leftarrow o_k(1-o_k) \sum_{k \in output} w_{kk} \delta_k$ 4. Update each network weight w_{ji} $w_{ji} \leftarrow w_{ji} + \Delta w_{ji}$ where $\Delta w_{ji} = \eta \delta_j x_{ji}$ GRADIENT-DESCENT(training_examples, η) Each training example is a pair of the form (\bar{x} , t), where \bar{x} is the vector of input values, and t is the target output value. η is the learning rate (e.g., .05). A Initialize each w_i to some small random value	3+3=6
(a)	 Input the instance x̄ to the network and compute the output σ_x of every unit x in the network. Propagate the errors backward through the network: For each network output unit k, calculate its error term δ_k	3+3=6
(a)	Propagate the errors backward through the network: 2. For each network output unit k, calculate its error term δ_k $\delta_k \leftarrow o_k(1-o_k)(i_k-o_k)$ 3. For each hidden unit h, calculate its error term δ_k $\delta_k \leftarrow o_k(1-o_k) \sum_{k \in output} w_{kk}\delta_k$ 4. Update each network weight w_{j1} $w_{j1} \leftarrow w_{j1} + \Delta w_{j1}$ where $\Delta w_{j1} = \eta \delta_j x_{j1}$ GRADIENT-DESCENT(training_examples, η) Each training example is a pair of the form (\vec{x} , t), where \vec{x} is the vector of input values, and t is the target output value. η is the learning rate (e.g., .05). • Initialize each w_i to some small random value	
(a)	 2. For each network output unit k, calculate its error term δk δk + ok(1 - ok)(tk - ok) 3. For each hidden unit h, calculate its error term δk δk + ok(1 - ok) ∑ wkkδk 4. Update each network weight wji wji + wji + Δwji where Δwji = η δj xji GRADIENT-DESCENT(training_examples, η) Each training example is a pair of the form (x, t), where x is the vector of input values, and t is the target output value. η is the learning rate (e.g., .05). Initialize each w; to some small random value 	
(a)	$\delta_{k} \leftarrow o_{k}(1 - o_{k})(t_{k} - o_{k})$ 3. For each hidden unit h, calculate its error term δ_{k} $\delta_{h} \leftarrow o_{h}(1 - o_{h}) \sum_{k \in outputs} w_{kh} \delta_{k}$ 4. Update each network weight w_{ji} $w_{ji} \leftarrow w_{ji} + \Delta w_{ji}$ where $\Delta w_{ji} = \eta \delta_{j} x_{ji}$ GRADIENT-DESCENT(training_examples, η) Each training example is a pair of the form (\vec{x}, t) , where \vec{x} is the vector of input values, and t is the target output value. η is the learning rate (e.g., .05). • Initialize each w_{i} to some small random value	
(a)	 3. For each hidden unit h, calculate its error term δ_h δ_h ← o_h(1 - o_h) ∑_{k∈output} w_{kh}δ_k 4. Update each network weight w_{j1} w_{j1} ← w_{j1} + Δw_{j1} where Δw_{j1} = η δ_j x_{j1} GRADIENT-DESCENT(training_examples, η) Each training example is a pair of the form (x̄, t), where x̄ is the vector of input values, and t is the target output value. η is the learning rate (e.g., .05). Initialize each w _i to some small random value	
(a)	$\delta_{h} \leftarrow o_{h}(1 - o_{h}) \sum_{k \in output} w_{kh} \delta_{k}$ 4. Update each network weight w_{j1} $w_{j1} \leftarrow w_{j1} + \Delta w_{j1}$ $\omega_{j1} = \eta \delta_{j} x_{j1}$ GRADIENT-DESCENT(training_examples, η) Each training example is a pair of the form $\langle \vec{x}, t \rangle$, where \vec{x} is the vector of input values, and t is the target output value. η is the learning rate (e.g., .05). • Initialize each w_{i} to some small random value	
(a)	 4. Update each network weight w_{ji} w_{ji} ← w_{ji} + Δw_{ji} Δw_{ji} = η δ_j x_{ji} GRADIENT-DESCENT(training_examples, η) Each training example is a pair of the form (x, t), where x is the vector of input values, and t is the target output value. η is the learning rate (e.g., .05). Initialize each w_i to some small random value 	
(a)	where where Δwj1 = η δj xj1 GRADIENT-DESCENT(training_examples, η) Each training example is a pair of the form (x, t), where x is the vector of input values, and t is the target output value. η is the learning rate (e.g., .05). Initialize each w; to some small random value	
(a)	$\Delta w_{jl} = \eta \delta_{j} x_{jl}$ GRADIENT-DESCENT(training_examples, η) Each training example is a pair of the form (\vec{x} , t), where \vec{x} is the vector of input values, and t is the target output value. η is the learning rate (e.g., .05). Initialize each w_i to some small random value	
(a)	 GRADIENT-DESCENT(training_examples, η) Each training example is a pair of the form (x, t), where x is the vector of input values, and t is the target output value. η is the learning rate (e.g., .05). Initialize each w; to some small random value 	
(a)	 GRADIENT-DESCENT(training_examples, η) Each training example is a pair of the form (x, t), where x is the vector of input values, and t is the target output value. η is the learning rate (e.g., .05). Initialize each w; to some small random value 	
	Each training example is a pair of the form (\vec{x}, t) , where \vec{x} is the vector of input values, and t is the target output value. η is the learning rate (e.g., .05). Initialize each w; to some small random value	
	t is the target output value. η is the learning rate (e.g., .05). Initialize each w; to some small random value	
	• Initialize each w_i to some small random value	
	• Initiatize each wij to some small random value	
	• Until the termination condition is met, Do	
	• Initialize each Δw_i to zero.	
	• For each (\bar{x}, t) in training examples. Do	
	• Input the instance \vec{r} to the unit and compute the output c	
	• Input the instance x to the time and compute the output of	
	• For each mean unit weight w_i , bo	3+3=6
	$\Lambda_{101} \leftarrow \Lambda_{201} + n(t-\alpha)r_{t}$	515-0
1.1	• For each linear unit weight w_i , Do	
	$w_i \leftarrow w_i + \Delta w_i$	
D	Design and Derivation	
) A	Appropriate problems for Neural Network Learning	
´ ``	Trans Provide for Lioural Lioundry Dourning	
3 14	• Instances are represented by many attribute-value pairs	1 * 6 0
	• The target function output may be discrete valued real valued or a vector	1 + 6 = 6M
	of amongle real on discrete value d at it to	
	of several real- or discrete-valuea attributes.	
		Constant Sector

	 The training examples may contain errors. Long training times are acceptable. Fast evaluation of the learned target function may be required. The ability of humans to understand the learned target function is not important. 	
(c)	Back propagation Rule (i) with respect to output layer Derivation and Explanation	3+3=6M
3(a)	Diagram and explanation	3+3=6M
(b)	 Features of Bayesian learning methods Each observed training example can incrementally decrease or increase the estimated probability that a hypothesis is correct. This provides a more flexible approach to learning than algorithms that completely eliminate a hypothesis if it is found to be inconsistent with any single example. Prior knowledge can be combined with observed data to determine the final probability of a hypothesis. In Bayesian learning, prior knowledge is provided by asserting (1) a prior probability for each candidate hypothesis, and (2) a probability distribution over observed data for each possible hypothesis. Bayesian methods can accommodate hypotheses that make probabilistic predictions (e.g., hypotheses such as "this pneumonia patient has a 93% chance of complete recovery"). New instances can be classified by combining the predictions of multiple hypotheses, weighted by their probabilities. Even in cases where Bayesian methods prove computationally intractable, they can provide a standard of optimal decision making against which other practical methods can be measured. 	6M

4(a)	various issues In Decision Tree Learning	1 * 6 = 6M
(b)	BRUTE-FORCE MAP LEARNING algorithm	
	1. For each hypothesis h in H, calculate the posterior probability	
	$P(h D) = \frac{P(D h)P(h)}{P(D)}$	3+3=6M
	2. Output the hypothesis h_{MAP} with the highest posterior probability	
	$h_{MAP} = \operatorname*{argmax}_{h \in H} P(h D)$	
	Formula description and Explanation	

Signature of Course in charge

ONvercerapu

Ducarcepu Signature of HOD

Signature of Module Coordinator

Degree

Branch

Course Title

Duration

: B.E

: 90 Minutes

:

:

Computer Science

and Engineering Machine Learning

K.S. INSTITUTE OF TECHNOLOGY, BENGALURU - 560109 II SESSIONAL TEST QUESTION PAPER 2020 ODD SEMESTER Set B

USN			
Semester Course Code	:	VII 17CS73	
Date	:	18-11-2020	
Max Marks	:	30	

Note: Answer ONE full question from each part.

Q No.	Question	Marks	CO mapping	K- Level				
	PART-A							
1(a)	Determine why stochastic approximation is needed to Gradient descent rule	6	CO3	Applying(K3)				
(b)	Determine the application of neural network which is used for learning to steer an autonomous vehicle.	6	CO3	Applying(K3)				
(c)	Design Back propagation algorithm.	6	CO3	Applying(K3)				
	OR							
2(a)	Identify the appropriate problem for Neural Network Learning	6	CO3	Applying(K3)				
(b)	Design and derive Gradient Descent Rule	6	CO3	Applying(K3)				
(c)	Derive Back propagation Rule (i) with respect to output layer	6	C03	Applying(K3)				
	PART-B							
3(a)	Make use of suitable example, explain the Hypothesis Space Search in Decision Tree Learning	6	CO2	Applying(K3)				
(b)	Determine Brute Force MAP Learning Algorithm	6	CO4	Applying(K3)				
	OR							
4(a)	Identify various issues In Decision Tree Learning	6	CO2	Applying(K3)				
(b)	Identify features of Bayesian learning methods	6	CO4	Applying(K3)				

S.R

O ucarapien

0 Ducarapu

Signature of Course in charge

Signature of Module Coordinator

Signature of HOD

K.S. INSTITUTE OF TECHNOLOGY, BANGALORE - 560109 II SESSIONAL TEST QUESTION PAPER 2020 – 21 ODD SEMESTER

SCHEME AND SOLUTION

Set B

D	C	:	B.E	Semester	: VII
Branc	h	: CSE Course Code		: 17CS73	
Cours	se Title : Machine Learning Max Mark		Max Marks	: 30	
Q.NO.			POINTS		MARKS
l (a)	Mentic	oning	about advantages of stochastic approximation	on with explanation	6*1=6M
(b)			Sharp Straight Sharp Lieft About Right	30 Output Units	
			4 Filddae Unita	•	2M + 4M
				30x32 Sensor Input Retina	
	Diagra	m an	d explanation		
c)	Diagra	m an Bacı	d explanation FROENDATION (training examples, η , n_{in} , n_{out} , n_{hidden}) Each training example is a pair of the form (\bar{x}, \bar{x}) , where \bar{x} values, and \bar{x} is the vector of target network output values. η is the learning rate (e.g., 05), n_{in} is the number of network units in the hidden layer, and n_{out} , the number of output units the input from units i thro unit j is denoted x_{ji} , and the weight,	is the vector of network input inputs, nutden the number of from unit (to unit) is denoted	
c)	Diagra	Baci Baci Baci Baci Baci Baci Baci Baci	d explanation PROPADATION (training examples, η , n_{in} , n_{out} , n_{hidden}) Each staining example is a pair of the form (\bar{x}, \bar{x}) , where \bar{x} values, and \bar{x} is the vector of target network output values. η is the learning rate (e.g., 05), n_{in} is the number of network units in the hidden layer, and n_{out} the number of output units The input from unit i into unit j is denoted x_{ji} , and the weight, w_{ji} . cate a food-forward network with n_{in} inputs, n_{hidden} italize all network weights to small random numbers (e.g., to the indication condition is met, Do $=$ For each (\bar{x}) in training examples, Do	is the vector of network input inputs, nuiden the number of from unit i to unit j is denoted units, and neur output units, www.en ~.05 and .05).	
c)	Diagra	m an Baci S In S U	d explanation PROPADATION (training examples, ŋ, nia, near, nuidem) Each training example is a pair of the form (3, 7), where 3 values, and 7 is the vector of target network output values. g is the learning rate (e.g., 05), nia is the number of network units in the hidden layer, and near the number of output units The input from unit i into unit i is demoted x _i , and the weight; y _i . cate a food-forward network with n _i inputs, nuteen hidden itialize all network weights to small random numbers (e.g., to uil the termination condition is met. Do e For each (2, 7) in training_examples. Do Propagate the input forward through the network: 1. Input the instance 2 to the network and compute the network. Propagate the errors backward through the network:	is the vector of network input inputs, n _{hidden} the number of from unit I to unit J is denoted units, and n _{our} output units, wetween05 and .05).	
c)	Diagra	m an Bact - Ca - In - U	d explanation PROPADATION (training examples, η , n_{in} , n_{out} , n	is the vector of network input inputs, nhidden the number of from unit i to unit j is denoted units, and neur output units, netwoon 05 and .05). Is the output o_{x} of every unit u in r term δ_{z}	
c)	Diagra	m an Baci - C - La - U	d explanation TROPADATION (training examples, $\eta, n_{in}, n_{out}, n_{hidden})$ Each training example is a pair of the form $(\overline{x}, \overline{x})$, where \overline{x} values, and \overline{x} is the vector of target network output values. η is the learning rate (e.g., G5), n_i is the number of network units in the hidden layer, and n_{out} the number of output units The input from unit i two unit j is denoted x_{ji} , and the weight, w_{ji} . value a feed-forward network with n_{in} inputs, n_{hidden} hidden itialize all network weights to small random numbers (e.g., to will the termination condition is met. Do $=$ For each $(\overline{x}, \overline{x})$ in training examples. Do $Propagate the input forward through the network: 1. Input the instance \overline{x} to the network and computethe network.Propagate the errors backward through the network: 2. For each network output unit k, calculate its error \delta_4 \leftarrow o_k(1 - o_k)(c_k - 3).$	is the vector of network input inputs, nuclear the number of from unit i to unit j is denoted units, and n_{out} output units, netwoon 05 and .05). Is the output o_u of overy unit u in r term δ_k $-o_k$	3+3=6
c)	Diagra	m an Bacr - Ci - In - U	TROPADATION (training examples, q. nin. news. Nuclear) Each straining example is a pair of the form (\bar{x}, \bar{x}) , where \bar{x} values, and \bar{x} is the vector of target network output values. q is the learning rate (e.g., 05), n_{in} is the number of network values, and \bar{x} is the vector of target network output values. q is the learning rate (e.g., 05), n_{in} is the number of output units the hidden layer, and n_{min} the number of output units The input from unit i into unit j is denoted x_{ji} , and the weight, y_{ji} . cate a food-forward network with n_{in} inputs, noteen hidden titialize all network weights to small random numbers (e.g., to tell the termination condition is mot, Do \bullet For each (\bar{x}, \bar{x}) in training examples. Do Propagate the input forward through the network: 1. Input the instance \bar{x} to the network and compute the network. Propagate the errors backward through the network: 2. For each network output unit k, calculate its error $\delta_{k} \leftarrow o_{k}(1 - o_{k})(c_{k})$. 3. For each hidden unit h, calculate its error term λ_{k} $\delta_{k} \leftarrow o_{k}(1 - o_{k})$	is the vector of network input inputs, n _{hidden} the number of from unit i to unit j is denoted units, and n_{put} output units, vetwoon05 and .05). s the output o_{ii} of every unit u in e term δ_k - o_k)	3+3=6
c)	Diagra	m an Baci - Ci - Si - Si	d explanation PROPADATION (training examples, η , n_{in} , n_{out} , n_{bidden}) Each training example is a pair of the form (\bar{x}, \bar{x}) , where \bar{x} values, and \bar{x} is the vector of target network output values. η is the learning rate (e.g., 05), n_{in} is the number of network units in the hidden layer, and n_{out} the number of output units $The input from unit i into unit i is the number of output units The input from unit i into unit i is denoted x_{ji}, and the weight,y_{ji}.eate a feed-forward network with n_{in} inputs, n_{bidden}hidden is betwork weights to small random numbers (e.g., tostill the termination condition is met. Do\bullet For each (\bar{x}, \bar{x}) in training examples. DoPropagate the input forward through the network:1. Input the instance \bar{x} to the network and computethe network.Propagate the errors backward through the network:2. For each network output unit k, calculate its error\delta_{k} \leftarrow o_{k}(1 - o_{k})(r_{k})\delta_{k} \leftarrow o_{k}(1 - o_{k})\delta_{k} \leftarrow o_{k}(1 - o_{k})$	is the vector of network input inputs, n_{hidden} the number of from unit i to unit j is denoted units, and n_{out} output units, wetween05 and .05). to the output σ_{a} of overy unit u in term δ_{b} = σ_{b}	3+3=6
c)	Diagra	m an Baci	A explanation PROPADATION (training examples, n. n., n., n., n. n., n., n., n., n.,	is the vector of network input inputs, nhidden the number of from whit i to whit j is denoted units, and neur output units, setwoon05 and .05). Is the output o_{d} of every unit u in term δ_{d} = $-o_{k}$) weaks u	3+3=6

2(a)	GRADIENT-DESCENT(training_examples, η)	
	Each training example is a pair of the form (\vec{x}, t) , where \vec{x} is the vector of input values, and the target output value, n is the learning rate (e.g., 05).	
	• Initialize each w_i to some small random value	
	• Until the termination condition is met, Do	
	 Initialize each \(\lambda w_i\) to zero. For each (\(\vec x, t)\) in training_examples, Do Input the instance \(\vec x\) to the unit and compute the output o For each linear unit weight \(w_i\), Do 	
	$\Delta w_i \leftarrow \Delta w_i + \eta(t-o) x_i$	3+3=6
	• For each linear unit weight w_i , Do	
	$w_i \leftarrow w_i + \Delta w_i$	
	Design and Derivation	
(b)	Appropriate problems for Neural Network Learning	
	 Instances are represented by many attribute-value pairs. The target function output may be discrete-valued, real-valued, or a vector of several real- or discrete-valued attributes. 	1 * 6 = 6M
	• The training examples may contain errors.	
	• Long training times are acceptable.	
	• Fast evaluation of the learned target function may be required.	
	• The ability of humans to understand the learned target function is not impor- tant.	
(c)	Back propagation Rule (i) with respect to output layer	3+3=6M
	Derivation and Explanation	
3(a)		
	RR. RR.	3+3=6M
		 To sport the figure

(b)	Features of Bayesian learning methods	6M
	 Each observed training example can incrementally decrease or increase the estimated probability that a hypothesis is correct. This provides a more flexible approach to learning than algorithms that completely eliminate a hypothesis if it is found to be inconsistent with any single example. Prior knowledge can be combined with observed data to determine the final probability of a hypothesis. In Bayesian learning, prior knowledge is provided by asserting (1) a prior probability for each candidate hypothesis, and (2) a probability distribution over observed data for each possible hypothesis. Bayesian methods can accommodate hypotheses that make probabilistic predictions (e.g., hypotheses such as "this pneumonia patient has a 93% chance of complete recovery"). New instances can be classified by combining the predictions of multiple hypotheses, weighted by their probabilities. Even in cases where Bayesian methods prove computationally intractable, they can provide a standard of optimal decision making against which other practical methods can be measured. 	
4(a)	Various issues In Decision Tree Learning	1 * 6 = 6M
(b)	BRUTE-FORCE MAP LEARNING algorithm 1. For each hypothesis h in H, calculate the posterior probability $P(h D) = \frac{P(D h)P(h)}{P(D)}$ 2. Output the hypothesis h_{MAP} with the highest posterior probability $h_{MAP} = \operatorname{argmax}_{h \in H} P(h D)$ Formula description and Explanation	3+3=6M

Signature of Course in charge

On warapen

(Nucarapu

Signature of Module Coordinator

Signature of HOD

SET A

K.S. INSTITUTE OF TECHNOLOGY, BENGALURU - 560109 III SESSIONAL TEST QUESTION PAPER 2020 ODD SEMESTER

٦

		USN
Degree	: B.E	Semester : VII
Branch	: Computer Science and Engineering	Course Code : 17CS73
Course Title	: Machine Learning	Date : 06-01-2021
Duration	: 90 Minutes	Max Marks : 30

Note: Answer ONE full question from each part.

