

10 Process Management Process concept L+D
PPT using MS

Teams Platform
1 10 3-5-2021

11 Process scheduling L+D
PPT using MS

Teams Platform
1 11 5-5-2021

12 Operations on processes L+D
PPT using MS

Teams Platform
1 12 6-5-2021

13 Inter process communication L+D
PPT using MS

Teams Platform
1 13 7-5-2021

MODULE 2

14
Overview; Multithreading models;

L+ D
PPT using MS

Teams Platform
1 14 10-5-2021

15
Thread Libraries; Threading issues.

L+D
PPT using MS

Teams Platform
1 15 12-5-2021

16
Process Scheduling: Basic concepts; Scheduling Criteria

L+D
PPT using MS

Teams Platform
1 16 17-5-2021

17
Scheduling Algorithms

L+D
PPT using MS

Teams Platform
2 18

19-5-2021,

20-5-2021

18
Multiple-processor scheduling; Thread scheduling.

L+D
PPT using MS

Teams Platform
1 19 21-5-2021

19 Internal Test Assessment I 20 24-5-2021

20
Process Synchronization: Synchronization: The critical

section problem
L+D

PPT using MS

Teams Platform
1 21 27-5-2021

21
Peterson’s solution; Synchronization hardware

L+D
PPT using MS

Teams Platform
1 22 28-5-2021

22
Semaphores

L+D
PPT using MS

Teams Platform
1 23 31-5-2021

23
Classical problems of synchronization

L+D
PPT using MS

Teams Platform
1 24 2-6-2021

24 Pedagogy L+D
PPT using MS

Teams Platform
1 25 3-6-2021

25
Monitors

L+D
PPT using MS

Teams Platform
1 26 4-6-2021

 MODULE 3

26
System model; Deadlock characterization;

L+D

PPT using MS

Teams Platform
1 27 5-6-2021

Operating Systems (15CS64)

Vaneeta M, Assoc Prof., Dept of CSE, KSIT

OPERATING SYSTEMS

MODULE 1: INTRODUCTION OPERATING-SYSTEM

STRUCTURES PROCESSES

1.1 Operating System

1.1 What Operating Systems Do

1.1.1 User View

1.1.2 System View

1.2 Computer-System Organization

1.2.1 Computer System Organization

1.2.2 Storage Structure

1.2.3 I/O Structure

1.3 Computer-System Architecture

1.3.1 Single Processor Systems

1.3.2 Multiprocessor Systems

1.3.3 Clustered Systems

1.4 Operating-System Structure

1.4.1 Batch systems

1.4.2 Multi-Programmed Systems

1.4.3 Time-Sharing systems

1.5 Operating-System Operations

1.5.1 Dual Mode Operation

1.5.2 Timer

1.6 Process Management

1.7 Memory Management

1.8 Storage Management

1.8.1 File System Management

1.8.2 Mass Storage Management

1.8.3 Caching

1.8.4 I/O Systems

1.9 Protection and Security

1.10 Distributed System

1.11Special-Purpose Systems

1.11.1 Real-Time Embedded Systems

1.11.2 Multimedia Systems

1.11.3 Handheld Systems

1.12 Computing Environments

1.12.1 Traditional Computing

1.12.2 Client-Server Computing

1.12.3 Peer-to-Peer Computing

1.12.4 Web Based Computing

Chapter 2

2.1 Operating-System Services

2.2 User and Operating-System Interface

2.3 System Calls

Operating Systems (15CS64)

Vaneeta M, Assoc Prof., Dept of CSE, KSIT

2.4 Types of System Calls

2.4.1 Process Control

2.4.2 File Management

2.4.3 Device Management

2.4.4 Information Maintenance

2.4.5 Communication

2.4.5.1 Message Passing Model

2.4.5.2 Shared Memory Model

2.5 System Programs

2.6 Operating-System Design and Implementation

2.6.1 Design Goals

2.6.2 Mechanisms & Policies

2.6.3 Implementation

2.7 Operating-System Structure

2.7.1 Simple Structure

2.7.2 Layered Approach

2.7.3 Micro-Kernels

2.7.4 Modules

2.8 Virtual Machines

2.9 Operating-System Generation

2.10 System Boot

Chapter 3:

3.1 Process Concept

3.1.1 The Process

3.1.2 Process State

3.1.3 Process Control Block

3.2 Process Scheduling

3.2.1 Scheduling Queues

3.2.2 Schedulers

3.2.3 Context Switch

3.3 Operations on Processes

3.3.1 Process Creation

3.3.2 Process Termination

3.4 Inter-process Communication

3.4.1 Shared-Memory Systems

3.4.2 Message-Passing Systems

3.4.2.1 Naming

3.4.2.2 Synchronization

3.4.2.3 Buffering

Operating Systems (15CS64)

Vaneeta M, Assoc Prof., Dept of CSE, KSIT

MODULE 1: CHAPTER 1: INTRODUCTION

Operating System

• An OS is a program that acts as an intermediary between

→ computer-user and
→ computer-hardware.

• It also provides a basis for application-programs

• Goals of OS:
• To execute programs.

• To make solving user-problems easier.

• To make the computer convenient to use.

• The OS (also called kernel) is the one program running at all times on the computer.

• Different types of OS:
• Mainframe OS is designed to optimize utilization of hardware.

• Personal computer (PC) OS supports complex game, business application.
• Handheld computer OS is designed to provide an environment in which a user can easily
interface with the computer to execute programs.

1.1What Operating Systems do?

• Four components of a computer (Figure 1.1):

1) Hardware

2) OS

3) Application programs and

4) Users

Figure 1.1 Abstract view of the components of a computer system

• Hardware provides basic computing-resources:
→ CPU

→ memory and
→ I/O devices.

• Application-program defines how the resources are used to solve computing-problems of the

users. Ex: word processors, spread sheets, compilers.

Operating Systems (15CS64)

Vaneeta M, Assoc Prof., Dept of CSE, KSIT

• The OS controls & co-ordinates the use of hardware among various application-program for

various users.

• Two views of OS: 1) User and

2) System.

1.1.1 User View

• The user's view of the computer depends on the interface being used:

• Most users use a PC consisting of a monitor, keyboard and ystem-unit.
• The OS is designed mostly for ease of use.
• Some attention is paid to performance.

• No attention is paid to resource utilization.
The OS is optimized for the single-user experience.

1) Some users use a terminal connected to a mainframe or (a
minicomputer). The OS is designed

→ to maximize resource utilization.

→ to assure that no individual user takes more than her fair share.

2) Some users use a workstation connected to network.

• The users have dedicated resources such as networking and servers.

• The OS is designed to compromise between

→ individual usability and

→ resource utilization.

4) Some users use a handheld computer.

• The OS is designed mostly for individual usability.

• Performance per unit of battery life is a very important factor.

1.1.2 System View

1) An OS as a resource allocator
o Resources used to solve a computing-problem:

 CPU time
 memory-space

 file-storage space and
 I/0 devices.

• The OS manages and allocates the above resources to programs and the users.

2) An OS is a control program
The OS is needed to control:

→ operations of I/0 devices and
→ execution of user-programs to prevent errors.

1.2 Computer System Organization

1.2.1 Computer System Organization

A computer consists of : one or more CPUs and no. of device-controllers (Figure 1.2).

• Controller is in charge of a specific type of device (for ex: audio devices).

Operating Systems (15CS64)

Vaneeta M, Assoc Prof., Dept of CSE, KSIT

• CPU and controllers can execute concurrently.

• A memory-controller is used to synchronize access to the shared-memory.

• Following events occur for a computer to start running:

1) Bootstrap program is an initial program that runs when computer is powered-up. → Bootstrap program: initializes all the system from registers to memory-contents and
→ loads OS into memory.

2) Then, OS
→ starts executing the first process (such as "init") and

→ waits for some event to occur.

3) The occurrence of an event is signaled by an interrupt from either the hardware or the

software (Figure 1.3).

i) Hardware may trigger an interrupt by sending a signal to

the CPU. ii) Software may trigger an interrupt by executing a

system-call.

4) When CPU is interrupted, the CPU
→ stops current computation and
→ transfers control to ISR (interrupt service routine).

5) Finally, the ISR executes; on completion, the CPU resumes the interrupted computation.

Common Functions of Interrupts

• Interrupt transfers control to the ISR generally, through the interrupt-vector, which contains the

addresses of all the service routines. Interrupt architecture must save the address of the interrupted-

instruction.

• Incoming interrupts are disabled while another interrupt is being processed to prevent a lost
interrupt.

• A trap is a software-generated interrupt caused either by an error or a user request.

• A modern OS is interrupt-driven.

Figure 1.2 A modern computer system

Operating Systems (15CS64)

Vaneeta M, Assoc Prof., Dept of CSE, KSIT

Figure 1.3 Interrupt time line for a single process doing output

1.2.2 Storage Structure

• Programs must be in main-memory (also called RAM) to be executed.

• Interaction with memory is done through a series of load or store instructions.

Moves a word from main-memory to an internal register within the

CPU

 Moves the content of a register to main-memory.