Q			Oı	restion			Marks	СО	K-
No.								mapping	Level
					PART-	Α			
	Apply naïve bayes classifier for the given training data to classify the instance (outlook = sunny, temperature = cool, humidity = high, wind = strong)							<i>¥</i> ?~	
	Day	Outlook	Temperature	Humidity	Wind	PlayTennis			
1(a)	D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14	Sunny Sunny Overcast Rain Rain Rain Overcast Sunny Sunny Rain Sunny Overcast Overcast Rain	Hot Hot Hot Mild Cool Cool Mild Cool Mild Mild Mild Hot Mild	High High High Normal Normal Normal Normal Normal High Normal High	Weak Strong Weak Weak Strong Strong Weak Strong Strong Weak Strong Strong	No No Yes Yes No Yes Yes Yes Yes Yes No	6	CO4	Applying(K3)
(b)	Design	Bayesian	belief network	with its rej	presentati	ion	6	CO4	Applying(K3)
(c)	Identi	fy Sample 1	Error and True	Error in hy	pothesis		6	CO5	Applying(K3)
	I				OR				
2(a)	Determine conditional independence in Bayesian belief network					6	CO4	Applying(K3)	
(b)	Design	EM Algor	ithm and deriv	e equations	s for the a	algorithm	6	CO4	Applying(K3)

(c)	Identify confidence interval for discrete valued hypothesis	6	CO5	Applying(K3)
_	PART-B			
3(a)	Make use of suitable example, explain the Reinforcement Learning	6	CO5	Applying(K3)
(b)	Determine Comparing learning algorithms with paired t Tests.	6	CO5	Applying(K3)
	OR			-
4(a)	Design Q Learning (Q Function and Algorithm)	6	CO5	Applying(K3)
(b)	Determine Binomial Distribution for sampling theory	6	CO5	Applying(K3)

Signature of Course in charge

Signature of Module Coordinator

On wearapu Signature of HOD

K.S. INSTITUTE OF TECHNOLOGY, BANGALORE - 560109 III SESSIONAL TEST QUESTION PAPER 2020 – 21 ODD SEMESTER

SCHEME AND SOLUTION

(SET A)

Degree		•	BE	Semester	:	VII
Branch		•	CSE	Course Code	:	17CS73
Course	Title	:	Machine Learning	Max Marks	:	30
course	THU	·				
O.NO.	-		POINTS			MARKS
(b)	P(ye	es) P (no)	(sunny yes) P(cool yes) P(high yes) P(sunny no) P(cool no) P(high no)	P(strong yes) = .0053 P(strong no) = .0206		2M + 4M
		(Storm BusTourGroup Lightning Campfire Thunder ForestFire	$S,B S,\neg B \neg S,B \neg S,\neg B \\ 0.4 0.1 0.8 0.2 \\ 0.6 0.9 0.2 0.8 \\ \hline Campfire$		2M + 4M
(0)	Diagra	im and	a explanation			3 M
	Samp		or . Dermition and Emplanation			
	True	Error	: Definition and Explanation			3 M
2(a)	Condi	tiona	l independence in Bayesian belief network		T	2M + 4M
	Defini	tion a	nd Explanation	an a		

(b)	Step 1: Estimation (E) step: Calculate $Q(h' h)$ using the current hypothesis h and the observed data X to estimate the probability distribution over Y.	2M + 4M
	$Q(h' h) \leftarrow E[\ln P(Y h') h, X]$	
	Step 2: Maximization (M) step: Replace hypothesis h by the hypothesis h' that maximizes this Q function.	
	$h \leftarrow \operatorname*{argmax}_{h'} Q(h' h)$	
	Algorithm and Explanation	
(c)	Confidence interval for discrete valued hypothesis Formula and Explanation	4+2=6M
3(a)	Agent State Reward Action Environment $s_0 \frac{a_0}{r_0} s_1 \frac{a_1}{r_1} s_2 \frac{a_2}{r_2} \dots$ Goal: Learn to choose actions that maximize $r_0 + \gamma r_1 + \gamma^2 r_2 + \dots$, where $0 \leq \gamma < 1$	3+3=6M
	Diagram and explanation	
(b)	Comparing learning algorithms with paired t Tests	
	Comparison and Explanation	3+3=6M

4(a)	Q learning algorithm	
	For each s, a initialize the table entry $\hat{Q}(s, a)$ to zero. Observe the current state s Do forever:	
	 Select an action a and execute it Receive immediate reward r Observe the new state s' 	
	• Update the table entry for $\hat{Q}(s, a)$ as follows:	3+3=6M
	$\hat{Q}(s,a) \leftarrow r + \gamma \max_{a'} \hat{Q}(s',a')$	
	 s ← s' 	
(b)	Algorithm and Explanation	
	Binomial Distribution for sampling theory Points and Explanation	3+3=6M

5. Rog D Signature of Course in charge

Signature of Module Coordinator

Neucarapu

Signature of HOD

SET B K.S. INSTITUTE OF TECHNOLOGY, BENGALURU - 560109 III SESSIONAL TEST QUESTION PAPER 2020 ODD SEMESTER

		USN
Degree	: B.E	Semester : VII
Branch	: Computer Science and Engineering	Course Code : 17CS73
Course Title	: Machine Learning	Date : 03-02-2021
Duration	: 90 Minutes	Max Marks : 30

Note: Answer ONE full question from each part.

Q No.			Q	uestion	and the second	t Providence	Marks	CO mapping	K- Level
					PART	-A			
1(a)	Desig	n EM Algo	rithm and deri	ve equatio	ns for the	algorithm	6	CO4	Applying(K3)
(b)	Deter	mine cond	itional indeper	idence in B	ayesian t	belief network	6	CO4	Applying(K3)
(c)	Deter	mine estim	ating hypothes	sis accurac	у		6	C05	Applying(K3)
					OR				
2(a)	Apply the ins Day D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14	r naïve bay stance (outlook = wind = st Outlook Sunny Overcast Rain Rain Rain Overcast Sunny Sunny Sunny Sunny Sunny Overcast Sunny Overcast Overcast Rain	es classifier fo = sunny, temp rong) Temperature Hot Hot Hot Mild Cool Cool Cool Cool Mild Mild Mild Mild Mild Hot Mild	r the given perature = Humidity High High High High Normal Normal Normal Normal High Normal High Normal High	wind Wind Weak Strong Weak Weak Strong Strong Weak Strong Strong Strong Strong Strong Strong Strong Strong Strong Strong Strong Strong Strong	data to classify umidity = high, PlayTennis No No Yes Yes Yes No Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	6	CO4	Applying(K3)
(b)	Design	Bayesian b	belief network	with its re	presentati	ion	6	CO4	Applying(K3)

(c)	Identify confidence interval for discrete valued hypothesis	6	C05	Applying(K3)
	PART-B			
3(a)	Design Q Learning (Q Function and Algorithm)	6	C05	Applying(K3)
(b)	Determine central limit theorem	6	CO5	Applying(K3)
	OR			
4(a)	Design K means algorithm with its derivations	6	CO5	Applying(K3)
(b)	Make use of suitable example, explain the Reinforcement Learning	6	CO5	Applying(K3)

Signature of course in charge

(New arapu

Signature of Module Coordinator

Signature of HOD

K.S. INSTITUTE OF TECHNOLOGY, BANGALORE - 560109 III SESSIONAL TEST QUESTION PAPER 2020 – 21 ODD SEMESTER

SCHEME AND SOLUTION

(SET B)

Degree	<u>,</u>	•	B.E	Semester	: VII						
Branch	h	:	CSE	Course Code	: 17CS73						
Course	e Title	:	Machine Learning	Max Marks	: 30						
					N/A DVO						
Q.NO.			POINTS		MARKS						
1(a)	EM alg	orith	n explanation with steps.								
	Explan	ation	of each equation		3M + 3M						
(b)	Condit Definit	ional ion ar	independence in Bayesian belief network ad Explanation		2M + 4M						
(c)	Mentio Explan	Mentioning of equations to achieve accuracy Explanation of each term and procedure to achieve accuracy									
2 (a)	P(yes) P(sunny yes) P(cool yes) P(high yes) P(strong yes) = .0053 $P(no) P(sunny no) P(cool no) P(high no) P(strong no) = .0206$										
(b)	Light	s ning under	torm BusTourGroup Campfire ForestFire	3 ¬S,B ¬S,¬B 0.8 0.2 0.2 0.8 yfire	2M + 4M						
(c)	Confid Formul	ence i a and	interval for discrete valued hypothesis Explanation		4+2=6M						

3(a)	Q learning algorithm	3+3=6M
	For each s, a initialize the table entry $\hat{Q}(s, a)$ to zero.	
	Observe the current state s	
	• Select an action a and execute it	
	Receive immediate reward r	
	• Observe the new state s'	10
	• Update the table entry for $\hat{Q}(s, a)$ as follows:	
	$\hat{Q}(s,a) \leftarrow r + \gamma \max_{a'} \hat{Q}(s',a')$	
	• $s \leftarrow s'$	
b)	Mentioning of central limit theorem	3+3=6M
	Explanation of steps	
4 (a)	Mentioning of K mean algorithm with its steps	
	Explanation of algorithm	2+3=6M
4(b)		3+3-0141
	Agent State Reward Action	
	Environment	
	$s_0 \frac{a_0}{r_0} = s_1 \frac{a_1}{r_1} = s_2 \frac{a_2}{r_2} \dots$	
	Goal: Learn to choose actions that maximize	
	$r_0 + \gamma r_1 + \gamma^2 r_2 + \dots$, where $0 \le \gamma < I$	

Signature of Course in charge

Jourse cur apm Signature of Module Coordinator

Murarapa

Signature of HOD

K.S. INSTITUTE OF TECHNOLOGY, BANGALORE DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

YEAR / SEMESTER		
COURSE TITLE	Machine Learning	
COURSE CODE	17CS73	
ACADEMIC YEAR	2020-2021	
INTERNALS	1	

SI			Q.N.1 (a)	Q.N.1(b)	Q.N.1 (c)	Q.N.2 (a)	Q.N.2(b)	Q.N.2 (c)	Q.N.3(a)	Q.N.3(b)	Q.N.4(a)	Q.N.4(b)	TOTAL
NC	USN	NAME	C01	CO1	CO1	CO1	CO1	CO1	CO2	CO2	CO2	CO2	
Ŀ			6 Marks	6 Marks	6 Marks	6 Marks	6 Marks	6 Marks	6 Marks	6 Marks	6 Marks	6 Marks	30 Marks
1	1KS17CS001	AAFREEN HUSSAIN				5	6	6	6	5			28
2	1KS17CS002	ABHISHEK GOWDA.M.V	6	6	6				6	6			30
3	1KS17CS003	AKSHATHA RAMESH	6	6	6				6	5			29
4	1KS17CS004	AKSHITHA.B.S	6	6	6		10.00		6	6			30
5	1KS17CS005	AMOGH.R	5	6	6				6	6			29
6	1KS17CS006	AMOGHA MANJUNATHA.K	4	6	6				6	6			28
7	1KS17CS007	AMRUTHA.V.DESHPANDE	6	6	6				6	6			30
8	1KS17CS008	ANOOP.P.S				5	6	6	6	6			20
9	1KS17CS010	ANUSHA.A.G				5	6	6	6	6			29
10	1KS17CS011	ANUSHREE.J	6	6	6				6	6			20
11	1KS17CS013	ASHISH.K.AMAR	4	6	6				6	6			20
12	1KS17CS014	LAKSHMI PRASANNA.B	6	6	6			6	6	6			20
13	1KS17CS016	BHAVESH BHANSALI				5	6	6	6	6			30
14	1KS17CS017	CHAITRA				6	5	6	6	6			29
15	1KS17CS018	CHANDANA.B.R	6	6	6				6	6			29
16	1KS17CS019	CHENNA KESHAVA N.T				5	6	6	0	0			30
-						~	0	0	0	0			29

NO	USN	NAME	CO1	CO1	CO1	CO1	CO1	CO1	CO2	CO2	CO2	CO2	
	oon	NAME	6 Marke	6 Marke	6 Marke	6 Marke	6 Marks	30 M					
17	1KS17CS020	DARSHAN S	Umarks	U Mial KS	U marks	6	6	6	6	6			3
18	1KS17CS021	DEEKSHITHAR				5	5	6	6	5			2
19	1KS17CS022	DEEPIKASH	6	6	6				6	6			
20	1KS17CS023	DIVYA YASHASWI KANNEY	6	6	6				6	6			:
21	1KS17CS024	GANESH.G.B	6	6	6				6	5			:
22	1KS17CS025	GANESH MAUDGHALYA H.G	-			6	5	6	4	5			
23	1KS17CS026	GAUTHAM.C.R	5	6	6				4	5			
24	1KS17CS027	H.PRIYANKA	6	6	6				6	6			
25	1KS17CS028	HANUMESH.V.T				5	5	6	6	6			
26	1KS17CS029	HARSHITHA.V	6	6	6				6	6			
27	1KS17CS030	INDRASENA KALYANAM			-	5	6	6	6	6			
28	1KS17CS032	KARAN RAGHUNATH				5	5	6	6	5			
29	1KS17CS033	KARTHIK.T.C	6	6	6				6	6			
30	1KS17CS034	KAVITHA.S	6	6	6				6	6			
31	1KS17CS035	KEERTHI.N	6	6	6				6	6			
32	1KS17CS036	KRITHIKA JAGANNATH	6	6	6				6	6			
33	1KS17CS037	LAVANYA.V	6	6	3				6	6			
34	1KS17CS038	LOKESH.B.M	4	6	6	-			6	6			
35	1KS17CS040	MANJUNATH.A				5	6	6	6	5			
36	1KS17CS041	MEGHANA.C.V	6	6	6				6	6			
37	1KS17CS042	MEGHANA.G	6	6	6				6	6			
38	1KS17CS043	MEGHANA.G.R	6	2	6				6	6			
39	1KS17CS044	MOUNIKA.M.K.L	6	6	6				6	6		to di si tage	
40	1KS17CS045	NEHA.K				5	6	6	6	6			
41	1KS17CS046	NIKHIL SUBRAMANYA.K				5	5	6	6	6		and the second	
42	1KS17CS047	NIKITHA KATARI	6	6	6				6	5			
43	1KS17CS048	NISCHITHA.C	6	6	6		-		6	6			
44	1KS17CS049	NITISH KUMAR GUPTA	4	6	2				6	5			
45	1KS17CS050	NYDILE.G.R	6	6	6				6	6			
46	1KS17CS051	P.KISHORE				5	6	6	6	6			

SI. NO			Q.N.1 (a)	Q.N.1(b)	Q.N.1 (c)	Q.N.2 (a)	Q.N.2(b)	Q.N.2 (c)	Q.N.3(a)	Q.N.3(b)	Q.N.4(a)	Q.N.4(b)	TOTAL
	USN	NAME	CO1	CO1	CO1	CO1	CO1	CO1	CO2	CO2	CO2	CO2	
·			6 Marks	6 Marks	6 Marks	6 Marks	6 Marks	6 Marks	6 Marks	6 Marks	6 Marks	6 Marks	30 Marks
41	1KS17CS102	SHRIRAKSHA.S.KANAGO	6	5	6				6	6			29
48	1KS18CS401	KRUTHIKA.B.M	6	5	6				6	5			28
49	1KS16CS042	MEGHANA.H.S				5	6	6	6	5			28
50	1KS15CS050	LAXMI.K.V	6	6	6					2			20

K.S. INSTITUTE OF TECHNOLOGY, BANGALORE DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

YEAR / SEMESTER	IV / VII	
COURSE TITLE	Machine Learning	
COURSE CODE	17CS73	
ACADEMIC YEAR	2020-2021	
INTERNALS	11	

SL			Q.N.1 (a)	Q.N.1(b)	Q.N.1 (c)	Q.N.2 (a)	Q.N.2(b)	Q.N.2 (c)	Q.N.3(a)	Q.N.3(b)	Q.N.4(a)	Q.N.4(b)	TOTAL
NO	USN	NAME	CO3	CO3	CO3	CO3	CO3	CO3	CO2	CO4	CO2	CO4	
-			6 Marks	6 Marks	6 Marks	6 Marks	6 Marks	6 Marks	6 Marks	6 Marks	6 Marks	6 Marks	30 Marks
1	1KS17CS001	AAFREEN HUSSAIN	6	6	5				6	5			28
2	1KS17CS002	ABHISHEK GOWDA.M.V	6	6	5				6	5			28
3	1KS17CS003	AKSHATHA RAMESH	6	6	5				6	5			28
4	1KS17CS004	AKSHITHA.B.S	6	6	5						5	6	28
5	1KS17CS005	AMOGH.R	5	6	5				6	5			28
6	1KS17CS006	AMOGHA MANJUNATHA.K	6	6	5				6	5			28
7	1KS17CS007	AMRUTHA.V.DESHPANDE	6	6	5				6	5			28
8	1KS17CS008	ANOOP.P.S	6	6	6				6	5			29
9	1KS17CS010	ANUSHA.A.G	6	6	5				6	5			28
10	1KS17CS011	ANUSHREE.J	6	6	5				6	5			28
11	1KS17CS013	ASHISH.K.AMAR	6	6	5				5	5	1		27
12	1KS17CS014	LAKSHMI PRASANNA.B	6	6	5				6	6			29
13	1KS17CS016	BHAVESH BHANSALI	6	6	5				6	5			28
14	1KS17CS017	CHAITRA	6	6	5				6	5			28
15	1KS17CS018	CHANDANA.B.R				6	5	6	6	5			28
16	1KS17CS019	CHENNA KESHAVA.N.T	6	6	5				6	5			28