• Also, the CPU automatically loads instructions from main-memory for execution.

• Ideally, we want the programs & data to reside in main-memory permanently. This is not possible

for

2 reasons:

1) Main-memory is small.

2) Main-memory is volatile i.e. it loses its contents when powered-off.

• Most computers provide secondary-storage as an extension of main-memory.

• Main requirement:

The wide range of storage-systems can be organized in a hierarchy (Figure 1.4).

• The higher levels are expensive, but they are fast.
The lower levels are inexpensive, but they are slow.

Figure 1.4 Storage-device hierarchy

1.2.3 I/O Structure

• A computer consists of CPUs and multiple device controllers (Figure 1.5).

• A controller is in charge of a specific type of device.

• The controller maintains
→ some local buffer and

→ set of special-purpose registers.

Operating Systems (15CS64)

Vaneeta M, Assoc Prof., Dept of CSE, KSIT

• Typically, OS has a device-driver for each controller.

• Interrupt-driven I/O:

1) Driver loads the appropriate registers within the controller.

2) Controller examines the contents of registers to determine what action to take.

3) Controller transfers data from the device to its local buffer.

4) Controller informs the driver via an interrupt that it has finished its operation.

5) Driver then returns control to the OS.

• Problem: Interrupt-driven I/O produces high overhead when used for bulk data-transfer.

Solution: Use DMA (direct memory access).

• In DMA, the controller transfers blocks of data from buffer-storage directly to main memory

without CPU intervention.

Figure 1.5 How a modern computer system works

1.3 Computer System Architecture

1) Single-Processor Systems

2) Multiprocessor Systems

3) Clustered Systems

1.3.1 Single Processor Systems

• The system has only one general-purpose CPU.

• The CPU is capable of executing a general-purpose instruction-set.

• These systems range from PDAs through mainframes.

• Almost all systems have following processors:

Include disk, keyboard, and graphics controllers.

2) General Purpose Processors

Include I/O processors.

• Special-purpose processors run a limited instruction set and do not run user-processes.

1.3.2 Multi-Processor Systems

• These systems have two or more processors which can share:

Operating Systems (15CS64)

Vaneeta M, Assoc Prof., Dept of CSE, KSIT

→ bus → clock → memory/peripheral devices

• Advantages:

1) Increased Throughput

By increasing no. of processors, we expect to get more work done in less time.

2) Economy of Scale

These systems are cheaper because they can share

→ peripherals → mass-storage → power-supply.

If many programs operate on same data, they will be stored on one disk & all processors can

share them.

3) Increased Reliability

The failure of one processor will not halt the system.

• Two types of multiple-processor systems: 1) Asymmetric multiprocessing (AMP) and

 2) Symmetric multiprocessing (SMP)

1) Asymmetric Multiprocessing

• This uses master-slave relationship (Figure 1.6).

• Each processor is assigned a specific task.

• A master-processor controls the system.

• The master-processor schedules and allocates work to the slave-processors.

2) Symmetric Multiprocessing

• Each processor runs an identical copy of S.

• All processors are peers; no master-slave relationship exists between processors.

• Advantages:

1) Many processes can run simultaneously.

2) Processes and resources are shared dynamically among the various processors.

• Disadvantage:

1) Since CP s are separate, one CPU may be sitting idle while another CPU is overloaded.
This results in inefficiencies.

Figure 1.6 Symmetric multiprocessing architecture

Operating Systems (15CS64)

Vaneeta M, Assoc Prof., Dept of CSE, KSIT

1.3.3 Clustered Systems

• These systems consist of two or more systems coupled together (Figure 1.7).

• These systems share storage & closely linked via LAN.

• Advantage:

1) Used to provide high-availability service.

• High-availability is obtained by adding a level of redundancy in the system.

• Working procedure:
• A cluster-software runs on the cluster-nodes.

• Each node can monitor one or more other nodes (over the LAN).

• If the monitored-node fails, the monitoring-node can
• take ownership of failed-node‟s storage and

• restart the applications running on the failed-node.

• The users and clients of the applications see only a brief interruption of service.

• Two types are: Asymmetric and Symmetric

1) Asymmetric Clustering

• One node is in hot-standby mode while the other nodes are running the applications.

• The hot-standby node does nothing but monitor the active-server.

• If the server fails, the hot-standby node becomes the active server.

• Two or more nodes are running applications, and are monitoring each other.

• Advantage:

1) This mode is more efficient, as it uses all of the available hardware.

• It does require that more than one application be available to run.

Figure 1.7 General structure of a clustered system

1.4 Operating System Structure

1) Batch Systems

2) Multi-Programmed Systems

3. Time-Sharing Systems

1.4.1 Batch Systems

• Early computers were physically enormous machines run from a console.

• The common input devices were card readers and tape drives.

• The common output devices were line printers, tape drives, and card punches.

• The user
→ prepared a job which consisted of the program, the data, and control information
→ submitted the job to the computer-operator.

Operating Systems (15CS64)

Vaneeta M, Assoc Prof., Dept of CSE, KSIT

• The job was usually in the form of punch cards.

• At some later time (after minutes, hours, or days), the output appeared.

• To speed up processing, operators batched together jobs with similar needs and ran them through

the computer as a group.

• Disadvantage: 1) The CPU is often idle, because the speeds of the mechanical I/O devices.

1.4.2 Multi-Programmed Systems

• Multiprogramming increases CPU utilization by organizing jobs so that the CPU always has one

to execute.

• The idea is as follows:

1) OS keeps several jobs in memory simultaneously (Figure 1.8).

2) OS picks and begins to execute one of the jobs in the memory. Eventually, the job may
have to wait for some task, such as an I/O operation, to complete.

3) OS simply switches to, and executes, another job.

4) When that job needs to wait, the CPU is switched to another job, and so on.

5) As long as at least one job needs to execute, the CPU is never idle.
• If several jobs are ready to be brought into memory, and if there is not enough room for all of them, then the system must choose among them. Making this decision is job scheduling.
• If several jobs are ready to run at the same time, the system must choose among them. Making

this decision is CPU scheduling.

Figure 1.8 Memory layout for a multiprogramming system

1.4.3 Time Sharing Systems

• Time sharing (or multitasking) is a logical extension of multiprogramming.

• The CPU executes multiple jobs by switching between them.

• Switching between jobs occur so frequently that the users can interact with each program while it

is running.

• Many users are allowed to share the computer simultaneously.

• CPU scheduling and multiprogramming are used to provide each user with a small portion of a

time-shared computer.

• To obtain a good response time, jobs may have to be swapped in and out of main memory to the

disk (called as backing store).

• Virtual memory is a technique that allows the execution of a job that may not be completely in

memory.

Operating Systems (15CS64)

Vaneeta M, Assoc Prof., Dept of CSE, KSIT

• Advantage of virtual-memory:

1) Programs can be larger than physical memory.

• Main requirements:
• The system must provide a file-system.

• The system must provide disk-management.

• The system must provide CPU-scheduling to support concurrent execution.

• The system must provide job-synchronization to ensure orderly execution.

1.5 Operating System Operations
• Modern OS is interrupt driven.
• Events are always signaled by the occurrence of an interrupt or a trap.

• ISR (Interrupt Service Routine) is provided that is responsible for dealing with the interrupt.

• Since the operating system and the users share the hardware and software resources of the computer

system, we need to make sure that an error in a user program could cause problems only for the one

program that was running.

• For example, if a process gets stuck in an infinite loop, this loop could prevent the correct

operation of many other processes.

• One erroneous program might modify another program, the data of another program, or even the

operating system itself.

• A properly designed operating system must ensure that an incorrect (or malicious) program cannot

cause other programs to execute incorrectly.

1.5.1 Dual Mode Operation

• Problem: We must be able to differentiate between the execution of

→ OS code and user-defined code.

• Two modes of operation (Figure 1.9): 1) User mode and

2) Kernel mode

• A mode bit is a bit added to the hardware of the computer to indicate the current

mode: i.e. kernel (0) or user (1)

Figure 1.9 Transition from user to kernel mode

• Working principle:

1) At system boot time, the hardware starts in kernel-mode.

2) The OS is then loaded and starts user applications in user-mode.

3) Whenever a trap or interrupt occurs, the hardware switches from user-mode to kernel-

mode (that is, changes the state of the mode bit to 0).

Operating Systems (15CS64)

Vaneeta M, Assoc Prof., Dept of CSE, KSIT

4) The system always switches to user-mode (by setting the mode bit to 1) before passing

control to a user-program.

• Dual mode protects
→ OS from errant users and

→ errant users from one another.

• Privileged instruction is executed only in kernel-mode.

• If an attempt is made to execute a privileged instruction in user-mode, the hardware treats it as

illegal and traps it to the OS.

• A system calls are called by user-program to ask the OS to perform the tasks on behalf of the user
program.

1.5.2 Timer

• Problem: We cannot allow a user-program to get stuck in an infinite loop and never return control

to the OS.

Solution: We can use a timer.

• A timer can be set to interrupt the computer after a specific period.