								012/-1	ON 3(2)	Q.N.3(b)	Q.N.4(a)	Q.N.4(b)	TOTAL
		[Q.N.1 (a)	Q.N.1(b)	Q.N.1 (c)	Q.N.2 (a)	Q.N.2(b)	Q.N.2 (C)	Q.N.5(a)	CO4	CO2	CO4	
SI.	USN	NAME	CO3	CO3	CO3	CO3	CO3	CO3	C Marke	6 Marks	6 Marks	6 Marks	30 Marks
NO.	0.54		6 Marks	6 Marks	6 Marks	6 Marks	6 Marks	6 Marks	6 Marks	5	U IIIIII		26
17	1KS17CS020	DARSHAN.S		1.1		5	5	5	6		6	6	29
18	1KS17CS021	DEEKSHITHA.R	6	6	5				6	5			28
19	1KS17CS022	DEEPIKA.S.H	6	6	5	-			0	5			28
20	1KS17CS023	DIVYA YASHASWI KANNEY	6	6	5				6	5			28
21	1KS17CS024	GANESH.G.B	6	6	5		1		0	5			28
22	1KS17CS025	GANESH MAUDGHALYA.H.G	6	6	5				0	5			27
23	1KS17CS026	GAUTHAM.C.R				6	5	5	0	5			27
24	1KS17CS027	H.PRIYANKA				6	5	5	0	5			28
25	1KS17CS028	HANUMESH.V.T	6	6	5				0	5			28
26	1KS17CS029	HARSHITHA.V	6	6	5				0	5			29
27	1KS17CS030	INDRASENA KALYANAM	6	6	6				6	5			28
28	1KS17CS032	KARAN RAGHUNATH	6	6	5				0		5	5	27
29	1KS17CS033	KARTHIK.T.C	6	6	5						6	5	28
30	1KS17CS034	KAVITHA.S	6	6	5				6	5			28
31	1KS17CS035	KEERTHI.N	6	6	5				0	<u> </u>	6	5	28
32	1KS17CS036	KRITHIKA JAGANNATH	6	6	5				6	5	-		28
33	1KS17CS037	LAVANYA.V	6	6	5				0	5			28
34	1KS17CS038	LOKESH.B.M	6	6	5				0	5			28
35	1KS17CS040	MANJUNATH.A	6	6	5				0	5			28
36	1KS17CS041	MEGHANA.C.V	6	6	5				0	5			28
37	1KS17CS042	MEGHANA.G	6	6	5				0	5	6	5	28
38	1KS17CS043	MEGHANA.G.R	6	6	5				0	5	0		20
39	1KS17CS044	MOUNIKA.M.K.L	6	6	5				6	5			20
40	1KS17CS045	NEHA.K				6	5	6	6	5			20
41	1KS17CS046	NIKHIL SUBRAMANYA.K	6	6	5				6	5			20
42	1KS17CS047	NIKITHA KATARI	5	6	5						5	5	20
43	1KS17CS048	NISCHITHA.C	6	6	5				6	5			28
44	1KS17CS049	NITISH KUMAR GUPTA	6	6	4				6	5			2/
45	1KS17CS050	NYDILE.G.R	6	6	5				6	5			28
46	1691709051	PKISHORE	6	6	5				6	5		1. 1. 1.	28

SI.	UCN		Q.N.1 (a)	Q.N.1(b)	Q.N.1 (c)	Q.N.2 (a)	Q.N.2(b)	Q.N.2 (c)	Q.N.3(a)	Q.N.3(b)	Q.N.4(a)	Q.N.4(b)	TOTAL
NO.	USN	NAME	CO3	CO3	CO3	CO3	CO3	CO3	CO2	CO4	CO2	CO4	
	11/0/200100		6 Marks	6 Marks	6 Marks	6 Marks	6 Marks	6 Marks	6 Marks	6 Marks	6 Marks	6 Marks	30 Marks
47	1KS17CS102	SHRIRAKSHA.S.KANAGO	6	6	5				6	5			28
48	1KS18CS401	KRUTHIKA.B.M	6	6	5				6	5			28
49	1KS16CS042	MEGHANA.H.S	6	6	5				6	5			28
50	1KS15CS050	LAXMI.K.V	6	6	5				6	5			28
51	1KS16CS090	SHASHANK KAVUR	6	6	5				6	5			28

Ą S.fay Course In Charge

K.S. INSTITUTE OF TECHNOLOGY, BANGALORE DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

YEAR / SEMESTER	
COURSE TITLE	Machine Learning
COURSE CODE	17CS73
ACADEMIC YEAR	2020-2021
INTERNALS	

SI.			Q.N.1 (a)	Q.N.1(b)	Q.N.1 (c)	Q.N.2 (a)	Q.N.2(b)	Q.N.2 (c)	Q.N.3(a)	Q.N.3(b)	Q.N.4(a)	Q.N.4(b)	TOTAL
NO	USN	SN NAME		CO4	CO5	CO4	CO4	CO5	CO5	CO5	CO5	CO5	
Ŀ			6 Marks	6 Marks	6 Marks	6 Marks	6 Marks	6 Marks	6 Marks	6 Marks	6 Marks	6 Marks	30 Marks
1	1KS17CS001	AAFREEN HUSSAIN	6	1	6				0				13
2	1KS17CS002	ABHISHEK GOWDA.M.V	6	6	6						6	6	30
3	1KS17CS003	AKSHATHA RAMESH	6	6	6						6		24
4	1KS17CS004	AKSHITHA.B.S				6	6		6				18
5	1KS17CS005	AMOGH.R	6	6	6						6	2	26
6	1KS17CS006	AMOGHA MANJUNATHA.K	6	6	6						6	6	30
7	1KS17CS007	AMRUTHA.V.DESHPANDE	6	6	6							6	24
8	1KS17CS008	ANOOP.P.S	6	6	6						6		24
9	1KS17CS010	ANUSHA.A.G	6	6					6		1		18
10	1KS17CS011	ANUSHREE.J				6	6		6		1.000		18
11	1KS17CS013	ASHISH.K.AMAR	6	6	6						6	6	30
12	1KS17CS014	LAKSHMI PRASANNA.B	6	6	6						3	6	27
13	1KS17CS016	BHAVESH BHANSALI	6	6					6				18
14	1KS17CS017	CHAITRA				6	6	6			3	6	27
15	1KS17CS018	CHANDANA.B.R				6	6	6		2	6	6	30
16	1KS17CS019	CHENNA KESHAVA.N.T	6		6				6	6			24

_			Q.N.1 (a)	Q.N.1(b)	Q.N.1 (c)	Q.N.2 (a)	Q.N.2(b)	Q.N.2 (c)	Q.N.3(a)	Q.N.3(b)	Q.N.4(a)	Q.N.4(b)	TOTAL
SI.	Hen	NAME	CO4	CO4	CO5	CO4	CO4	CO5	CO5	CO5	CUS	6 Marks	30 Marks
NO	USN	(init	6 Marks	6 Marks	6 Marks	6 Marks	6 Marks	6 Marks	6 Marks	6 Marks	6 Marks	0 marks	12
17	1851705020	DARSHAN,S	6						6		1		18
18	1KS17CS021	DEEKSHITHA.R	6	6					6		6	4	28
10	1KS17CS022	DEEPIKA.S.H	6	6	6						0		
20	1KS17CS023	DIVYA YASHASWI KANNEY						ABSENT					18
21	1KS17CS024	GANESH.G.B	6	6					6			6	24
22	1KS17CS025	GANESH MAUDGHALYA.H.G				6	6	6					18
23	1KS17CS026	GAUTHAM.C.R				6	6	3			3	6	30
24	1KS17CS027	H,PRIYANKA	6	6	6				6		0	6	25
25	1KS17CS028	HANUMESH.V.T	6	6	1						0	0	25
26	1KS17CS029	HARSHITHA.V	6	6	6				6	1		-	23
27	1KS17CS030	INDRASENA KALYANAM	6	6	6						4	0	20
28	1KS17CS032	KARAN RAGHUNATH	6	6	6				6			-	24
29	1KS17CS033	KARTHIK.T.C				6	6				6	0	24
30	1KS17CS034	KAVITHA.S	6	6	6							0	24
31	1KS17CS035	KEERTHI.N	6	6	6							0	24
32	1KS17CS036	KRITHIKA JAGANNATH	6	6	6				6	6			30
33	1KS17CS037	LAVANYA.V	6	6	6						4	0	20
34	1KS17CS038	LOKESH.B.M	6	4	4						4		19
35	1KS17CS040	MANJUNATH.A	6	6							6	6	24
36	1KS17CS041	MEGHANA.C.V	6	6	6				6				24
37	1KS17CS042	MEGHANA.G	6	6	6						6	6	30
38	1KS17CS043	MEGHANA.G.R	6	6	6		-		6	6			30
39	1KS17CS044	MOUNIKA.M.K.L				6	6		6				18
40	1KS17CS045	NEHA.K	6	6					6			1	18
41	1KS17CS046	NIKHIL SUBRAMANYA.K	6	6	6						6	2	26
42	1KS17CS047	NIKITHA KATARI	6	5	5				6	6			28
43	1KS17CS048	NISCHITHA.C				6	6		6				18
44	1KS17CS049	NITISH KUMAR GUPTA				6	6	6			3	6	27
45	1KS17CS050	NYDILE.G.R				6	6		6				18
46	1KS17CS051	P.KISHORE				6	6	0			6	6	24

SI.			Q.N.1 (a)	Q.N.1(b)	Q.N.1 (c)	Q.N.2 (a)	Q.N.2(b)	Q.N.2 (c)	Q.N.3(a)	Q.N.3(b)	Q.N.4(a)	Q.N.4(b)	TOTAL
NO	USN	NAME	CO4	CO4	CO5	CO4	CO4	CO5	CO5	CO5	CO5	CO5	
·			6 Marks	6 Marks	6 Marks	6 Marks	6 Marks	6 Marks	6 Marks	6 Marks	6 Marks	6 Marks	30 Marks
47	1KS17CS102	SHRIRAKSHA.S.KANAGO	6	6	6				6	1			25
48	1KS18CS401	KRUTHIKA.B.M						ABSENT					
49	1KS16CS042	MEGHANA.H.S		6 6								6	18
50	1KS15CS050	LAXMI.K.V						ABSENT					
51	1KS16CS090	SHASHANK KAVUR	AI				ABSENT						

S.Rost Course incharge

K.S. INSTITUTE OF TECHNOLOGY, BENGALURU-560 109 DEPARTMENT OF COMPUTER SCIENCE & ENGG. FOR THE ACADEMIC YEAR 2020-2021 ML (15/17CS73) – IA Marks Detail

Sl.No	USN	Name of the Student	First Test Marks (30 M)	Second Test Marks (30 M)	Third Test Marks (30 M)	Final Avg Marks (30 M)	Assignment Marks (10 M)	Final Marks (40 M)
1	1KS17CS001	AAFREEN HUSSAIN	28	28	13	23	10	33
2	1KS17CS002	ABHISHEK GOWDA.M.V	30	28	30	30	10	40
3	1KS17CS003	AKSHATHA RAMESH	29	28	24	27	10	37
4	1KS17CS004	AKSHITHA.B.S	30	28	18	26	10	36
5	1KS17CS005	AMOGH.R	29	28	26	28	10	38
6	1KS17CS006	AMOGHA MANJUNATHA.K	28	28	30	29	10	39
7	1KS17CS007	AMRUTHA.V.DESHPANDE	30	28	24	28	10	38
8	1KS17CS008	ANOOP.P.S	29	29	24	28	10	38
9	1KS17CS010	ANUSHA.A.G	29	28	18	25	10	35
10	1KS17CS011	ANUSHREE.J	30	28	18	26	10	36
11	1KS17CS013	ASHISH.K.AMAR	28	27	30	29	10	39
12	1KS17CS014	LAKSHMI PRASANNA.B	30	29	27	29	10	39
13	1KS17CS016	BHAVESH BHANSALI	29	28	18	25	10	35
14	1KS17CS017	CHAITRA	29	28	27	28	10	38
15	1KS17CS018	CHANDANA.B.R	30	28	30	30	10	40
16	1KS17CS019	CHENNA KESHAVA.N.T	29	28	24	27	10	37
17	1KS17CS020	DARSHAN.S	30	26	12	23	10	33
18	1KS17CS021	DEEKSHITHA.R	27	29	18	25	10	35
19	1KS17CS022	DEEPIKA.S.H	30	28	28	29	10	39
20	1KS17CS023	DIVYA YASHASWI KANNEY	30	28	AB	20	10	30
21	1KS17CS024	GANESH.G.B	29	28	18	25	10	35
22	1KS17CS025	GANESH MAUDGHALYA.H.G	26	28	24	26	10	36
23	1KS17CS026	GAUTHAM.C.R	26	27	18	24	10	34
24	1KS17CS027	H.PRIYANKA	30	27	30	29	10	39
25	1KS17CS028	HANUMESH.V.T	28	28	25	27	10	37
26	1KS17CS029	HARSHITHA.V	30	28	25	28	10	38
27	1KS17CS030	INDRASENA KALYANAM	29	29	28	29	10	39
28	1KS17CS032	KARAN RAGHUNATH	27	28	24	27	10	37
29	1KS17CS033	KARTHIK.T.C	30	27	24	27	10	37
30	1KS17CS034	KAVITHA.S	30	28	24	28	10	38
31	1KS17CS035	KEERTHI.N	30	28	24	30	10	40
32	1KS17CS036	KRITHIKA JAGANNATH	30	28	30	30	10	40
33	1KS17CS037	LAVANYA.V	27	28	28	28	10	38
34	1KS17CS038	LOKESH.B.M	28	28	19	25	10	35
35	1KS17CS040	MANJUNATH.A	28	28	24	27	10	37
36	1KS17CS041	MEGHANA.C.V	30	28	24	28	10	38
37	1KS17CS042	MEGHANA.G	30	28	30	30	10	40
38	1KS17CS043	MEGHANA.G.R	26	28	30	28	10	38
39	1KS17CS044	MOUNIKA.M.K.L	30	28	18	26	10	36
40	1KS17CS045	NEHA.K	29	28	18	25	10	35
41	1KS17CS046	NIKHIL SUBRAMANYA.K	28	28	26	28	10	38
42	1KS17CS047	NIKITHA KATARI	29	26	28	28	10	38
13	1KS17CS049	NISCHITHA.C	30	28	18	26	10	36
43	1KS17CS040	NITISH KUMAR CUPTA	23	27	27	26	10	36
44	11/01/0049	NVDILE C P	30	28	18	26	10	36
45	1101700051	PKISHOPE	29	28	24	27	10	37
40	1101700101		20	20	25	28	10	20
47	1K51/C5102	SUKIKANSUA.S.NANAGU	29	20	20	20	1 10	30

K.S. INSTITUTE OF TECHNOLOGY, BENGALURU-560 109 DEPARTMENT OF COMPUTER SCIENCE & ENGG. FOR THE ACADEMIC YEAR 2020-2021 ML (15/17CS73) – IA Marks Detail

48	1KS18CS401	KDUTUKA DM	1 00	00				
10	11001000401	KKUTHIKA.B.WI	28	28	AB	1 19	10	29
49	1KS16CS042	MEGHANA.H.S	28	28	18	25	10	25
50	1KS15CS050	LAXMIKV	10(15)	14 (45)	10	20	10	35
51	1881608000	CHACHANK V	10(15)	14 (15)	AB	12	05 (05)	17(20)
	1131003090	SHASHANK KAVUR	AB	15 (15)	AB	08	05 (05)	13(20)

S. Course incharge

K.S. INSTITUTE OF TECHNOLOGY, BANGALORE

Bra	anch : CS	S	cheme :	2017	S	emester :	7			
Sl NO	USN	17CS71	17CS72	17CS73	17CS743	17CS754	17CSL76	17CSL77	17CSP78	STUDENT SIGNATURE
1	1KS16CS042	34	35	35	33.	31	37	36	88	Nupara
2	1KS16CS110	35	38	35	36	36	40	40	88	Joene
3	1KS17CS001	38	37	33	38	35	39	40	91	Aalsees_
4	1KS17CS002	40	35	40	39	39	38	40	94	
5	1KS17CS003	38	35	37	37	38	40	40	89	Parts
6	1KS17CS004	38	34	36	38	34	38	40	90	dist
7	1KS17CS005	40	33	38	36	35	40	40	89	Ant2
8	1KS17CS006	38	37	39	39	40	39	40	97	Nucle
2	1KS17CS007	37	37	38	35	35 ·	40	40	90	THE -
10	1KS17CS008	39	36	38	37	35	38	40	90	AIRS
11	1KS17CS010	40	34	35	36	36	38	40	91	Ant
12	1KS17CS011	39	37	36	36	31	40	40	88	Anusher
13	1KS17CS013	40	34	39	39	36	40	40	94	An
14	1KS17CS014	40	37	39	38	37	40	39	91	PJ.
15	1KS17CS016	39	34	35	34	34	40	40	92	Bharrost
16	1KS17CS017	39	36	38	37	36	40	40	91	dister.
17	1KS17CS018	40	35	40	38	40	40	40	95	Chardans B.
18	1KS17CS019	38	38	37	38	36	39	40	95	children 15
19	1KS17CS020	35	33	33	32	33	40	39	88	Kar-
20	1KS17CS021	35	36	35	35	39	39	39	91	Deekshite
21	1KS17CS022	37	35	39	35	35	40	39	91	Deciphe
2²	1KS17CS023	30	27	30	- 28	29	38	40	91	
23	1KS17CS024	37	33	35	33	33	40	37	88	Open
24	1KS17CS025	35	34	36	34	34	39	40	92	Garl
25	1KS17CS026	40	32	34	36	36	38	40	88	Get CR
26	1KS17CS027	40	37	39	39	39	38	40	89	De-
27 1	1KS17CS028	39	33	37	33	32	38	34	87	1
28 1	1KS17CS029	38	35	38	36	37	38	40	94	Halth
29 1	1KS17CS030	40	38	39	40	40	40	40	95	Do
30 1	KS17CS032	36	35	37	32	34	40	40	92	Fr 1
31 1	KS17CS033	37	33	37	38	38	40	40	90	(A)m.D.
32 1	KS17CS034	37	35	38	37	37	38	37	85	Kanthal
3 1	KS17CS035	39	35	40	36	35	38	37	80	V
4 1	KS17CS036	39	37	40	40	40	40	40	05	A. a. J
5 1	KS17CS037	39	36	38	33	37	40	37	95	mither.
6 1	KS17CS038	37	34	35	35	33	40	37	91	Lavany
7 1	KG17CC040	20	20	27	24	33	20	39	94	Lough B.S
111	K31/C3040	30	20	3/	54	55	30	40	90	

			2	and the second se							
	1	USN	17CS71	17CS72	17CS73	17CS743	17CS754	17CSL76	17CSL77	17CSP78	STUDENT SIGNATURE
	-9	1KS17CS042	40	37	40	39	40	40	40	94	Megh
	40	1KS17CS043	40	37	38	39	39	40	40	89	leath
	41	1KS17CS044	39	36	36	. 35	38	39	40	91	Morinika
	42	1KS17CS045	38	34	35	36	33	40	37	91	ilean k.
	43	1KS17CS046	40	34	38	36	32	39	35	89	Nichil
	44	1KS17CS047	37	36	38	33	34	38	37	94	Nett I.
	45	1KS17CS048	36	32	36	29	32	38	40	88	Nachie
	46	1KS17CS049	36	36	36	.37	33	40	37	87	willeh
	47	1KS17CS050	40	. 36	36	. 35	34	40	40	88	all a
	48	1KS17CS051	37	35	37	35	34	40	40	92	Phil
	49	1KS17CS052	40	40	37	40	38	40	40	90	fart
	50	1KS17CS053	36	40	39	38	39	40	39	91	trank
	51	1KS17CS055	38	40	40	39	40	40	40	89	K.P.
	52	1KS17CS056	36	36	34	32	25	40	38	89	Porod
	53	1KS17CS057	33	34	29	33	37	40	40	84 -	Praneer
	54	1KS17CS058	38	35	30	35	37	40	40	89	X. Fraven
1	55	1KS17CS059	34	32	37	32	32	37	34	84	AN A
	56	1KS17CS060	36	38	37	34	39	40	39	88	File
	57	1KS17CS061	34	37	34	36	34	36	37	89	· ·
	58	1KS17CS062	38	34	37	35	30	36	37	89	40
	59	1KS17CS063	35	35	34	32	33	40	36	- 88	149
	60	1KS17CS064	38	40	38	37	39	40	40	94	Lealern
	61	1KS17CS065	38	38	39	34	38	40	40	88	Kolhin K
	62	1KS17CS066	37	40	38	39	39	40	40	90	Kuchts
	63	1KS17CS067	37	40	35	36	33	40	40	8/	Marile
	64	1KS17CS069	36	36	36	35	36	39	30	02	Bar
	65	1KS17CS070	40	40	40	38	40	40	40	93	
	66	1KS17CS071	36	38	38	38	30	40	40	97	1 2 F
	67	1KS17CS072	38	36	38	34	35	20	30	99	301Vr 10.1
		1KS17CS074	26	29	24	2/	27	30	40	00	31 114
	69	1KS17CS075	40	39	40	39	3.0	39	40	90	enseyal R
	70	1KS17CS076	37	34	30	30	30	38	35	80	B
	71	1KS17CS077	34	30	30	33	30	. 40	30	88	Rindles
	72	1KS17CS078	36	40	40	40	30	40	40	88	Sinz:
	73	1KS17CS079	37	40	36	30	33	30	40	00	Rharthy K
•	74	1KS17CS081	39	40	38	30	30	30	40	90	gradhai V
	75	1KS17CS082	30	30	30	30	20	39	40	.93	Swala
	76	1KS17CS083	40	40	39	30	25	40	40	80	Curl til
	77	1KS17CS084	39	40	38	38	30	30	40	<u>9</u>	Suis
	78	1KS17CS085	37	38	40	34	36	39	40	0/	PART
	79	1KS17CS086	40	38	39	30	27	30	30	94	1 Panulus
	80	1KS17CS087	38	36	40	30	37	40	40	Q7	R.S.
	81	1KS17CS088	40	36	38	29	37	40	40	07	A A
	82	1KS17CS089	40	40	40	30	27	10	40		FEMT
	. 00	47704 00000	40	111		Co					

)ε

1

	-05		No. 199								
	1	USN	17CS71	17CS72	17CS73	17CS743	17CS754	17CSL76	17CSL77	17CSP78	STUDENT
	85	1KS17CS092	40	40	40	40	40	40	40	89	In
1	86	1KS17CS093	36	37	35	36	32	39	37	88	That
1	87	1KS17CS094	29	31	33	29	25	40	37	87	A
	88	1KS17CS095	36	40	38	36	35	40	40	87	weldte 6
	89	1KS17CS096	39	37	40	36	34	40	40	90	Varia
	90	1KS17CS097	35	37	37	34	34	40	37	84	guer
	91	1KS17CS098	27	35	35	33	35	40	37	84	4
	92	1KS17CS099	35	34	34	33	31	40	40	84	Ne:
	93	1KS17CS100	40	35	36 .	. 36	34	40	40	93	steel
	94	1KS17CS101	40	38	40	36	36	40	40	93	Vyphan.
	95	1KS17CS102	2 39	36	38	37	34	39	36	89	Satsha
	96	1KS18CS40	1 35	30	29	28	27	38	29	88	KNUTKT KOI BM
	x	Faculty Signature	S.AL-2	Kn	K.R.	\$	~-B	3.800	§-+N	yohow	

¥

* - values are either optional subjects or the faculty has not yet entered the marks

Wularapun 26/2/2021 HOD

Seal and Signature

Head of the Department ept. of Computer Science & Engg. K.S. Institute of Technology Bengaluru -560 109

MM 26/2/2021 PRINCIPAL **Seal and Signature** - PRINCIPAL K.S. INSTITUTE OF TECHNOLOGY BENGALURU - 560 109

Advantages of Machine Learning

Easily identifies trends and patterns

- Machine Learning can review large volumes of data and discover specific trends and patterns that would not be apparent to humans.
- For instance, for an e-commerce website like Amazon, it serves to understand the browsing behaviors and purchase histories of its users to help cater to the right products, deals, and reminders relevant to them. It uses the results to reveal relevant advertisements to them.

Mr.Raghevendracher S., Assistant Professo Dept of CSE, KBIT

Mr.Raghavendrachar.S , Assistant Professor Dept of CSE, KSIT.

		MACHINE LE.	RNING				
	[As per Choice Based Credit System (CBCS) scheme]						
	(Effective from the academic year 2017 - 2018)						
-1		SEMESTER	- V11				
t	Subject Code	17CS73	IA Marks		40		
ł	Number of Lecture Hours Week	03	Exam Marks	1	50		
ł	Total Number of Lecture Hours	50	50 Exam Hours				
t	CREDITS - 04						
ľ	Module - 1						
	Perspective and Issues in Machine Learning. Concept Learning: Concept learning task, Concept learning as search. Find-S algorithm. Version space, Candidate Elimination algorithm. Inductive Bias. Text Bookt, Sections: 1.1 - 1.3, 2.1-2.5, 2.7						
	Module - 2 Decision Tree Learning: Decision tree representation. Appropriate problems for decision tree learning. Basic decision tree learning algorithm. hypothesis space search in decision tree learning. Inductive bins in decision tree learning. Issues in decision						
	tree learning. Text Book1, Sections: 3.1-3.7						
ŀ	Module – 3 Artificial Neural Networks: E Appropriate problems, Perceptrons, Text book 1, Sections: 4.1 – 4.6	ntroduction, Ne Backpropagation	ural Network ro algorithm.	epresentation.	08 Hours		
+	Mr.Raghaven Dept of CSE,	drachar.S , Assistant KSIT.	Professor				

	e-4					
Bayesi Icaniin princip Text b	au Learning: Introduction. Bayes theorem. Bayes theorem and concept g. ML and LS error hypothesis. ML for predicting probabilities, MDL is: Naive Bayes classifier. Bayesian belief networks. EM algorithm cokil, Seretiones: 6.1 - 6.6, 6.9, 6.11, 6.12	10 Hours				
Module - 5						
Evaluating Hypothesis Motivation, Estimating Hypothesis actuately. Dates of the feature sampling theorem, General approach for deriving confidences intervals. Difference in error of two hypothesis. Comparing Learning algorithms. Instance Based Learning: Introduction, k-nearest neighbor learning, locally weighted regression, radial basis function, cased-based reasoning Relatorement Learning: Introduction, Learning Tesk, Q Learning Test book 1, Sections 5, 15-6, 81-85, 13, 1-13.3						
Course Outcomes: After studying this course, students will be able to						
•	Recall the problems for machine learning. And select the either supervised, unse or reinforcement learning. Understand theory of probability and statistics related to machine learning. Insurine concept learning, ANN, Bayes classifier, k nearest neighbor, Q.	upersvised				
T	Backy.					
1 Town M Markell Marking Language India Edition 2013 McGraw Hill Education						
	and Reader					
Datas		Continuinal				
Refer	Transe Hassie Robert Tobbirani, Jacome Friedman, h The Elements of	ອຍສດອດຈະຫ				
Refer	Trevor Hassie, Robert Tibiliariani, Jerome Friedman, h The Elements of Learning 2nd edition, springer series in statistics.	omonen				

Mr.Raghavendrachar.S., Assintant Professo Dept of CSE, KSIT.

- A second important attribute of the training experience is the degree to which the learner controls the sequence of training examples. • For example, the learner might rely on the teacher to select informative board states and to provide the correct move for each. · Alternatively, the learner might itself propose board states that it finds particularly confusing and ask the teacher for the correct move.
 - · Learner may have complete control over both the board states and (indirect) training classifications Mr.Raghavendrachar.S , Ass Dept of CSE, KSIT.

- A third important attribute of the training experience is how well it represents the distribution of examples over which the final system performance P must be measured.
 - · In general, learning is most reliable when the training examples follow a distribution similar to that of future test examples.
 - In our checkers learning scenario, the performance metric P is the percent of games the system wins in the world tournament.
 - If its training experience E consists only of games played against itself, there is an obvious danger that this training experience might not be fully representative of the distribution of situations over which it will later be tested. Mr.Raghavendrachar.S , Assistant Profes Dept of CSE, KSIT.

Mr.Reghavendracher.S., As Dept of CSE, KSIT.

· In order to complete the design of the learning system, we must now choose 1. the exact type of knowledge to be, learned 2. a representation for this target knowledge 3. a learning mechanism Mr.Raghavendrach Dept of CSE, KSIT.

Choosing the Target Function

- The next design choice is to determine exactly what type of knowledge will be learned and how this will be used by the performance program
- · For example, checkers-playing program that can generate the legal moves from any board state. The program needs only to learn how to choose the best move from among these legal moves
- . This learning task is representative of a large class of tasks for which the legal moves that define some large search space are known a priori, but for which the best search strategy is not known.
- · Many optimization problems fall into this class, such as the problems of scheduling and controlling manufacturing processes where the available manufacturing steps are well understood, but the best strategy for sequencing them is not.

Mr.Raghevendracher.S., Assistant Professor, Dept of CSE, KSIT.

- The function ChooseMove : B -> M to indicate that this function accepts as input any board from the set of legal board states B and produces as output some move from the set of legal moves M.
- Throughout our discussion of machine learning we will find it useful to reduce the problem of improving performance P at task T to the problem of learning some particular target function such as ChooseMove.
- The choice of the target function will therefore be a key design choice.

Mr.Raghavendrachar.S., Assistant Profes Dept of CSE, KSIT.

Mr.Reghavendrachar.S , Ass Dept of CSE, KSIT.

Choosing a Representation for the Target Function We must choose a representation that the learning program will use to describe the function $\hat{\mathbf{v}}$ that it will learn

- for any given board state, the function \hat{V} will be calculated as a linear combination of the following board features.
 - x1: the number of black pieces on the board
 - x1: the number of red pieces on the board
 x3: the number of black kings on the board

 - · x4: the number of red kings on the board
 - x5: the number of black pieces threatened by red (i.e., which can be captured on red's next turn)
 - x6: the number of red pieces threatened by black

Thus, our learning program will represent $\hat{V}(b)$ as a linear function of the form

 $\hat{V}(b) = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_3 + w_4 x_4 + w_5 x_5 + w_5 x_6$

where w_0 through w_0 are numerical coefficients, or weights, to be chosen by the learning algorithm. Learned values for the weights w_1 through w_0 will determine the relative importance of the various board features in determining the value of the board, whereas the weight w_0 will provide an additive constant to the board value.

Mr.Raghavendrachar.S , As Dept of CSE, KSIT.

Choosing a Function Approximation Algorithm

In order to learn the target function \hat{V} we require a set of training examples, each describing a specific board state b and the training value $V_{train}(b)$ for b. In other words, each training example is an ordered pair of the form (b, Viruna(b)). For instance, the following training example describes a board state b in which black has won the game (note $x_2 = 0$ indicates that red has no remaining pieces) and for which the target function value $V_{trein}(b)$ is therefore +100.

$$\langle (x_1 = 3, x_2 = 0, x_3 = 1, x_4 = 0, x_5 = 0, x_6 = 0 \rangle, +100 \rangle$$

Mr.Raghavendissiltar.\$, Assial Dept of GSE, XSIT.

Critic and -Performance System The Critic takes as input the history or trace of the game and produces as • The Performance System is the module that must solve the given performance task, in this case playing checkers, by using output a set of training examples of the target function. As shown in the the learned target function(s). It takes an instance of a new diagram, each training example in this case corresponds to some game state problem (new game) as input and produces a trace of its in the trace, along with an estimate V_{train} of the target function value for this solution (game history) as output. example. In our example, the Critic corresponds to the training rule given by Equation • In our case, the strategy used by the Performance System to select its next move at each step is determined by the learned p $V_{train}(b) \leftarrow \hat{V}(Successor(b))$ evaluation function. Therefore, we expect its performance to improve as this evaluation function becomes increasingly accurate. Mr.Raghavendracha Dept of CSE, KSIT. Mr.Reghevendrache Dept of CSE, KSIT.

100	Generalizer	
	• The Generalizer takes as input the training examples and produces an output hypothesis that is its estimate of the target function.	
	• It generalizes from the specific training examples, hypothesizing a general function that covers these examples and other cases beyond the training examples.	
	• In our example, the Generalizer corresponds to the LMS algorithm, and the output hypothesis is the function \hat{v} described by the learned weights w_0, \ldots, w_6 .	
	Ne Raghevendrachar S., Assistant Professor, Dept of CSE, KSIT.	

 The Experiment Generator takes as input the current hypothes (currently learned function) and outputs a new proble (i.e., initial board state) for the Performance System to explore 	is n
• Its role is to pick new practice problems that will maximize th learning rate of the overall system.	e
 In our example, the Experiment Generator follows a ver simple strategy: It always proposes the same initial game boar to begin a new game. 	y d
 More sophisticated strategies could involve creating board positions designed to explore particular regions of the state space. 	1
Mr.Raghavendrachar.S , Assistant Professor,	

Experiment Generator

• These design choi	ces have constrained the learning task in a
number of ways.	
Furthermore, we h depend on only the	nave constrained this evaluation function to six specific board features provided.
If the true target f	function V can indeed be represented by a n of these particular features, then our d character learn it. If not the the heat of the

Mr.Raphavendrechar.S., Assistant Professor, Dept of CSE, KSIT.

Perspectives And Issues In Machine Learning

- One useful perspective on machine learning is that it involves searching a very large space of possible hypotheses to determine one that best fits the observed data and any prior knowledge held by the learner.
- The LMS algorithm for fitting weights achieves this goal by iteratively tuning the weights, adding a correction to each weight each time the hypothesized evaluation function predicts a value that differs from the training value.

Mr.Raghevendrachar.3 , Assistant Professor, Dept of CSE, KSIT.

Issues in Machine Learning

- What algorithms exist for learning general target functions from specific training examples? In what settings will particular algorithms converge to the desired function, given sufficient training data? Which algorithms perform best for which types of problems and representations?
- How much training data is sufficient? What general bounds can be found to relate the confidence in learned hypotheses to the amount of training experience and the character of the learner's hypothesis space?
- When and how can prior knowledge held by the learner guide the process of generalizing from examples? Can prior knowledge be helpful even when it is only approximately correct?
- What is the best strategy for choosing a useful next training experience, and how does the choice of this strategy alter the complexity of the learning problem?
- What is the best way to reduce the learning task to one or more function approximation problems? Put another way, what specific functions should the system attempt to learn? Can this process itself be automated?
- How can the learner automatically alter its representation to improve its ability to represent and learn the target function?

Mr.Raghavendrachar.S., Assistant Professo Dept of CSE, KSIT.

Concept Learning

- Inducing general functions from specific training examples is a main issue of machine learning.
- Concept Learning a learning task in which a human or machine learner is trained to classify objects by being shown a set of example objects along with their class labels.
- The Learner simplifies what has been observed by considering it in the form of an example.
- Concept Learning also known as category learning, concept attainment and concept formation.
- Concept Learning : Acquiring the definition of a general category from given sample of positive and negative training examples of the category.

Mr.Reghevendracher.S , Assistant Professo Dept of CSE, KSIT.

		and the second sec	and the second sec
Transa I	D.C. His C		T · ·
E CERSE	specialization to the second sec	"I Oncent	earning
- CAR HILL	Denning	Concept	L'al IIII

- Inferring a boolean-valued function from training examples of its input and output.
- An example for concept learning is the learning of bird concept from the given examples of birds (positive examples) and non – birds (negative examples).
- Each concept is a Boolean Valued function defined over this larger set. [Example : a function defined over all animals whose value is true for birds and false for every other animal.]

Mr.Raghavendrachar.S , Assistant Profe Dept of CSE, KSIT.

Example	Sky	AirTemp	Humidity	Wind	Water	Forecast	EnjoySpon
1	Sunny	Warm	Normal	Strong	Warm	Same	Ves
2	Sunny	Warm	High	Strong	Warm	Same	Vec
3	Rainy	Cold	High	Strong	Warm	Change	No
4	Sunny	Warm	High	Strong	Cool	Change	Yes

Mr.Raghavendrachar.S , And Dept of CSE, KSIT,

- In particular, let each hypothesis be a vector of six constraints, specifying the values of the six attributes Sky, AirTemp, Humidity, Wind, Water, and Forecast. For each attribute, the hypothesis will either
 indicate by a "?" that any value is acceptable for this attribute, or specify a single required value (e.g., Warm) for the attribute, or
 - indicate by a """ that no value is acceptable.

If some instance x satisfies all the constraints of hypothesis h, then h classifies x as a positive example (h(x) = 1). To illustrate, the hypothesis that Aldo enjoys his favorite sport only on cold days with high humidity (independent of the values of the other attributes) is represented by the expression

(?, Cold, High, ?, ?, ?)

Mr.Raghavendrachar.S., Assistant Professor Dept of CSE, KSIT.

by the learner is to hypothesize, or estimate, c. We use the symbol H to denote the set of all possible hypotheses that the learner may consider regarding the identity of the target concept. Usually H is determined by the human designer's choice of hypothesis representation. In general, each hypothesis h in H represents a boolean-valued function defined over X; that is, $h: X \to \{0, 1\}$. The goal of the learner is to find a hypothesis h such that h(x) = c(x) for a'l x in X.

> McRaghevendracher & , Assistant Profess Dept of CGE, KBIT.

The Inductive Learning Hypothesis

- Inductive learning algorithms can at best guarantee that the output hypothesis fits the target concept over the training data.
 Lacking any further information, our assumption is that the best hypothesis regarding unseen instances is the hypothesis that best fits the observed training data.
- The inductive learning hypothesis : Any hypothesis found to approximate the target function well over a sufficiently large set of training examples will also approximate the target function well over other unobserved examples.

Mr.Reghavendrachar.S., Assistant Professo Dept of CSE, KSIT

Concept Learning As Search

- Concept learning can be viewed as the task of searching through a large space of hypotheses implicitly defined by the hypothesis representation.
- The goal of this search is to find the hypothesis that best fits the training examples.
- It is important to note that by selecting a hypothesis representation, the designer of the learning algorithm implicitly defines the space of all hypotheses that the program can ever represent and therefore can ever learn.

Mr.Raghavendrachar.S , Assistant Profess Dept of CSE, KSIT.

General-to-Specific Ordering of Hypotheses • To illustrate the general-to-specific ordering, consider the two hypotheses $h_1 = \langle Sunny, ?, ?, Strong, ?, ? \rangle$ $h_2 = \langle Sunny, ?, ?, ?, ?, ? \rangle$

Mr.Raghevendrachar.S , Assistant Professor, Dept of CSE, KSIT. To illustrate these definitions, consider the three hypotheses h_1 , h_2 , and h_3 from our EnjoySport example, shown in Figure How are these three hypotheses related by the \geq_x relation? As noted earlier, hypothesis h_2 is more general than h_1 because every instance that satisfies h_1 also satisfies h_2 . Similarly, h_2 is more general than h_3 . Note that neither h_1 nor h_3 is more general than the other, although the instances satisfied by these two hypotheses intersect, neither set subsumes the other. Notice also that the \geq_x and $>_x$ relations are detined independent of the target concept. They depend only on which instances satisfy the two hypotheses and not on the classification of those instances according to the target concept. Formally, the \geq_x relation defines a partial order over the hypothesis space H (the relation is reflexive, antisymmetric, and transitive). Informally, when we say the structure is a partial (as opposed to total) order, we mean there may be pairs of hypotheses such as h_1 and h_3 , such that $h_1 \neq_x h_3$ and $h_3 \neq_x h_1$.