• The period may be fixed (for ex: 1/60 second) or variable (for ex: from 1ns to 1ms).

• A variable timer is implemented by a fixed-rate clock and a counter.

• Working procedure:

1) The OS sets the counter.

2) Every time the clock ticks, the counter is decremented.

3) When the counter reaches 0, an interrupt occurs.

• The instructions that modify the content of the timer are privileged instructions.

1.6 Process Management

• The OS is responsible for the following activities:

1) Creating and deleting both user and system processes

2) Suspending and resuming processes

3) Providing mechanisms for process synchronization

4) Providing mechanisms for process communication

5) Providing mechanisms for deadlock handling

• A process needs following resources to do a task:

→ CPU

→ memory and

→ files.

• The resources are allocated to process
→ when the process is created or

→ while the process is running.

• When the process terminates, the OS reclaims all the reusable resources.

• A program by itself is not a process;

1) A program is a passive entity (such as the contents of a file stored on disk).

2) A process is an active entity.

• Two types of process:

1) Single-threaded process has one PC(program counter) which specifies location of the
next instruction to be executed.

Operating Systems (15CS64)

Vaneeta M, Assoc Prof., Dept of CSE, KSIT

2) Multi-threaded process has one PC per thread which specifies location of next

instruction to execute in each thread

1.7 Memory Management

• The OS is responsible for the following activities:

1) Keeping track of which parts of memory are currently being used and by whom

2) Deciding which processes are to be loaded into memory when memory space becomes

available

3) Allocating and de-allocating memory space as needed.

• Main memory is the array of bytes ranging from hundreds to billions.

• Each byte has its own address.

• The CPU

→ reads instructions from main memory during the instruction-fetch cycle.
→ reads/writes data from/to main-memory during the data-fetch cycle.

• To execute a program:

1) The program will be

→ loaded into memory and
→ mapped to absolute addresses.

2) Then, program accesses instructions & data from memory by generating absolute

addresses.

3) Finally, when program terminates, its memory-space is freed.

• To improve CPU utilization, keep several programs will be kept in memory

• Selection of a memory-management scheme depends on hardware-design of the system.

1.8 Storage Management

1) File-System Management

2) Mass-Storage Management

3) Caching

1.8.1 File System Management

• The OS is responsible for following activities:

1) Creating and deleting files.

2) Creating and deleting directories.

3) Supporting primitives for manipulating files & directories.

4) Mapping files onto secondary storage.

5) Backing up files on stable (non-volatile) storage media.

• Computer stores information on different types of
physical media. For ex: magnetic disk, optical disk.

• Each medium is controlled by a device (e.g. disk drive).

• The OS
→ maps files onto physical media and

→ accesses the files via the storage devices

• File is a logical collection of related information.

• File consists of both program & data.

• Data files may be numeric, alphabets or binary.

• When multiple users have access to files, access control (read, write) must be specified.

Operating Systems (15CS64)

Vaneeta M, Assoc Prof., Dept of CSE, KSIT

1.8.2 Mass Storage Management

• The OS is responsible for following activities:

1) Free-space management

2) Storage allocation and

3) Disk scheduling.

• Usually, disks used to store

→ data that does not fit in main memory or

→ data that must be kept for a ―long‖ period of time.

• Most programs are stored on disk until loaded into memory.

• The programs include

→ compilers
→ word processors and

→ editors.

• The programs use the disk as both the source and destination of their processing.

• Entire speed of computer operation depends on disk and its algorithms.

1.8.3 Caching

• Caching is an important principle of computer systems.

• Information is normally kept in some storage system (such as main memory).

• As it is used, it is copied into a faster storage system called as the cache on a temporary basis.

• When we need a particular piece of information:

1) We first check whether the information is in the cache.

2) If information is in cache, we use the information directly from the cache.

3) If information is not in cache, we use the information from the source, putting a copy in

the cache under the assumption that we will need it again soon.

• In addition, internal programmable registers, such as index registers, provide high-speed cache

for main memory.

• The compiler implements the register-allocation and register-replacement algorithms to decide

which information to keep in registers and which to keep in main memory.
• Data transfer from cache to CPU and registers is usually a hardware function, with no operating-

system intervention.

• In contrast, transfer of data from disk to memory is usually controlled by the operating system.
• cache coherency occurs in multiprocessing.

• Most systems have an instruction cache to hold the instructions expected to be executed next.

• Most systems have one or more high-speed data caches in the memory hierarchy

• Because caches have limited size, cache management is an important design problem
Careful selection of cache size & of a replacement policy can result in greatly increased

performance

Operating Systems (15CS64)

Vaneeta M, Assoc Prof., Dept of CSE, KSIT

1.8.4 I/O Systems

• The OS must hide peculiarities of hardware devices from users.