The \geq_{t} relation is important because it provides a useful structure over the hypothesis space H for any concept learning problem. The following sections present concept learning algorithms that take advantage of this partial order to efficiently organize the search for hypotheses that fit the training data. We Represent Concept $R_{relation}$ Assistant Professor. Device CSE, NST.

Find-s: Finding A Maximally Specific Hypothesis
1. Initialize h to the most specific hypothesis in H
2. For each positive training instance x

For each attribute constraint a, in h
If the constraint a, is satisfied by x
Then do nothing
Else replace a, in h by the next more general constraint that is satisfied by x

3. Output hypothesis h

Example	Sky	AirTemp	Humidity	Wind	Water	Forecast	EnjoySport
1	Sunny	Warm	Normal	Strong	Warm	Same	Yes
2	Sunny	Warm	High	Strong	Warm	Same	Yes
3	Rainy	Cold	High	Strong	Warm	Change	No
4	Sunny	Warm	High	Strong	Cool	Change	Yes

TABLE

Positive and negative training examples for the target concept EnjoySport.

Mr.Raghavendrachar.S , Assistant Professo Dept of CSE, KSIT.

Next, the second training

example (also positive in this case) forces the algorithm to further generalize h, this time substituting a "?" in place of any attribute value in h that is not satisfied by the new example. The refined hypothesis in this case is

 $h \leftarrow (Sunny, Warm, ?. Strong, Warm, Same)$

Upon encountering the third training example—in this case a negative example—the algorithm makes no change to h. In fact, the FIND-S algorithm simply ignores every negative example!

To complete our trace of FIND-S, the fourth (positive) example leads to a further generalization of h

 $h \leftarrow \{Sunny, Warm, ?, Strong, ?, ?\}$

The FIND-S algorithm illustrates one way in which the more general than partial ordering can be used to organize the search for an acceptable hypothesis. The search moves from hypothesis to hypothesis, searching from the most specific to progressively more general hypotheses along one chain of the partial ordering.

> Mr.Raghsvendrachar.S , Assistant Profess Dept of CSE, KSIT.

To illustrate this algorithm, assume the learner is given the sequence of training examples from Table $_{\circ}$ for the EnjoySport task. The first step of FIND-S is to initialize h to the most specific hypothesis in H

Mr.Raghavendrachar.S , Ass Dept of CSE, KSIT.

$h \leftarrow \langle \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, 0 \rangle$

Upon observing the first training example from Table , which happens to be a positive example, it becomes clear that our hypothesis is too specific. In particular, none of the "%" constraints in h are satisfied by this example, so each is replaced by the next more general constraint that fits the example; namely, the attribute values for this training example.

 $h \leftarrow \{Sunny, Warm, Normal, Strong, Warm, Same\}$

Mr.Raghavendracher.S , Assistant Professor Dept of CSE, KSIT.

Mr.Raghavendracher.S , Assistant Professor Dept of CSE, KSIT.

- Issues in Find S Algorithm
- Has the learner converged to the correct target concept? Although FIND-S will find a hypothesis consistent with the training data, it has no way to determine whether it has found the only hypothesis in H consistent with the data (i.e., the correct target concept), or whether there are many other consistent hypotheses as well. We would prefer a learning algorithm that could determine whether it had converged and, if not, at least characterize its uncertainty regarding the true identity of the target concept.
- Why prefer the most specific hypothesis? In case there are multiple hypotheses consistent with the training examples, FIND-S will find the most specific. It is unclear whether we should prefer this hypothesis over, say, the most general, or some other hypothesis of intermediate generality.

Mr.Reghavendracher.S., Assistant Professo Dept of CSE, KSIT.

specific consistent hypothesis, although this is more of a theoretical issue

Mr.Raghevendracher.S., Assistant Professor, Dept of CSE, KSIT.

than a practical one

Version Spaces and The Candidate-elimination

- The CANDIDATE-ELIMINATION algorithm, that addresses several of the limitations of FIND-S.
- Notice that although FIND-S outputs a hypothesis from H, that is consistent with the training examples, this is just one of many hypotheses from H that might fit the training data equally well.
- The key idea in the CANDIDATE-ELIMINATION algorithm is to output a description of the set of all hypotheses consistent with the training examples.

Mr.Raghavendrachar.S., Assistant Professor Dept of CSE, KSIT.

Representation

The CANDIDATE-ELIMINATION algorithm finds all describable hypotheses that are consistent with the observed training examples. In order to define this algorithm precisely, we begin with a few basic definitions. I²irst, let us say that a hypothesis is consistent with the training examples if it correctly classifies these examples.

Definition: A hypothesis h is comsistent with a set of training examples D if and only if h(x) = c(x) for each example (x, c(x)) in D.

 $Consistent(h, D) = (\forall \langle x, c(x) \rangle \in D) \ h(x) = c(x)$

An example x is said to satisfy hypothesis h when h(x) = 1, regardless of whether x is a positive or negative example of the target concept. However, whether such an example is consistent with h depends on the target concept, and in particular, whether h(x) = c(x).

The CANDIDATE-ELIMINATION algorithm represents the set of all hypotheses consistent with the observed training examples. This subset of all hypotheses is called the version space with respect to the hypothesis space H and the training examples D, because it contains all plausible versions of the target concept.

Mr.Reghavendrachar.S., Assistant Professor, Dept of CSE, KSIT.

Mr.Raghavendrachar.S , Assistant Professor, Dept of CSE, KSIT.

The LIST-THEN-ELIMINATE Algorithm The LIST-THEN-ELIMINATE Algorithm 1. VersionSpace \leftarrow a list containing every hypothesis in H 2. For each training example, (x, c(x))remove from VersionSpace any hypothesis h for which $h(x) \neq c(x)$ 3. Output the list of hypotheses in VersionSpace The LIST-THEN-ELIMINATE algorithm.

Mr.Raghevendracher.S., Assistant I Dept of CSE, KSIT. The LIST-THEN-ELIMINATE Algorithm first initializes the version space to contain all hypotheses in H, then eliminates any hypothesis found inconsistent with any training example.
The version space of candidate hypotheses thus shrinks as more examples are observed, until ideally just one hypothesis remains that is consistent with all the observed examples.
The LIST-THEN-ELIMINATE Algorithm it is guaranteed to output all hypotheses consistent with the training data.

Mr.Raghavendrachar.5 , As Dept of CSE, KSIT.

Mr.Reghevendracher.S., Assistant Professo Dept of CSE, KSIT.

Mr.Reghevendrachar.8 , Assistant Professo Dept of CSE, KSIT.

To illustrate this representation for version spaces, consider again the EnjoySport concept learning problem described in Table . Recall that given the four training examples from Table , FIND-S outputs the hypothesis

h = (Sunny, Warm, ?, Strong, ?, ?)

In fact, this is just one of six different hypotheses from H that are consistent with these training examples. All six hypotheses are shown in Figure . They constitute the version space relative to this set of data and this hypothesis representation. The arrows among these six hypotheses in Figure indicate instances of the more_general_than relation. The CANDIDATE-ELIMINATION algorithm represents the version space by storing only its most general members (labeled G in Figure) and its most specific (labeled S in the figure). Given only these two sets S and G, it is possible to enumerate all members of the version space as needed by generating the hypotheses that lie between these two sets in the general-to-specific partial ordering over hypotheses.

Mr.Reghevendracher.S , Assistant Professor Dept of CSE, KSIT.

Theorem 2.1. Version space representation theorem. Let X be an arbitrary set of instances and let H be a set of boolean-valued hypotheses defined over X. Let $c: X \rightarrow \{0, 1\}$ be an arbitrary target concept defined over X, and let D be an arbitrary set of training examples $\{(x, c(x))\}$. For all X, H, c, and D such that S and G are well defined.

VS= = (h ∈ H)(3 ∈ S)(3g ∈ G)(g ≥, h ≥, s))

Proof. To prove the theorem it suffices to show that (1) every h satisfying the righthand side of the above expression is in $VS_{R,D}$ and (2) every member of $VS_{R,D}$ mainlifes the right-hand side of the expression. To show (1) let g be an arbitrary member of G, s be an arbitrary member of S, and h be an arbitrary member of H, such that $g \ge_g h \ge_g s$. Then by the definition of S, s must be satisfied by all positive examples in D. Because $h \ge_g s$, h emissible be satisfied by all positive examples in D. Sanilarly, by the definition of G, g cannot be satisfied by any negative examples in D. Sanilarly, by the definition of G, g cannot be satisfied by any negative examples in D. Sanilarly, by the definition of G, g cannot be satisfied by any negative examples in D. Sanilarly, by the definition of G, g cannot be satisfied by any negative examples in D. Sanilarly, by a positive examples in D and by no negative examples in D, A is consistent with D, and therefore h is a member of $VS_{R,D}$. This proves step (1) The argument for (2) is a bit more complex. It can be proven by assuming some h in $VS_{R,D}$ that does not satisfy the right-hand side of the expression, then showing that this leads to an inconsistency.

th Replacembricher 5 . Amint Descrif (258, 63/1

CANDIDATE-ELIMINATION Learning Algorithm

The CANDIDATE-ELIMINATION algorithm computes the version space containing all hypotheses from H that are consistent with an observed sequence of training examples. It begins by initializing the version space to the set of all hypotheses in H; that is, by initializing the G boundary set to contain the most general hypothesis in H

$$G_0 \leftarrow \{(7, 7, 7, 7, 7, 7)\}$$

and initializing the S boundary set to contain the most specific (least general) hypothesis

So ~ ((0, 0, 0, 0, 0, 0))

These two boundary sets delimit the entire hypothesis space, because every other hypothesis in H is both more general than S_0 and more specific than G_0 . As each training example is considered, the S and G boundary sets are generalized and specialized, respectively, to eliminate from the version space any hypotheses found inconsistent with the new training example. After all examples have been processed, the computed version space contains all the hypotheses consistent with these hypotheses.

M Reparentischer S. Ann Dest of CSE, KSIT

What Training Example Should the Learner Request Nov1? Conside again the vesses gave formal from the four training maniples of the Energy sport concept.

ARTI

max !

- > Chardy, the Internet should attempt to discontinues attempt the alternative competing hypotheses in its current vessors space. Therefore, 4 should choose an minimore that would be calculated positive by some of these hypotheses, his negative by others, One such maining a.
 - (Samp, Warm, Normal Light, Harm, Same
- > Note that this matteries statistics three of the tex hypotheses in the current vertices space. If the matter elast-free this matteries is a journey example, the S boundary of the vertices space car then by generalized.
- > Alternatively, if the trainer indicates that this is a segmine incargin, the O branchey can then for specialized. Entities way, the instrume will succeed an instruming more about the true cleanity of the argue concept, showing the version space from set bypetheses to half this number.

Note that although minime 4 was not unuege to mining examples, 4 is classified as a positive maintee by oncy hypothesis in the current contour pace Because the hypothesis in the current pace minimates and agree that this is a positive maintee, the legislar can climatly minime A is positive with the same conclusion of a world have 6 it is had already converged to its insight, control merger concept. Repeatings of which hypothesis in the senses gave is semiminily found to be the occurst merger concept. It is already that it is charaly minime 4 as a positive reserved. Notice furthermore that is not a set minimum it merger positive reserves. The occurs gaves is noted as a minimum reserve to positive reserves. The occurs for the star of a set of the

considers the manager as pointies. This conditions will be used if and easy if the instance matchine every member of S (why?). The manager is that every other hypothesis in the version space is at least as parametal as a true manager and S. Sy (our definition of more constraints, and the new manager matchine all members of S is much also samply each of these many properties (Spectrum).

Construction in the local data

the Conference of the American Stream of Stream of States, Sta

13.

Νουτίτεζε ποτοίχει δια εξαιοτίδος) το ε περιστος ποτοίχει δια τους διεχινούσου, οι του τοποίες τροκές. Ότα ποτοίχεια του διαστάτια το πολόχ εξαιοτίδοι οι περιστοι, μεται του μοτοίχει διατικοί ευτουρία. Απ οβλαίται ποι δια όπο κουλίτεια το είναι πο ποτοίχει αποράδει μέσα στά θαι παρισδιατή τος (η (η (η))). διατικού αποράδει μέσα διαδιαστάτι ποποίχεια βολλογίατο τροκεία μόμου διερισδιαστά.

beams p_i , presents a different simulation bially of the reserve space hyperboost checkly it is positive and half checkly it is pagarine. Thus, the harmer cannot checkly the scenario with conclusion multiplicities mutating assumption are available. Notice that manuse C is the same measure presented in the previous activity is an operand supermeasure press; for the harmer. This is to be papered by the measure there instructs where checklication is more molegories are previously the measure where the checklication would provide the measure intermension for reliating the measure quark.

Princip, service IA is classified as positive by two of the vacuum space bypolanes and regardle by the value from hypotheses. In this paper we have been combined and regardle the value for its the standard providence of terms of terminations of the classificance than its the standard providence of terms of terms which are possible to an empiric of a regardle classificance, and not approach as could not result to an empiric the material vaca, pushage with a could have ming indicating how close the two way.

Participation in the second second

NAT OF
INDUCTIVE BIAS

- The CANDIDATE-ELIMINATION Algorithm will converge toward the true target concept provided it is given accurate training examples and provided its initial hypothesis space contains the target concept.
- What if the target concept is not contained in the hypothesis space? Can we avoid this difficulty by using a hypothesis space that includes every possible hypothesis? How does the size of this hypothesis space influence the ability of the algorithm to generalize to unobserved instances? How does the size of the hypothesis space influence the number of training examples that must be observed? These are fundamental questions for inductive inference in general.

McRaghavendrachar.5 , Assistant Professor, Dept of CSE, KSIT

A Biased Hypothesis Space

- Suppose we wish to assure that the hypothesis space contains the unknown target concept.
- The obvious solution is to enrich the hypothesis space to include every possible hypothesis.
- To illustrate, consider again the Enjoy Sport example in which we restricted the hypothesis space to include only conjunctions of attribute values.
- Because of this restriction, the hypothesis space is unable to represent even simple disjunctive target concepts such as "Sky = Sunny or Sky = Cloudy."

Mr.Raghavendrachar S., Assistant Professor Dept of CSE, KSIT

In fact, given the following three training examples of this disjunctive hypothesis, our algorithm would find that there are zero hypotheses in the version space. Wind Water Forecast EnjoySport **Humidity** AirTemp Sh Warm Cool Change Yes Normal Strong Su Yes Normal Strong Strong Cool Change Warm Cool Change No Normal Warm Pair

To see why there are no hypotheses consistent with these three examples, note that the most specific hypothesis consistent with the first two examples and representable in the given hypothesis space H is

S2: {?, Warm, Normal, Strong, Cool, Change}

This hypothesis, although it is the maximally specific hypothesis from H that is consistent with the first two examples, is already overly general: it incorrectly covers the third (negative) training example. The problem is that we have biased the learner to consider only conjunctive hypotheses. In this case we require a more expressive hypothesis space.

Mr.Reghevendracher.S , Assistant Profess Dept of CSE, KSIT.

Mr.Raghavendrachar.S., Assistant Professo Dept of CSE, KSIT.

Let us reformulate the EnjoySport learning task in an unbiased way by defining a new hypothesis space H' that can represent every subset of instances; that is, let H' correspond to the power set of X. One way to define such an H' is to allow arbitrary disjunctions, conjunctions, and negations of our earlier hypotheses. For instance, the uarget concept "Sky = Sunny or Sky = Cloudy" could then be described as

(Sunny, 7, ?, ?, ?, ?) V (Cloudy, ?, ?, ?, ?, ?)

Given this hypothesis space, we can safely use the CANDIDATE-ELIMINATION algorithm without worrying that the target concept might not be expressible. However, while this hypothesis space eliminates any problems of expressibility, it unfortunately raises a new, equally difficult problem: our concept learning algorithm is new completely unable to generalize beyond the observed examples! To see why, suppose we present three positive examples (x_1, x_2, x_3) and two negative examples (x_4, x_5) to the learner. At this point, the S boundary of the version space will contain the hypothesis which is just the disjunction of the positive examples

5 : [(x1 V x2 V x3)]

McRaghavendrachal.5 . Anaplant Professor Dept of CDE, KDI7

because this is the most specific possible hypothesis that covers these three examples. Similarly, the G boundary will consist of the hypothesis that rules out only the observed negative examples

$G: [\neg (\mathbf{x}_4 \lor \mathbf{x}_3)]$

The problem here is that with this very expressive hypothesis representation, the S boundary will always be simply the disjunction of the observed positive examples, while the G boundary will always be the negated disjunction of the observed negative examples. Therefore, the only examples that will be unambiguously classified by S and G are the observed training examples themselves. In order to converge to a single, final target concept, we will have to present every single instance in X as a training example!

> Mr.Registremittecher.S., Assistant Proit Dept of CSE, K207.

The Futility of Bias-Free Learning

Because inductive learning requires some form of prior assumptions, or inductive bias, we will find it useful to characterize different learning approaches by the inductive bias¹ they employ. Let us define this notion of inductive bias more precisely. The key idea we wish to capture here is the policy by which the learner generalizes beyond the observed training data, to infer the classification of new instances. Therefore, consider the general setting in which an arbitrary learning algorithm L is provided an arbitrary set of training data $D_c = \{(x, c(x))\}$ of some arbitrary target concept c. After training, L is asked to classify a new instance x_i . Let $L(x_i, D_c)$ denote the classification (e.g., positive or negative) that L assigns to x_i after learning from the training data D_c . We can describe this inductive inference step performed by L as follows

$(D_c \wedge x_l) \succ L(x_l, D_c)$

where the notation $y \succ z$ indicates that z is inductively inferred from y. For example, if we take L to be the CANDIDATE-ELIMINATION algorithm, D_c to be the training data from Table 2.1, and x_i to be the first instance from Table 2.6, then the inductive inference performed in this case concludes that $L(x_i, D_c) =$ (EnjoySport = yes).

Mr.Raghavendrachar.S , Assistant Professor, Dept of CSE, KSIT.

Because L is an inductive learning algorithm, the result $L(x_i, D_c)$ that it infers will not in general be provably correct; that is, the classification $L(x_i, D_c)$ need of of follow deductively from the training data D_c and the description of the new instance x_i . However, it is interesting to ask what additional assumptions could be added to $D_c \wedge x_i$ so that $L(x_i, D_c)$ would follow deductively. We define the inductive bias of L as this set of additional assumptions. More precisely, we define the inductive bias of L to be the set of assumptions B such that for all new instances x_i

$(B \wedge D_c \wedge x_l) \vdash L(x_i, D_c)$

where the notation $y \vdash z$ indicates that z follows deductively from y (i.e., that z is provable from y). Thus, we define the inductive bias of a learner as the set of additional assumptions B sufficient to justify its inductive inferences as deductive inferences. To summarize,

Definition: Consider a concept learning algorithm L for the set of instances X. Let c be an arbitrary concept defined over X, and let $D_c = \{X, c(x)\}$ be an arbitrary set of training examples of c. Let $L(x, h_c)$ denote the classification assigned to the instance x_i by L after training on the data D_c . The inductive bias of L is any minimal set of assertions B such that for any target concept c and corresponding training c_c

 $(\forall x_i \in X)[(B \land D_c \land x_i) \vdash L(x_i, D_c)]$

Mr.Raghavendrachar.S , Assistant Professor Dept of CSE, KSIT.