• In UNIX, the peculiarities of I/O devices are hidden from the bulk of the OS itself by the I/O

subsystem.

• The I/O subsystem consists of

1) A memory-management component that includes buffering, caching, and spooling.

2) A general device-driver interface.

3) Drivers for specific hardware devices.

• Only the device driver knows the peculiarities of the specific device to which it is assigned.

1.9 Protection and Security

• Protection is a mechanism for controlling access of processes or users to resources defined by OS.

• This mechanism must provide
→ means for specification of the controls to be imposed and

→ means for enforcement.

• Protection can improve reliability by detecting latent errors at the interfaces between subsystems.

• An unprotected resource cannot defend against use (or misuse) by an unauthorized or incompetent

user.

• A protection-oriented system provides a means to distinguish between authorized and unauthorized

usage.

Security Security

• Security means defense of the system against internal and external attacks.

• The attacks include
→ viruses and worms

→ DOS(denial-of-service)
→ identity theft.

• Protection and security require the system to be able to distinguish among all its users.

1) User identities (user IDs) include name and associated number, one per user.User IDs are

associated with all files (or processes) of that user to determine access control.

 2) Group identifier (group ID): can be used to define a group name and the set of users

belonging to that group.

A user can be in one or more groups, depending on operating-system design decisions.

1.10 Distributed System

• This is a collection of physically separate, possibly heterogeneous computer-systems.

• The computer-systems are networked to provide the users with access to the various resources.

• Access to a shared resource increases

Operating Systems (15CS64)

Vaneeta M, Assoc Prof., Dept of CSE, KSIT

→ computation speed
→ functionality

→ data availability and
→ reliability

• A network is a communication path between two or more systems.

• Networks vary by the
→ protocols used

→ distances between nodes and
→ transport media.

• Common network protocol are
→ TCP/IP
→ ATM.

• Networks are characterized based on the distances between their nodes.

→ A local-area network (LAN) connects computers within a building.
→ A wide-area network (WAN) usually links buildings, cities, or countries.

→ A metropolitan-area network (MAN) could link buildings within a city.

• The media to carry networks are equally varied. They include
→ copper wires,

→ fiber strands, and
→ wireless transmissions.

1.11 Special Purpose Systems

1) Real-Time Embedded Systems

2) Multimedia Systems

3) Handheld Systems

1.11.1 Real-Time Embedded Systems

• Embedded computers are the most prevalent form of computers in existence.

• These devices are found everywhere, from car engines and manufacturing robots to VCRs and

microwave ovens.

• They tend to have very specific tasks.

• The systems they run on are usually primitive, and so the operating systems provide limited
features.

• Usually, they prefer to spend their time monitoring & managing hardware devices such as
→ automobile engines and

→ robotic arms.

• Embedded systems almost always run real-time operating systems.

• A real-time system is used when rigid time requirements have been placed on the operation of a
processor.

1.11.2 Multimedia Systems

• Multimedia data consist of audio and video files as well as conventional files.

• These data differ from conventional data in that multimedia data must be delivered(streamed)
according to certain time restrictions.

Operating Systems (15CS64)

Vaneeta M, Assoc Prof., Dept of CSE, KSIT

• The nature of these data affects the design of operating systems that support the requirements of

multimedia systems

• Multimedia describes a wide range of applications. These include
→ audio files such as MP3

→ DVD movies

→ video conferencing
→ live webcasts of speeches

1.11.3 Handheld Systems

• Handheld systems include
→ PDAs and

→ cellular telephones.
These systems use special purpose embedded operating systems.

• Main challenge faced by developers of handheld systems: Limited size of devices.

Because of small size 5 inches in height and 3 inches in width, and it weighs less than one-half pound,

most handheld devices have a
• small amount of memory(512 KB and 128 MB)

• slow processors, Processors for most handheld devices run at a fraction of the speed of a

processor in a PC. Most handheld devices use smaller, slower processors that consume less

power. Therefore, the operating system and applications must be designed not to tax the

processor.

→ small display screens home computer may measure up to 30 inches, the display for a

handheld device is often no more than 3 inches square. Tasks, such as reading e-mail and

browsing web pages, must be condensed into smaller displays. One approach for displaying

the content in web pages is web clipping, where only a small subset of a web page is

delivered and displayed on the handheld device.

1.12 Computing Environments

1) Traditional Computing

2) Client-Server Computing

3) Peer-to-Peer Computing

4) Web-Based Computing

1.12.1 Traditional Computing

• Used in office environment:
PCs connected to a network, with servers providing file and print services.
Terminals attached to mainframes were prevalent at many companies

• Web technologies are stretching the boundaries of traditional computing.
Companies establish portals, which provide web accessibility to their internal servers.

Network computers are terminals that understand web computing.

Handheld PDAs can connect to wireless networks to use company's web portal.

• Used in home networks:
At home, most users had a single computer with a slow modem.

Some homes have firewalls to protect their networks from security breaches.

• Systems were either batch or interactive.

1) Batch system processed jobs in bulk, with predetermined input.

2) Interactive systems waited for input from users.

1.12.2 Client-Server Computing

Operating Systems (15CS64)

Vaneeta M, Assoc Prof., Dept of CSE, KSIT

• Servers can be broadly categorized as (Figure 1.10): 1) Compute servers and

2) File servers

1) Compute-server system provides an interface to which a client can send a request to perform
an action (for example, read data).

 In response, the server executes the action and sends back results to the client.

2) File-server system provides a file-system interface where clients can create, read, and delete files.
 For example: web server that delivers files to clients running web browsers.

Figure 1.10 General structure of a client–server system.

1.12.3 Peer-to-Peer Computing

• All nodes are considered peers, and each may act as either a client or a server(Figure 1.11).

• Advantage:

1) In a client-server system, the server is a bottleneck;

but in a peer-to-peer system, services can be provided by several nodes
distributed throughout the network.

• A node must first join the network of peers.

• Determining what services are available is done in one of two general ways:

1) When a node joins a network, it registers its service with a centralized lookup service on

the network.

Any node desiring a specific service first contacts this centralized lookup service to

determine which node provides the service.

2) A peer broadcasts a request for the service to all other nodes in the network. The node

(or nodes) providing that service responds to the peer.

Figure 1.11 Peer-to-peer system with no centralized service.

Operating Systems (15CS64)

Vaneeta M, Assoc Prof., Dept of CSE, KSIT

1.12.4 Web-Based Computing

• The Web has become ubiquitous, leading to more access by a wider variety of devices

• This includes
→ PC
→ handheld PDA &

→ cell phones

Web computing has increased the emphasis on networking. Devices that were not previously

networked now include wired or wireless access, have faster network connectivity, provided by either

improved networking technology, optimized network implementation code,or both.

• Load balancer is a new category of devices to manage web traffic among similar servers.

• In load balancing, network connection is distributed among a pool of similar servers.

• More devices becoming networked to allow web access

• Use of operating systems like Windows 95, client-side, have evolved into Linux and Windows

XP, which can be clients and servers

MODULE 1 (CONT.): CHAPTER 2

OPERATING-SYSTEM STRUCTURES

2.1 Operating System Services

• An OS provides an environment for the execution of programs.

• It provides services to

→ programs and
→ users.

Figure 2.1 A view of OS services

• Common functions helpful to the user are (Figure 2.1):

Almost all OS have a user-interface (UI).

Different interfaces are:

i) CLI (Command

Line Interface) ¤ This uses

→ text commands and
→ method for entering the text commands.

Operating Systems (15CS64)

Vaneeta M, Assoc Prof., Dept of CSE, KSIT

ii) Batch Interface

¤ Commands & directives to control those commands are entered into files, and

those files are executed.

iii) GUI (Graphical User Interface)

¤ The interface is a window-system with a pointing-device to
→ direct I/0

→ choose from menus and

→ make selections.

2) Program Execution

The system must be able to

→ load a program into memory and
→ run the program.

The program must be able to end its execution, either normally or abnormally.

3) I/O Operations

The OS must provide a means to do I/O operations because users cannot control I/O devices

directly.

For efficiency and protection, users usually cannot control I/O devices directly. Therefore, the

operating system must provide a means to do I/O. For specific devices, special functions may be

desired (ex: to blank CRT screen).

4) File-System Manipulation

Programs need to

→ read & write files (or directories)

→ create & delete files
→ search for a given file and

→ allow or deny access to files.

5) Communications

In some situations, one process needs to communicate with another process.

Communications may be implemented via

1. Shared memory or

2. Message passing

In message passing, packets of information are moved between processes by OS.

6) Error Detection

Errors may occur in

→ CPU & memory-hardware (ex: power failure)
→ I/O devices (ex: lack of paper in the printer) and

→ user program (ex: arithmetic overflow)

For each type of error, OS should take appropriate action to ensure correct &

consistent computing.