Inductive	bias of CAN	DIDATE- ELIMINATION
	Alg	gorithm
-	Inductive system	1 Chevellotize of
Training examples	Candidate Eliminatori Algorishm	"due" instance, or "due" instance
New satisfies	Uning Hypothesis Space	
	Eggebralcot doductive system	n - Church Providen 11
Training examples	-	"don't know"
Here instance	Theorem Prover	
Autoriton "Hermiton		
inductive bios made explicit		
FIGURE Modeling Enducive in Comparing Existence in the inductive black by their inductive black way to compare induce ways to compare induce	yotems by equivalent is soor algoridum using a ilizing die actention "If as of the CANDELATE It allows modeling them the systems seconding	deductive systems. The input-nutput belawior of the hypothesis space H is identical to that of a deduc- contains the target concept." This association is therefore pastwortion algorithms. Characterizing inductive systems by their equivalent deductive systems. This provides a to their policies for generalizing beyond the observed
	Mr.Ragtavendrachar.S Dept of CSE, KSIT.	, Assistant Professor,

KSIT, Bengaluru

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING EXHAUSTIVE QUESTION BANK

Academic Year	2020-2021 [Odd Semester]					
Batch	2017-2021					
Year/Semester/section	IV/VII/A & B					
Subject Code-Title	17CS73- Machine Learning					
Name of the Instructor	Instructor Mr.RAGHAVENDRACHAR S		CSE			

Questions

<u>Module 1</u>

- 1. Identify various applications of Machine Learning.
- 2. Make use of following examples to explain well posed learning problem.
 - i. Checkers learning problem
 - ii. Handwriting Recognition learning problem
 - iii. Robot Driving learning problem
- 3. Determine the following with respect to checkers learning problem.
 - i. Choosing training experience
 - ii. Choosing Target function
 - iii. Choosing Representation of Target function
 - iv. Choosing function Approximation Algorithm
- 4. Design Checkers learning system using four distinct program modules.
- 5. Identify different issues in machine learning.
- 6. Design Find S Algorithm.
- 7. Apply Find S Algorithm for the given below target concept Enjoy sport.

Example	Sky	AirTemp	Humidity	Wind	Water	Forecast	EnjoySport
1 2 3	Sunny Sunny Rainy	Warm Warm Cold	Normal High High	Strong Strong Strong	Warm Warm Warm	Same Same Change	Yes Yes No
4	Sunny	Warm	High	Strong	Cool	Change	Yes

8. Design Candidate Elimination Algorithm.

9. Apply Candidate Elimination Algorithm for the given below target concept Enjoy sport.

Example	Sky	AirTemp	Humidity	Wind	Water	Forecast	EnjoySport
1	Sunny	Warm	Normal	Strong	Warm	Same	Yes
2	Sunny	Warm	High	Strong	Warm	Same	Yes
3	Rainy	Cold	High	Strong	Warm	Change	No
4	Sunny	Warm	High	Strong	Cool	Change	Yes

10. Design List-Then Eliminate Algorithm

- 11. Determine Inductive Bias With respect to the following
 - i. Biased Hypothesis Space
 - ii. Unbiased Learner
 - iii. Futility of Bias-Free Learning

Module 2

- 1. Identify Appropriate problems for decision tree learning.
- 2. Design ID3 Algorithm
- **3.** Identify the necessary measure required to select the attributes for building decision tree using ID3 Algorithm.
- 4. Apply ID3 Algorithm to construct the decision tree for the given target concept Play tennis.

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Ves
D13	Overcast	Hot	Normal	Weak	X CS
D14	Rain	Mild	High	Strong	No

5. Make use of suitable example, explain the following
i. Hypothesis Space Search In Decision Tree Learning
ii. Inductive Bias In Decision Tree Learning
iii.Issues In Decision Tree Learning

Module 3

- 1. **Determine** the application of neural network which is used for learning to steer an autonomous vehicle.
- 2. Identify the appropriate problem for Neural Network Learning.
- 3. Make use of suitable diagram, explain the concept of single perceptron.
- 4. Design and derive The Gradient Descent Rule
- 5. Determine why stochastic approximation is needed to Gradient descent rule?
- 6. Design Back propagation algorithm.
- 7. Derive Back propagation Rule (Case i and Case ii).
- 8. Identify the remarks on Back propagation Algorithm.

Module 4

- 1. Identify features of Bayesian learning methods.
- 2. Determine Brute Force MAP Learning Algorithm.
- 3. Determine Minimum Description Length Principle.
- 4. Apply naïve bayes classifier for the given training data to classify the instance (outlook = sunny, temperature = cool, humidity = high, wind = strong)

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Ves
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
DII	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Ves
D14	Rain	Mild	High	Strong	No

5. Determine Bayesian belief network with representation.

- 6. Determine the following.
- i. Conditional independence
- **ii.** EM Algorithm
- iii. Derivations of K means Algorithm

<u>Module 5</u>

- 1. Determine the following
- i. Estimating Hypothesis Accuracy
- ii. Sample Error and True Error
- iii. Binomial Distribution
- 2. Determine the following
- i. Confidence Intervals
- ii. Central limit Theorem
- iii. Comparing learning algorithms with paired t Tests.

3. Determine the following

- i. Reinforcement learning
- ii. Learning Task
- iii. Learning (Q Function and Algorithm)

8. Rayl [COURSE INCHARGE]

		CBCS SCHEME	
USN			17CS
		Second Semaster B.E. Degree Examination July/August	2021
		Machine Learning	2021
Tim	ie: 3	hrs. Max Note: Answer any FIVE full questions.	. Marks: 10
1	a. b.	Explain the designing of a learning system in detail. Define learning. Specify the learning problem for handwriting recognition and	(10 Mar) d robot drivir (05 Mar)
	c.	Explain the issues in machine learning.	(05 Mar
2	a.	Write the steps involved in find-S algorithm.	(05 Mar
	b.	Apply candidate elimination algorithm to obtain final version space for t shown in Table.Q2(b) to infer which books or articles the user reads base supplied in the article.	he training d on keywo (10 Mar
		Article Ctime Academes Local Music Reads	
		a ₁ True False False True True	
		a ₃ False True False False Table.Q20	(b)
		a4 False False True False False	
	c.	State the inductive bias rote-learner, candidate-elimination and Find-S algorit	hm. (05 Mai
3	а	Define the following terms with an example for each:	
5	u.	(i) Decision tree (ii) Entropy (iii) Information ga	in
		(iv) Restriction Bias (v) Preférence Bias	(10 Mar
	b.	construct decision tree for the data set shown in Table.Q3(b) to find wh	ether a seed
		Example Colour Toughness Fungus Appearance Poisonous	_(10 Mar
		1 Green Soft Yes Wrinkled Yes	
		2 Green Hard Yes Smooth No	1 02(1)
		3 Brown Soft No Wrinkled No I ab	le.Q3(b)
		4 Brown Soft Yes Wrinkled Yes	
	ß	6 Green Hard No Wrinkled No	
	1	7 Orange Soft Yes Wrinkled Yes	
4	a. b.	Explain ID3 algorithm. Give an example. Explain the issues and solutions to those issues in decision tree learning.	(10 Mar (10 Mar
5	a.	Derive an expression for gradient descent rule to minimize the error. Using	the same, wi
	L	the gradient descent algorithm for training a linear unit.	(10 Mar
	в.	write back propagation algorithm that uses stochastic gradient descent meth- effect of adding momentum to the network?	od. What is 1 (10 Mar
6	a.	List the characteristics of the problems which can be solved using bad	ck propagati
	b.	Design a perceptron to implement two input AND function	(05 Mar) (05 Mar)
	c.	Derive expressions for training rule of output and hidden unit weights for ba	ck pronagati
		algorithm,	(10 Mar

÷

Immortant Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

·

2

- a. Define Maximum a Posteriori (MAP) hypothesis. Derive an equation for MAP hypothesis 7 using Baye's theorem.
 - b. Given P(A = True) = 0.3, P(A = False) = 0.7, P(B = True | A = True) = 0.4, (04 Marks) P(B = False | A = True) = 0.6, P(B = True | A = False) = 0.6, P(B = False | A = False) = 0.4. Calculate P(A = False / B = False) using Baye's rule. (06 Marks)
 - c. Given the previous patient's data in the Table.Q7(c). Use Naïve Baye's classifies to classify the new data (Chills = Y, Runny nose = N_{1} Headache = Mild, Fever = Y) to find whether the patient has flue or not. tile. (10 Marks)

Chills	Runny nose	Headache	Fever	Flue
Y	N	Mild	Y	N
Y	Y	Non	N	Y
Y	N	Strong	Y	Y
N	Y	Mild	Y	Y
N	N	No	N	N
Ν	Y	Strong	Y	Y
N	Y	Strong	Ν	N
Y	Y	Mild	Y	Y
	Table.0	Q7(c)	de fattas	

a. Describe the features of Bayesian learning methods.

8

- b. A patient takes a lab test and the result comes back positive. It is known that the test returns a correct positive result in only 98% of the cases and a correct negative result is only 97% of the cases. Furthermore only 0.008 of the entire population has this disease.
 - What is the probability that this patient has cancer? (i)
 - What is the probability that he does not have cancer? (ii)
- The Table.Q8(c) provides a set of 14 training examples of the target concept 'Play Tennis' с. where each day is described by the attributes, outlook, temperature, humidity and wind.

Day	Outlook	Temperature	Humidity	Wind	Play Tennis
DI	Sunny	Hot	High	Weak	No
D2	Sunny	Hot Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
_D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Høt	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No
	4	Table O8(()		

Use the Naïve Bayes classifier and the training data from this table to classify the following novel instance: <Outlook = Sunny, Temperature = Cool, Humidity = High, Wind = Strong> (10 Marks)

9 Explain binomial distribution and write the expressions for its probability distribution, mean, a. variance and standard deviation. (04 Marks)

(05 Marks)

(05 Marks)

18:45 PTT

17CS73

- b. Define the following terms:
 - (i) Sample error
 - (ii) True error
 - (iii) N% confidence interval
 - (iv) Random variable
 - (v) Expected value
 - (vi) Variance

(06 Marks)

(04 Marks)

(06 Marks)

- c. Write K-Nearest Neighbour algorithm for approximating a discrete values target function. Apply the same for the following three-dimensional training data instances along with onedimensional output.
 - $x_{1} = 5, x_{2} = 7, x_{3} = 3, y = 4$ $x_{1} = 2, x_{2} = 4, x_{3} = 9, y = 8$ $x_{1} = 3, x_{2} = 8, x_{3} = 1, y = 2$ $x_{1} = 7, x_{2} = 7, x_{3} = 2, y = 4$ $x_{1} = 1, x_{2} = 9, x_{3} = 7, y = 8$ Consider the query point (x₁ = 5, x₂ = 3, x₃ = 4) and K = 3. (10 Marks)
- 10 a. List the steps used for deriving confidence intervals.
 - b. Explain CADIT system using case based reasoning.
 - c. Write Q learning algorithm. Consider the following state s_1 . Find $\hat{Q}(s_1, a_{right})$ for R given immediate reward as 0 and $\gamma = 0.9$.

		SIMENNES CONTRACTOR	
USN	I	$= \begin{bmatrix} \begin{pmatrix} i \\ i$	15CS7
		Seventh Semester B.E. Degree Examination, Jul	y/August 2021
		Machine Learning	
Tin	ne: :	3 hrs. $(\eta_{3})_{ij}$	Max. Marks: 80
		Note: Answer any FIVE full questions.	
1	a. b.	Explain briefly steps involved in designing the learning system. Use example 1 given below to obtain most generalized hypothesis example 1.	(08 Marks)
		x ₁ = <sunny, normal,="" same="" strong,="" warm,=""> + x₂ = <sunny, high,="" same="" strong,="" warm,=""> + x₃ = <rainy, change="" cold,="" high,="" strong,="" warm,=""> -</rainy,></sunny,></sunny,>	
	c.	$x_4 = \langle Sunny, Warm, High, Strong, Cool, Change \rangle + What are the limitations of find-S algorithm?$	(04 Marks) (04 Marks)
2	a.	Write candidate elimination algorithm and obtain version space des given below.	scription for the example2
		 (i) <sunny, normal,="" same="" strong,="" warm,=""> = Yes</sunny,> (ii) <sunny, high,="" same="" strong,="" warm,=""> = Yes</sunny,> (iii) <rainy, change="" cold,="" high,="" strong,="" warm,=""> = No</rainy,> (iv) <sunny, change="" cool,="" high,="" strong,="" warm,=""> = Yes</sunny,> 	
		(iv) summy, warm, angli, suong, cool, change> = yes	(10 Marks)
	b.	Use example instances given below and obtain the proper clas behind the class assigned to each instance. Use the hypothesis detern Q2(a).	sification. Give rational mined from example 2 at
		x ₁ = <sunny, change="" cool,="" normal,="" strong,="" warm,=""> = ? x₂ = <rain, cold,="" light,="" normal,="" same="" warm,=""> = ? x₃ = <sunny, light,="" normal,="" same="" warm,=""> = ?</sunny,></rain,></sunny,>	
	1.189.97	$x_4 = \langle \text{Sunny, Cold, Normal, Strong, Warm, Same} \rangle = ?$	(06 Marks)
3	a. b. c.	What are the suitable characteristics to use tree based learning? Write ID3 algorithm and explain steps involved in it. Obtain decision tree for following expression:	(04 Marks) (06 Marks)
3		(i) $A \wedge B$ (ii) $A \vee [B \wedge C]$ (iii) $A XOR B$	
		(iv) $[A \land B] \lor [C \land D]$	(06 Marks)

1

		1 21		d.	
SLNo.	Outlook	Temperature	Humidity	Wind	Enjoy Sports
1	Sunny	Hot	High	Weak	No
2	Sunny	Hot	High	Strong	No
3	Overcast	Hot	High	Weak	Yes
4	Rain	Mild	High	Weak	Yes
5	Rain	Cool	Normal	Weak	Yes
6	Rain	Cool	Normal	Strong,	No
7	Overcast	Cool	Normal	Strong	Yes
8	Sunny je	Mild	High	Weak	No
9	Sunny	Cool	Normal	Weak	Yes
10	Rain	Mild	Normal	Weak	Yes
11	Sunny	Mild	Normal	Strong	Yes
12	Overcast	Mild	High	Strong	Yes
13,00	Overcast	Hot	Normal	Weak	Yes
14	Rain	Mild	High	Strong	No
1. 12		- 811 gillar			

4 a. Consider the example given in table 1. and determine suitable decision tree.

- b. Explain limitations of ID3 algorithm.
- 5 a. Using perceptron design Neural Network to solve following expression given in below truth table.

10	x1	X2	Output]
	0	0	• • • • • 0	1
	0	1 . 1	0	1
	1	· · · · · · ·	0	1-4572
	1 4	1 a 1	1 .4,5	t at ^{the}

b. Write algorithm for Gradient Descent learning and explain.

- c. What are the advantages of Artificial Neural Network?
- 6 a. Derive the solution for weight update rule where the error is expressed as

$$\in_{d} (\vec{\omega}) = \frac{1}{2} (t_{d} - O_{d})^{2}$$

b. Write Back propagation algorithm and explain.

7 a. Use the following cancer diagnostic statics and priori probabilities given to determine $P(cancer/\oplus)$

- (i) 0.008 people can have cancer.
- (ii) Positive test is correct in 98% cases.
- (iv) The negative test is correct in 97% cases.
- b. Determine the posteriori probability for concept learning given h ∈ H and D set of instances as training example.
 (06 Marks)
- c. Show that maximum likelyhood hypothesis is equivalent to sum of minimum squared error.

$$h_{ML} = \frac{\operatorname{argmin}}{h} h \in H \sum_{i=1}^{m} (d_i - h(x_i))^2$$
(04 Marks)

(12 Marks) (04 Marks)

(04 Marks) (08 Marks) (04 Marks)

(08 Marks)

(08 Marks)

(06 Marks)

- 8 Use the example given in table 1 at Q.No.4(a) and obtain classification for following a. instance by applying Naïve Bay's classifier. Outlook = Sunny, Humidity = High Temperature = Cool, (10 Marks) Wind = Strong
 - b. Explain Naïve Bay's classifier.

(06 Marks)

(04 Marks) 9 Explain what is sample error and true error. a.

 $p_{\hat{n}}$

- b. What is confidence interval? How the confidence interval is determined? (06 Marks) (06 Marks)
- c. Write steps involved in comparing hypothesis using confidence interval.
- 10 Write short note on following :
 - K-Nearest Neighbourhood learning a.
 - b. Locally Weighted Regression
 - Case Based Learning с.
 - d. Reinforced Learning

45

(16 Marks)

4117

alt in

			C	BCS S	CHEN	E,	S.	
						A CONTRACTOR	р	17CS73
USN		C	actor D 1	E Dograd	Examin	Athn.	Jan./Feb. 2	021
		Seventh Sem	ester D.	L. Degree			0 uni / 00. 2	
			Ma	achine L	.earni	ng	× .	
Tin	ne: :	3 hrs.			Strand Strand		Max	. Marks: 100
		Note: Answer an	ny FIVE fu	ll questions, l	hoosing	ONE full	question from	each module.
				Modul	<u>e-1</u>		Antonio	
1	•	Define machine lea	ming. Men	tion five appl	icationslo	fmachine	learning.	(06 Marks)
1	b.	Explain concept les	arning task	with an exam	ple.	• . 6		(06 Marks)
	с.	Apply candidate el	imination a	lgorithm and	obtain the	version s	pace considerin	ng the training
		examples given Ta	ble Q1(c).	C M B				
		E	yes No	se Head	Fcolor	Haîr?	Smile?(TC)	
		Ro	ound (Tria	ngle Round	Purple	Yes	Yes	
		So	uare Squ	are Square	Green	Yes	No	
		Sc	uare Tria	ngle Round	Yellow	Yes	Yes	
		Ra	ound Tria	ngle Round	Green	No	No	
		<u>S</u>	uare Squ	are Round	Yellow	Yes	Yes	
		<u> </u>	· ·	Table Q	L(C)			(08 Marks)
		A W		ÓR				
2	a.	Explain the followi	ng with resp	pect to designi	ng a learn	ing systen	n :	
		i) Choosing the t	raining expe	erionee				
		ii) Choosing the t	arget function	on			6.	
	1	iii) Choosing a rep	resentation	for the target	function.	1- 01(-)	a distant	(09 Marks)
	b.	Write Find-S algo	rithm: App	ly the Find-s	S IOF LAD	le QI(c)	to maxim	ally specific
	c	Explain the concent	t of inductiv	re hias 🛛 📣		بېنې و	*	(06 Marks)
	0.	Explain the concept		NA-JAIA	2	16	5	(US Marks)
2	2	Evoluin the concern	Cof decisio	<u>iviouuie</u>	<u>-4</u> o Dierus	the name	FRANK MARKINGS	manipad to
3	а.	select the attributed	for building	a decision tra	e using II	3 algorith	m	(11 Marks)
	b.	Explain the following	ng with resp	ect to decision	i tree lean	ing :		(11 (4141K5)
		i) Incorporating c	ontinuous	alued attribute	S AL	w w C		
		ii) Alternative me	asures for se	lecting attribu	tes 🔊	* c		
		iii) Handling traini	ng examples	s with missing	attribute	values.		(09 Marks)
	d	Gay	Ast is	OR	and the second s			
4	3	Construct decision 1	ree using II	03 considering	the follow	ving traini	ng examples :	
		Weekend	Weather	Parental ava	ilability	Wealthy	Decision cla	\$\$
		Hp d	Sunny	Yes	1	Rich	Cinema	
			Windy	Allow No		Rich	Tennis	
		H	Rainw	Yes		Rich	Cinema	
		Hs	Rainy	No		Rich	Home	
		H ₆	Rainy	Yes	1	Poor	Cinema	
		H ₇	Windy	No		Poor	Cinema	
	7	H ₈ C	Windy	No		Rich	Shopping	
		Hada	Windy	Yes		Rich	Cinema	
		H ₁₀	Sunny	No Table O4(1)		Rich	Tennis	
	b.	Discuss the issues	of avoiding	overfitting the	data and	t handling) attributes with	12 Marks) differing
		costs.	B		s unity all	a nanunng		08 Marks)
		Ø		10	f 2		(
		5						

Module-3

					BGS S	CHEN	E			
USN							. S	6449. V		15CS73
		Seventh S	emo	ester B.	E. Degree	Examin	ation, /	Aug./Sept	t .2020	
				M	achine l	earni	ng			
						11. 24.74	-		Mad	
Tin	ne: 3	hrs.				a filler t		Ma	x. Mark	<u>(5: 80</u>
	N/	oto: Answer an	v FI	VE full at	estions, choos	ing ONE	full quest	ion from ea	ch modi	ule.
	1.		<i>y</i>	22 J	Madu	10-1		Margares .		
		What is Mach	ina I	earning?	Explain differ	ent perspec	ctives and	l issues in n	nachine	learning.
1	a,	what is iviaci	me r	carning:	in the second	om perspe	Gun	}	(()6 Marks)
	b.	Explain the ste	eps in	designing	g a learning sys	stem.	6 min	/	(1	0 Marks)
			•	<	1 19 19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		19			
				d'illes 1	R ^{ar} OR	- Cust	T the the second	ting toking	the oni	ov sport
2	a.	Describe the C	Candi	date-Elim	ination algorit	hm. Explai	n its wor	king, taking	the enjo	by sport
		concept and tra	ainin	g instance	s given below:	iter Wind	Water	Forecast	Fniov	7
		Exam	ple	Sky	Air Humid	ity _p wind	water	rorcease	snott	
		1	100 B	Summer 1	Vorm Noting	Strong	Warm	Same	Yes	
			10.4.5	Sunny V	Varm Norm	Strong	Warm	Same	Yes	
		2	}	Sunny V	Clod High	Strong	Warm	Change	No	
		din 3		Kainy Suppy 1	Varm High	Strong	Warm	Change	Yes	
		- auto		Sumy	A mer	, o	6.9	Onunge	(10	Marks)
	b.	Explain how	to 1	nodel ind	luctive system	s by their	equivale	nt deductive	e syster	ns for
		Candidate-Elin	minat	ion Algor	ithm.	A BAR		1 hutter	(06	Marks)
				(interior		Car.		April 1		
				A Charley	Module		.4	¢.	(06)	Marka)
3	a.	Explain the co	ncept	ts of entro	by and information track	lon gain.	handling		(06 P (10 M	vlarks) Marks)
	b.	Describe the I	D3 al	gorithm ic		icarning.	Almu		(10)	rai ksj
			adarear.		OR		sr Sr			
4	а	Apply ID3 alg	orith	m for cons	tructing decisio	n tree for th	ne followin	ng training er	kample.	
		- Gun []	Day	Outlook	Temperature	Humidity	Wind	Play Tennis		
		1.75	DÍ	Sunny	Hot	High	Weak	No		
		3	D2	Sunny	Hot	High	Strong	No	_	
			D3	Overcast	Hot	J High	Weak	Yes	-	
			D4	Rain	Mild	High	Weak	Yes	-	
0			D5 DC	Rain	Cool	Normal	Strong	No	1	
į		181		Overcast	Cool	Normal	Strong	Yes		
5 5		ALL BALL	D8	Sunnv	Mild	· High	Weak	No		
ē		-44.84	D9	Sunny	Cool	Normal	Weak	Yes		
/			D10	Rain	Mild	Normal	Weak	Yes		
			D11	Sunny	Mild	Normal	Strong	Yes		
			D12	Overcast	Mild	High	Weak	Yes		
			$D10_{14}$	Rain	Mild	High	Strong	No		
			al design 1			2	W.L		(10 Mar)	ks)

b. Explain the issues in decision tree learning. $\int_{\frac{1}{2}e^{i\theta T_{j}}}$ 1 of 2

. . 1₁.

(06 Marks)

Module-3

Explain appropriate problems for Neural Network Learning with its characteristics. 5 a. (10 Marks) Explain the single perceptron with its learning algorithm. b. (06 Marks) OR Explain Back Propagation algorithm. 6 a. (10 Marks) Explain the remarks of Back propagation algorithm. b. (06 Marks) Module-4 Explain Naïve Bayes classifier. 7 (10 Marks) a. Explain Bayesian Belief Networks b. (06 Marks) OR Explain EM algorithm, (08 Marks) 8 a. Explain the derivation of K-means algorithm. b. (08 Marks) Module-5 Explain K-nearest neighbor learning algorithm with example. (10 Marks) 9 a. Explain case based reasoning with example. (06 Marks) b. OR Write short note on: 10 **O** learning a. Radial basis function b. Locally weighted regression c. (16 Marks) Sampling theory. d.

3

4

Seventh Semester B.E. Degree Examination, Dec.2019/Jan.2020 **Machine Learning**

CBCS SCHEME

Time: 3 hrs.

1

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- What do you mean by well-posed learning problem? Explain with example. a. (04 Marks)
- Explain the various stages involved in designing a learning system in brief. b. (08 Marks) (04 Marks)
- Write Find S algorithm and discuss the issues with the algorithm. с.

OR

2 List the issues in machine learning. a.

USN 1 KS16CS107

Consider the given below training example which finds malignant tumors from MRI scans. b.

Example	Shape	Size	Color	Surface	Thickness	Target concept
1	Circular	Large	Light.	Smooth	Thick	Malignant
24	Circular	Large	Light	Irregular	Thick	Malignant
/3	Oval	Large	Dark	Smooth	Thin	Benign
4	Oval	Large	Light	Irregular	Thick	Malignant
5	Circular	Small	Light	Smooth	Thick	Benign
. 1	1.00			0.1	1 C Cl	and the second sec

Show the specific and general boundaries of the version space after applying candidate elimination algorithm. (Note: Malignant is +ve, Benign is -ve). (08 Marks) Explain the concept of inductive bias in brief, (04 Marks)

с.

Module-2

- Discuss the two approaches to prevent over fitting the data. a.
 - Consider the following set of training examples: b.

	Instance	Classification	a	\mathbf{a}_2
4	pro 1	4, 20,	1	1
	2	1 "Bar	1	1
	3	0	1	0
	4		0	0 6 20
	5	0	0	de lander
	6	· 0	0	17

- What is the entropy of this collection of training examples with respect to the target (i) function classification?
- What is the information gain of a₂ relative to these training examples? (ii) (08 Marks)

OR

Define decision tree. Construct the decision tree to represent the following Boolean a. functions:

1)
$$A \land \neg B$$
 ii) $A \lor [B \land C]$ iii) $A XOR B$ (06 Marks)

- Ь. Write the ID3 algorithm.
- (06 Marks) What do you mean by gain and entropy? How it is used to build the decision tree. (04 Marks) \mathbf{C}_i

15CS73

Max. Marks: 80

(08 Marks)

(04 Marks)

Module-3

Define perceptron. Explain the concept of single perceptron with neat diagram. (06 Marks) 5 a. Explain the back propagation algorithm. Why is it not likely to be trapped in local minima? b.

(10 Marks)

OR

List the appropriate problems for neural network learning. 6 а. (04 Marks) Discuss the perceptron training rule and delta rule that solves the learning problem of b. perceptron. (08 Marks) Write a remark on representation of feed forward networks. c. (04 Marks) Module-4 Explain Naïve Bayes classifier 7 a. (08 Marks) Explain brute force MAP learning algorithm. b. (08 Marks)

OR

Discuss Minimum Description Length principle in brief. 8 a. (08 Marks) Explain Bayesian belief networks and conditional independence with example. b. (08 Marks)

Module-5

Define: (i) Simple Error 9 a. (ii) True Error (04 Marks) Explain K-nearest neighbor learning algorithm. b. (08 Marks) What is reinforcement learning? c. (04 Marks)

OR

- Define expected value, variance, standard deviation and estimate bias of a random variable. 10 a.
 - b. Explain locally weighted linear regression.
 - C. Write a note on Q-learning.

(04 Marks) (08 Marks)

(04 Marks)

STYT

15CS73

Module-3

- 5 a. Draw the perceptron network with the notation. Derive an equation of gradient descent rule to minimize the error. (08 Marks)
 - b. Explain the importance of the terms : (i) Hidden layer (ii) Generalization (iii) Overfitting (iv) Stopping criterion (08 Marks)

OR

- 6 a. Discuss the application of Neural network which is used for learning to steer an autonomous vehicle. (06 Marks)
 - b. Write an algorithm for back propagation algorithm which uses stochastic gradient descent method. Comment on the effect of adding momentum to the network. (10 Marks)

Module-4

- 7 a. What is Bayes theorem and maximum posterior hypothesis?
 - b. Derive an equation for MAP hypothesis using Bayes theorem.
 - c. Consider a football game between two rival teams: Team 0 and Team 1. Suppose Team 0 wins 95% of the time and Team 1 wins the remaining matches. Among the games won by team 0, only 30% of themicome from playing on teams 1's football field. On the otherhand, 75% of the victories for team 1 are obtained while playing at home. If team 1 is to host the next match between the two teams, which team will most likely emerge as the winner?

- 8 a. Describe Brute-force MAP learning algorithm.
 - b. Discuss the Naïve Bayees classifier.

9

10

la provisional de la construcción d La construcción de la construcción d

c. The following table gives data set about stolen vehicles. Using Naïve bayes classifier classify the new data (Red, SUV Domestic) (08 Marks)

Tabla

		.4	1	aute of the		**	
	ć	Color	Туре	Origin'	Stolen		
	. Stationer	Red	Sports	Domestic	Yes	Can ber a the	
	and the second sec	Red	Sports	Domestic	No	7	
	er.	Red	Sports	Domestic	Yes		
	1 heart 3	Yellow	Sports	Domestic	No		
	· 18) (2) · · · · · · · · · · · · · · · · · · ·	Yellow	Sports	Imported	Yes	1	
	3	Yellow	SUV	Imported *	No	1	
	6 at is	Yellow	SUV	Imported	Yes	1	
	6	Yellow	SUV	Domestic	No		
	6	🗞 Red	SUV	Imported	No] .	
	a l'	Red	Sports	Imported	Yes		
1	ister i be	, ,	Antaner	and a start of the		بر ا	
11.10	ar a da		Module	-5			
a.	Write short notes on the fo	llowing;"	4 ³⁴				
	(i) Estimating Hype	othesis ac	curacy.				
	(ii) Binomial distrib	ution				(()8 Marks)
b.	Discuss the method of corr	paring tw	o algorit	hms. Justify	with pa	ired to tests method	1.
	6	4144,			•	(0)8 Marks)
	Diama and a second	13 ¹¹	OR			×	
્ય, ંદ	Discuss the K-nearest neig	hbor lang	uage,			(0)4 Marks)
0.	Discuss locally weighted F	Regression	۱.			(0	94 Marks)
C.	Discuss the learning tasks	and Q lear	rning in t	he context of	of reinfor	cement learning. (0	8 Marks)
	Sector Contraction						
	13		* * * *	*			
	A 220		2 . 4 7				*
	1		~ ~ 01 ~				

(04 Marks)

(04 Marks)

(04 Marks)

(04 Marks)

K.S.INSTITUTE OF TECHNOLOGY, BENGALURU - 109 DEPARTMENT OF COMPUTER SCIENCE & ENGG COURSE END SUVERY -ACADEMIC YEAR (SEP 2020 - JAN 2021 (ODD SEM))

VII Sem A Section

Sub Code:17CS73 Faculty Name:Mr. RAGHAVENDRACHAR.S Subject: MACHINE LEARNING

QUESTIONARE

1	To what extent you understand concept learning algorithms ?
2	How efficient you understand the concepts of Decesion Tree Learning?
3	How efficient you understand the concepts of Artificial Neural Networks?
4	How efficient you understand the concepts of Bayesian Learning?
5	How efficient you understand the concepts of Instance based Learning?
6	How efficient you understand the concepts of Reinforcement Learning?

SI. No.	Name of the Student	USN	SEM / SECTION	1	2	3	4	5	6
1	Indrasena kalyanam	1KS17CS030	VII A	EXCELLENT	EXCELLENT	EXCELLENT	EXCELLENT	EXCELLENT	EXCELLENT
2	P KISHORE	1KS17CS051	VII A	VERY GOOD	VERY GOOD	VERY GOOD	GOOD	EXCELLENT	EXCELLENT
3	DARSHAN S	1KS17CS020	VII A	EXCELLENT	EXCELLENT	EXCELLENT	EXCELLENT	EXCELLENT	EXCELLENT
4	GANESH MAUDGHALYA H G	1KS17CS025	VIIA	EXCELLENT	EXCELLENT	EXCELLENT	EXCELLENT	EXCELLENT	EXCELLENT
5	AAFREEN HUSSAIN	1KS17CS001	VII A	GOOD	GOOD	SATISFACTOR Y	SATISFACTORY	GOOD	GOOD
6	AMOGH R	1KS17CS005	VII A	EXCELLENT	EXCELLENT	EXCELLENT	EXCELLENT	VERY GOOD	VERY GOOD
7	MEGHANA	1KS17CS041	VII A	VERY GOOD	GOOD	GOOD	GOOD	GOOD	GOOD
8	CHENNAKESHAVA NT	1KS17CS019	VII A	EXCELLENT	EXCELLENT	EXCELLENT	EXCELLENT	VERY GOOD	VERY GOOD
9	MANJUNATH A	1KS17CS040	VIIA	VERY GOOD	EXCELLENT	EXCELLENT	EXCELLENT	VERY GOOD	VERY GOOD
10	KAVITHA. s	1KS17CS034	VILA	VERY GOOD	VERY GOOD	VERY GOOD	VERY GOOD	VERY GOOD	GOOD
11		1KS17CS047	VII A	VERY GOOD	VERY GOOD	GOOD	GOOD	GOOD	GOOD
12	GANESH G B	1KS17CS024	VII A	GOOD	GOOD	GOOD	GOOD	GOOD	GOOD
13	AKSHITHA	1KS17CS004	17CS004 VII A VERY GOOD VERY GOOD VERY GOOD VERY GOOD		VERY GOOD	VERY GOOD			

Sl.	Name of the Student	USN	SEM / SECTION	1	2	3	4	5	6	
14	KARTHIK T C	1KS17CS033	VII A	EXCELLENT	EXCELLENT	EXCELLENT	EXCELLENT	VERY GOO	DD GOOD	
15	KRITHIKA JAGANNATH	1KS17CS036	VII A	VERY GOOD	VERY GOOD	EXCELLENT	VERY GOOI	VERY GOO	D EXCELLEN	т
16	ABHISHEK GOWDA M V	1KS17CS002		EXCELLENT	EXCELLENT	VERY GOOD	EXCELLENT	VERY GOC	D VERY GOOI	D
17	JANARDHAN RAJU B	1KS18CS400	VII A	EXCELLENT	EXCELLENT	VERY GOOD	VERY GOOD	EXCELLEN	T VERY GOOD	5
18	MEGHANA G R	1KS17CS043		VERY GOOD	EXCELLENT	EXCELLENT	VERY GOOD	EXCELLEN	T EXCELLENT	
19	CHANDANA B R	1ks17cs018	VII A	EXCELLENT	EXCELLENT	EXCELLENT	EXCELLENT	EXCELLEN	EXCELLENT	
20	Nikhil subramanya	1KS17CS046	VII A	EXCELLENT	EXCELLENT	EXCELLENT	EXCELLENT	EXCELLENT	- EXCELLENT	
21	AMOGHA MANJUNATHA K	1KS17CS006	VII A	GOOD	GOOD	GOOD	GOOD	GOOD	GOOD	
22	AMRUTHA.V.DESHPANDE	1KS17CS007	VII A	VERY GOOD	VERY GOOD	EXCELLENT	VERY GOOD	EXCELLENT	EXCELLENT	
23	DEEPIKA S H	1KS17CS022	VII A	GOOD	SATISFACTO RY	GOOD	VERY GOOD	VERY GOOD	VERY GOOD	
24	NISHCHITHA C	1KS17CS048	VII A	VERY GOOD	VERY GOOD	VERY GOOD	EXCELLENT	EXCELLENT	EXCELLENT	
25	KRUTHIKA B M	1KS18CS401	VIIA	EXCELLENT	EXCELLENT	EXCELLENT	EXCELLENT	EXCELLENT	EXCELLENT	
26	SHRIRAKSHA S KANAGO	1KS17CS102	VII A	VERY GOOD	VERY GOOD	EXCELLENT	VERY GOOD	EXCELLENT	EXCELLENT	
27	LAVANYA V	1KS17CS037	VII A	EXCELLENT	VERY GOOD	EXCELLENT	EXCELLENT	EXCELLENT	EXCELLENT	
28	ASHISH K AMAR	1KS17CS013	VII A	VERY GOOD	VERY GOOD	VERY GOOD	VERY GOOD	EXCELLENT	VERY GOOD	
29	B LAKSHMI PRASANNA	1KS17CS014	VII A	GOOD	GOOD	GOOD	GOOD	VERY GOOD	VERY GOOD	
30	ANUSHREE J	1KS17CS011	VII A	VERY GOOD	VERY GOOD	EXCELLENT	EXCELLENT	EXCELLENT	EXCELLENT	
31	GAUTHAM C R	1KS17CS026	VII A	VERY GOOD	VERY GOOD	VERY GOOD	GOOD	VERY GOOD	VERY GOOD	
32	Nitish Kumar Gupta	1KS17CS049	VII A	EXCELLENT	EXCELLENT	EXCELLENT	EXCELLENT	EXCELLENT	EXCELLENT	
33	Anoop P S	1KS17CS008	VII A	EXCELLENT	EXCELLENT	EXCELLENT	EXCELLENT	EXCELLENT	EXCELLENT	
34	ANUSHA AG	1KS17CS010	VII A	GOOD	GOOD	VERY GOOD	GOOD	GOOD	GOOD	
35	MEGHANA. H. S	1KS16CS042	VII A	EXCELLENT	VERY GOOD	VERY GOOD	VERY GOOD	EXCELLENT	EXCELLENT	

Sl. No.	Name of the Student	USN	SEM / SECTION	1	2	3	4	5	6
36	HARSHITHA V	1KS17CS029		EXCELLENT	EXCELLENT	EXCELLENT	EXCELLENT	EXCELLENT	EXCELLENT
37	MEGHANA.G	1KS17CS042	VII A	EXCELLENT	EXCELLENT	EXCELLENT	EXCELLENT	EXCELLENT	EXCELLENT
38	AKSHATHA RAMESH	1KS17CS003		GOOD	GOOD	GOOD	VERY GOOD	GOOD	GOOD
39	NYDILE G R	1KS17CS050	VIIA	VERY GOOD	DOD VERY GOOD VERY GOOD VERY GOO		VERY GOOD	VERY GOOD	VERY GOOD
40	BHAVESH BHANSALI	1KS17CS016	VIIA	VERY GOOD	VERY GOOD	VERY GOOD	VERY GOOD	VERY GOOD	VERY GOOD
41	CHAITRA	1KS17CS017	VII A	VERY GOOD	GOOD	VERY GOOD	GOOD	VERY GOOD	EXCELLENT
42	MOUNIKA M K L	1KS17CS044	VII A	EXCELLENT	EXCELLENT	EXCELLENT	EXCELLENT	EXCELLENT	EXCELLENT
43	KEERTHI.N	IKS17CS035	VII A	VERY GOOD	GOOD	VERY GOOD	VERY GOOD	EXCELLENT	EXCELLENT
44	anuhya kulkarni	1KS17CS009	VII A	EXCELLENT	EXCELLENT	EXCELLENT	EXCELLENT	EXCELLENT	EXCELLENT
45	KARAN RAGHUNATH	1KS17CS032	VII A	EXCELLENT	EXCELLENT	EXCELLENT	EXCELLENT	EXCELLENT	EXCELLENT
46	LOKESH	1KS17CS038	VII A	VERY GOOD	EXCELLENT	EXCELLENT	VERY GOOD	SATISFACTO RY	SATISFACORY
47	NEHA K	1KS17CS045	VII A	VERY GOOD	EXCELLENT	EXCELLENT	EXCELLENT	VERY GOOD	EXCELLENT

S.Rey

Signature of Faculty

K S INSTITUTE OF TECHNOLOGY DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

YEAR / SEMESTER	IV / VII	
COURSE TITLE	MACHINE LEARNING	
COURSE CODE	17CS73	
ACADEMIC YEAR	2020-2021	

			17CS73														
SL	UCN	Name of the Student	IA1	all and	Al	Section 200	here we have been	[A2	and in such	-	A2	45-3		13		B	SEE
No	USIN	Name of the Student	CO1	CO2	CO1	CO2	CO2	CO3	CO4	CO2	CO3	CO4	CO4	CO5	CO4	C05	SEE
			18	12	6	4	6	18	6	2	6	2	12	18	4	6	60
1	1KS17CS001	AAFREEN HUSSAIN	17	11	6	4	6	17	5	2	6	2	7	6	4	6	31
2	1KS17CS002	ABHISHEK GOWDA.M.V	18	12	6	4	6	17	5	2	6	2	12	18	4	6	38
3	1KS17CS003	AKSHATHA RAMESH	18	11	6	4	6	17	5	2	6	2	12	12	4	6	42
4	1KS17CS004	AKSHITHA.B.S	18	12	6	4	5	17	6	2	6	2	12	6	4	6	22
5	1KS17CS005	AMOGH.R	17	12	6	4	6	16	5	2	6	2	12	14	4	6	25
6	1KS17CS006	AMOGHA MANJUNATHA.K	16	12	6	4	6	17	5	2	6	2	12	18	4	6	29
7	1KS17CS007	AMRUTHA.V.DESHPANDE	18	12	6	4	6	17	5	2	6	2	12	12	4	6	26
8	1KS17CS008	ANOOP.P.S	17	12	6	4	6	18	5	2	6	2	12	12	4	6	36
9	1KS17CS010	ANUSHA.A.G	17	12	6	4	6	17	5	2	6	2	12	6	4	6	41
10	1KS17CS011	ANUSHREE.J	18	12	6	4	6	17	5	2	6	2	12	6	4	6	33
11	1KS17CS013	ASHISH.K.AMAR	16	12	6	4	5	17	5	2	6	2	12	18	4	6	32
12	1KS17CS014	LAKSHMI PRASANNA.B	18	12	6	4	6	17	6	2	6	2	12	15	4	6	36
13	1KS17CS01	5 BHAVESH BHANSALI	17	12	6	4	6	17	5	2	6	2	12	6	4	6	26
14	1KS17CS01	CHAITRA	17	12	6	4	6	17	5	2	6	2	12	15	4	6	44
15	1KS17CS01	CHANDANA.B.R	18	12	6	4	6	17	5	2	6	2	12	18	4	6	39
16	1KS17CS01	CHENNA KESHAVA.N.T	17	12	6	4	6	17	5	2	6	2	6	18	4	6	40
17	1KS17CS02	DARSHAN.S	18	12	6	4	6	15	5	2	6	2	6	6	4	6	10
18	1KS17CS02	DEEKSHITHA.R	16	11	6	4	6	17	6	2	6	2	12	6	4	6	25
19	1KS17CS02	2 DEEPIKA.S.H	18	12	6	4	6	17	5	2	6	2	12	16	4	6	26
20	1KS17CS02	3 DIVYA YASHASWI KANNEY	18	12	6	4	6	17	5	2	6	2	NA	NA	4	6	AB
21	1KS17CS02	4 GANESH.G.B	18	11	6	4	6	17	5	2	6	2	12	6	4	6	32
22	1KS17CS02	5 GANESH MAUDGHALYA.H.G	17	9	6	4	6	17	5	2	6	2	12	12	4	6	21
23	1KS17CS02	6 GAUTHAM.C.R	17	9	6	4	6	16	5	2	6	2	12	6	4	6	33
24	1KS17CS02	7 H.PRIYANKA	18	12	6	4	6	16	5	2	6	2	12	18	4	6	50
25	1KS17CS02	8 HANUMESH.V.T	16	12	6	4	6	17	5	2	6	2	12	13	4	6	33
26	1KS17CS02	9 HARSHITHA.V	18	12	6	4	6	17	5	2	6	2	12	13	4	6	21
27	1KS17CS03	0 INDRASENA KALYANAM	17	12	6	4	6	18	5	2	6	2	12	16	4	6	24
28	1KS17CS03	2 KARAN RAGHUNATH	16	11	6	4	6	17	5	2	6	2	12	12	4	6	29

			17CS73														
SL	HEN	Name of the Student	IAL	STATUTE AND	Al	ait-incident	the statement was	1A2	turing the	malmenter	Λ2	his to prote		Nr.	1		91717
No	USI	rume of the Student	COI	CO2	COI	CO2	CO2	CO3	CO4	CO2	CO3	CO4	CO4	CO5	CO4	CO5	966
			18	12	6	4	6	18	6	2	6	2	12	18	4	6	60
29	1KS17CS033	KARTHIK.T.C	18	12	6	4	5	17	5	2	6	2	12	12	4	6	40
30	1KS17CS034	KAVITHA.S	18	12	6	4	6	17	5	2	6	2	12	12	4	6	34
31	1KS17CS035	KEERTHIN	18	12	6	4	6	17	5	2	6	2	12	12	4	6	26
32	1KS17CS036	KRITHIKA JAGANNATH	18	12	6	4	6	17	5	2	6	2	12	18	4	6	40
33	1KS17CS037	LAVANYA.V	15	12	6	4	6	17	5	2	6	2	12	16	4	6	13
34	1KS17CS038	LOKESH.B.M	16	12	6	4	6	17	5	2	6	2	10	9	4	6	24
35	1KS17CS040	MANJUNATH.A	17	11	6	4	6	17	5	2	6	2	12	12	4	6	29
36	1KS17CS041	MEGHANA.C.V	18	12	6	4	6	17	5	2	6	2	12	18	4	6	32
37	1KS17CS042	MEGHANA.G	18	12	6	4	6	17	5	2	6	2	12	12	4	6	30
38	1KS17CS043	MEGHANA.G.R	14	12	6	4	6	17	5	2	6	2	12	18	4	6	29
39	1KS17CS044	MOUNIKA.M.K.L	18	12	6	4	6	17	5	2	6	2	12	6	4	6	35
40	1KS17CS045	NEHA.K	17	12	6	4	6	17	5	2	6	2	12	6	4	6	31
41	1KS17CS046	NIKHIL SUBRAMANYA.K	16	12	6	4	6	17	5	2	6	2	12	14	4	6	27
42	1KS17CS047	NIKITHA KATARI	18	11	6	4	5	16	5	2	6	2	11	17	4	6	24
43	1KS17CS048	NISCHITHA.C	18	12	6	4	6	17	5	2	6	2	12	6	4	6	21
44	1KS17CS049	NITISH KUMAR GUPTA	12	11	6	4	6	17	NA	2	6	2	12	15	4	6	21
45	1KS17CS050	NYDILE.G.R	18	12	6	4	6	17	5	2	6	2	12	6	4	6	26
46	1KS17CS051	P.KISHORE	17	12	6	4	6	17	5	2	6	2	12	12	4	6	32
47	1KS17CS052	PARTH P.SHAH	16	12	6	4	6	17	6	2	6	2	6	18	4	6	39
48	1KS17CS053	PAVANI.M	16	12	6	4	6	17	6	2	6	2	10	18	4	6	48
49	1KS17CS055	POOJA.R	17	12	6	4	6	17	6	2	6	2	12	18	4	6	25
50	1KS17CS056	PRASHANTH.K	16	11	6	4	5	18	6	2	6	2	5	10	4	6	33
51	1KS17CS057	PRAVEEN	14	8	6	4	5	15	5	2	6	2	NA	9	4	6	38
52	1KS17CS058	PRAVEEN.A	16	12	6	4	5	18	4	2	6	2	NA	4	4	6	32
53	1KS17CS059	PRAVEEN.S	16	10	6	4	5	18	6	2	6	2	11	14	4	6	21
54	1KS17CS060	RAJASHREE SHIVAKUMAR	18	12	6	4	5	18	6	2	6	2	3	18	4	6	29
55	1KS17CS061	RAKSHITH.R	11	12	6	4	5	18	6	2	6	2	6	12	4	6	28
56	1KS17CS062	ROHITH.K	16	11	6	4	5	18	6	2	6	2	6	18	4	6	21
57	1KS17CS063	ROHITH.R	17	11	6	4	5	18	6	2	6	2	2	12	4	6	24
58	1KS17CS064	ROOPASHREE.N	17	12	6	4	5	18	6	2	6	2	6	18	4	6	42
59	1KS17CS065	ROSHINI.R	17	10	6	4	5	18	5	2	6	2	12	18	4	6	36
60	1KS17CS066	RUCHITHA.G.K	17	12	6	4	5	18	6	2	6	2	6	18	4	6	41
61	1KS17CS067	S.MONIKA	18	11	6	4	5	18	5	2	6	2	6	12	4	6	28
62	1KS17CS069	SALKUMARLS	16	11	6	4	6	18	6	2	6	2	0	12	4	6	41
63	1KS17CS070	SAI SNEHA.S.V	18	12	6	4	6	18	6	2	6	2	12	18	4	6	33
64	1KS17CS071	SAKSHI KUMARI	18	12	6	4	5	18	6	2	6	2	12	12	1	6	33
65	1KS17CS072	SANDESH NAIKAL	17	12	6	4	5	18	6	2	6	2	0	15	4	6	31
66	KS17CS074	SHARANYAH	12	12	6	4	5	6	6	2	6	2	NA	NA	4	0	12/
67	1101705074	HASHANK SHET K	18	12	6	4	5	18	6	2	6	2	12	1.0	4	0	12
60	KS17CS075		18	12	6	4	5	18	6	2	6	2	12	16	4	0	33
61 62 63 64 65 66 67 68	IKS17CS067 IKS17CS069 IKS17CS070 IKS17CS071 IKS17CS072 IKS17CS074 IKS17CS075 IKS17CS075 IKS17CS076	S.MONIKA SAI KUMAR.L.S SAI SNEHA.S.V SAKSHI KUMARI SANDESH NAIKAL SHARANYA.H SHASHANK SHET.K HREYAS.R	18 16 18 18 17 12 18 18	11 11 12 12 12 12 12 12 12 12	6 6 6 6 6 6 6 6	4 4 4 4 4 4 4 4 4	5 6 5 5 5 5 5 5 5	18 18 18 18 18 18 6 18 18	5 6 6 6 6 6 6 6	2 2 2 2 2 2 2 2 2 2 2 2 2	6 6 6 6 6 6 6 6	2 2 2 2 2 2 2 2 2 2 2 2 2 2	6 9 12 12 9 NA 12 12	12 12 18 12 15 NA 18 6	4 4 4 4 4 4 4 4 4 4	6 6 6 6 6 6 6	28 41 33 31 27 12 33 21

-															and the second second		
SL		No we of the Student	LA1		A	141 77-1	1000	IA2			A2		L. L	3		3	SEE
No USN		Name of the Student	CO1	CO2	COI	CO2	CO2	CO3	CO4	CO2	CO3	CO4	CO4	CO5	CO4	COS	
			18	12	6	4	6	18	6	2	6	2	12	18	4	6	60
69	1KS17CS077	SHRI HARSHA KULKARNI	11	12	6	4	5	15	5	2	6	2	NA	12	4	6	25
70	1KS17CS078	SINDHU.H.S	17	12	6	4	6	18	6	2	6	2	12	18	4	6	34
71	1KS17CS079	SINDHU.M	17	12	6	4	5	18	6	2	6	2	8	12	4	6	41
72	1KS17CS081	SPOORTHLR	18	12	6	4	6	18	6	2	6	2	6	18	4	6	33
73	1KS17CS082	SPOORTHI.V	18	12	6	4	5	18	6	2	6	2	NA	NA	4	6	33
74	1KS17CS083	SRIKALA.K.M	17	12	6	4	5	17	6	2	6	2	12	18	4	6	46
75	1KS17CS084	SRUSHTLA	18	12	6	4	6	18	6	2	6	2	12	12	4	6	32
76	1KS17CS085	SUJANA.G.N	17	12	6	4	5	18	6	2	6	2	12	18	4	6	26
77	1KS17CS086	SUPREETHA.R.KASHYAP	16	12	6	4	5	18	6	2	6	2	10	18	4	6	30
78	1KS17CS087	SUPRIYA.K	17	12	6	4	5	18	6	2	6	2	12	18	4	6	39
79	1KS17CS088	SURAKSHITHA.M	18	12	6	4	6	18	6	2	6	2	6	18	4	6	43
80	1KS17CS089	SWATI PAI	18	12	6	4	5	18	6	2	6	2	12	18	4	6	32
81	1KS17CS090	T.K.DHANUSHREE	18	12	6	4	5	18	6	2	6	2	6	12	4	6	29
82	1KS17CS091	CUATTUANYA	17	12	6	4	5	18	6	2	6	2	10	16	4	6	24
83	1KS17CS092	TEJAS.C.S	17	12	6	4	6	18	6	2	6	2	12	18	4	6	51
84	1KS17CS093	THARUN.K	18	12	6	4	5	18	6	2	6	2	2	12	4	6	34
85	1KS17CS094	VARSHINLN.PRAKASH	14	12	6	4	6	12	6	2	6	2	5	12	4	6	27
86	1KS17CS095	VARSHITHA.S	18	12	6	4	5	18	6	2	6	2	8	15	4	6	27
87	1KS17CS096	VARUN ATTIGANAL VENKATESH	17	12	6	4	5	18	6	2	6	2	12	18	4	6	29
88	1KS17CS097	VARUN.R.REDDY	18	12	6	4	5	18	6	2	6	2	4	16	4	6	8
89	1KS17CS098	VIKRAM SHIVAPPA CHATTARAKI	17	12	6	4	5	18	5	2	6	2	NA	18	4	6	9
90	1KS17CS099	VINAY RAMARAO BIRADAR	17	12	6	4	5	16	5	2	6	2	4	12	4	6	23
91	1KS17CS100	VISHAL.M.S	17	12	6	4	5	18	6	2	6	2	6	12	4	6	29
92	1KS17CS101	VYBHAVLJ	18	12	6	4	5	18	6	2	6	2	12	18	4	6	33
93	1KS17CS102	SHRIRAKSHA.S.KANAGO	17	12	6	4	6	17	5	2	6	2	12	13	4	6	21
94	1KS18CS401	KRUTHIKA.B.M	17	11	6	4	6	17	5	2	6	2	NA	NA	4	6	13
	60%	of Maximum marks (X)	11	07	04	02	04	11	04	01	04	01	07	11	02	04	36
	No	o. of students above X	94	94	94	94	94	93	93	94	94	94	66	72	94	94	23
	Total	number of students (Y)	94	94	94	94	94	94	93	94	94	94	86	90	94	94	93
		CO Percentage	100.00	100.00	100.00	100.00	100.00	98.94	100.00	100.00	100.00	100.00	76.74	80.00	100.00	100.00	24.73
			COI	CO2	COI	CO2	CO2	CO3	CO4	CO2	CO3	CO4	CO4	CO5	CO4	COS	SEE

co	CIE	SEE	DIRECT ATTAINMEN T	Level	COURSE EXIT SURVEY	LEVEL	ATTAINME NT
C01	100.00	24.73	62.37	3.00	98.05	3.00	3
CO2	100.00	24.73	62.37	3.00	98.05	3.00	3
C03	99.47	24.73	62.10	3.00	98.05	3.00	3
C04	94.19	24.73	59.46	2.00	98.05	3.00	2.1
C05	90.00	24.73	57.37	2.00	98.05	3.00	2.1
A	ERAGE						2.64

	IAI	Al	IA2	A2	IA3	A3	AVG
COL	100.00	100.00					100.00
con	100.00	100.00	100.00	100			100.00
CO3	100.00	100.00	98 94	100			99.47
CO4			100.00	100	76.74	100	94.19
COS			100.00		80.00	100	90.00

CO Attainment Level	Significance	For Direct attainment , 50% of CIE and 50% of SEE marks are considered.
Level 3	60% and above students should have scored >= 60% of Total marks	For indirect attainment, Course end survey is considered.
Level 2	55% to 59% of students should have scored >= 60% of Total marks	CO attainment is 90% of direct attainment + 10% of Indirect atttainment.
Level 1	50% to 54% of students should have scored >= 60% of Total marks	PO attainment = CO-PO mapping strength/3 • CO attainment .

CO ATTAINMENT

						Co-Po	Mapping	Table						
CO'S	PO1	PO2	PO3	PO4	PO5	PO6	P07	P08	P09	PO10	PO11	PO12	PS01	PS02
CO1	3	2	2	•	2	-	•	•	•	1.00	-	1.00	3	2
CO2	3	2	2	•	2	-	•	•	•	1.00	•	1.00	3	2
CO3	3	2	2	•	2	-				1.00	-	1.00	3	2
CO4	3	2	2	•	2	-				1.00		1.00	3	2
C05	3	2	2	•	2	•	•	•		1.00		1.00	3	2
AVG	3.00	2.00	2.00		2.00					1.00		1.00	3.00	2.00

PO ATTAINMENT TABLE																
cos	CO Attainment in %	CO RESUL T	POI	PO2	PO3	P04	PO5	PO6	PO7	PO8	P09	PO10	PO11	PO12	PSO1	PSO1
C01	3.00	Y	3.00	2.00	2.00		2.00					1.00		1.00	2.00	2.00
C02	3.00	Y	3.00	2.00	2.00		2.00				-	1.00		1.00	3.00	2.00
C03	3.00	Y	3.00	2.00	2.00		2.00				•	1.00	•	1.00	3.00	2.00
CO4	2 10	v	2 10	1.40	1.40	-	1.40	•	•	•	•	1.00	•	1.00	3.00	2.00
004	2.10	t ÷ t	2.10	1.40	1.40		1.40	•	•	•	•	0.70		0.70	2.10	1.40
	2.10		2.10	1.40	1.40	•	1.40	•		•		0.70		0.70	2 10	1.40
Average			2.64	1.76	1.76	•	1.76	•				0.88		0.88	2.64	1.76

8.8 Cours Incharge

HOD 6

Head of the Department Dept. of Computer Science & Engg K.S. Institute of Technology Bengaluru -560 109