• Common functions for efficient operation of the system are:

Operating Systems (15CS64)

Vaneeta M, Assoc Prof., Dept of CSE, KSIT

o When multiple users are logged on the system at the same time, resources must be allocated

to each of them.

o The OS manages different types of resources.

o Some resources (say CPU cycles) may have special allocation code.

• Other resources (say I/O devices) may have general request & release code.

o We want to keep track of
o which users use how many resources and

o which kinds of resources.

o This record keeping may be used for

o accounting (so that users can be billed) or
o gathering usage-statistics.

o When several separate processes execute concurrently, it should not be possible for one

process to interfere with the others or with the OS itself.

o Protection involves ensuring that all access to resources is controlled.

• Security starts with each user having authenticated to the system by means of a password.

2.2 User Operating System Interface

• Two ways that users interface with the OS: 1) Command Interpreter (Command-line

interface)

2) Graphical User Interface (GUI)

1) Command Interpreter

• Main function:

To get and execute the next user-specified command (Figure 1.13).

• The commands are used to manipulate files i.e. create, copy, print, execute, etc.

• Two general ways to implement:

1) Command interpreter itself contains code to execute command.

2) Commands are implemented through system programs. This is used by UNIX.

2) Graphical User Interfaces

• No entering of commands but the use of a mouse-based window and menu system (Figure 2.2).

• The mouse is used to move a pointer to the position of an icon that represents

→ file
→ program or

→ folder

• By clicking on the icon, the program is invoked

Figure 2.2 The Bourne shell command interpreter in Solaris 10.

Operating Systems (15CS64)

Vaneeta M, Assoc Prof., Dept of CSE, KSIT

2.3 System Calls

• These provide an interface to the OS services.

• These are available as routines written in C and C++.

• The programmers design programs according

to an API. (API=application

programming interface).

• The API

→ defines a set of functions that are available to the programmer (Figure 2.3).
→ includes the parameters passed to functions and the return values.

• The functions that make up an API invoke the actual system-calls on behalf of the programmer.

• Benefits of API:
1) Program portability.

2) Actual system-calls are more detailed (and difficult) to work with than the API available

to the programmer.

• Three general methods are used to pass parameters to the OS:

1) via registers.

2) Using a table in memory & the address is passed as a parameter in a register (Figure 2.3).

3) The use of a stack is also possible where parameters are pushed onto a stack and popped
off the stack by the OS.

Figure 2.3 Example of how system calls are used.

Figure 2.4 Passing of parameters as a table.

2.4 Types of System Calls

Operating Systems (15CS64)

Vaneeta M, Assoc Prof., Dept of CSE, KSIT

1) Process control

2) File management

3) Device management

4) Information maintenance

5) Communications

2.4.1 Process Control

• System calls used:

• end, abort

• load, execute

• create process, terminate process

• get process attributes, set process attributes

• wait for time

• wait event, signal event

• allocate and free memory

• A running program needs to be able to halt its execution either normally (end) or abnormally

(abort).

• If program runs into a problem, error message may be generated and dumped into a file.

This file can be examined by a debugger to determine the cause of the problem.

• The OS must transfer control to the next invoking command interpreter.

• Command interpreter then reads next command.

• In interactive system, the command interpreter simply continues with next command.

• In GUI system, a pop-up window will request action from user.

• A process executing one program can load and execute another program.

• Where to return control when the loaded program terminates?

1) If control returns to the existing program when the new program terminates, we must

save the memory image of the existing program. (Thus, we have effectively created a
mechanism for one program to call another program).

2) If both programs continue concurrently, we created a new process to be

multiprogrammed.

• We should be able to control the execution of a process. i.e. we should be able to determine and

reset the attributes of a process such as:
→ job's priority or

→ maximum execution time

• We may also want to terminate process that we created if we find that it
→ is incorrect or

→ is no longer needed.

• We may need to wait for processes to finish their execution.

We may want to wait for a specific event to occur.

• The processes should then signal when that event has occurred.

Operating Systems (15CS64)

Vaneeta M, Assoc Prof., Dept of CSE, KSIT

2.4.2 File Management

• System calls used:

• create file, delete file

• open, close

• read, write, reposition

• get file attributes, set file attributes

• Working procedure:

1) We need to create and delete files.

2) Once the file is created,
→ we need to open it and to use it.
→ we may also read or write.

3) Finally, we need to close the file.

• We need to be able to
→ determine the values of file-attributes and

→ reset the file-attributes if necessary.

• File attributes include

→ file name

→ file type
→ protection codes and

→ accounting information.

2.4.3 Device Management

• System calls used:
• request device, release device;

• read, write, reposition;

• get device attributes, set device attributes;

• logically attach or detach devices.

• A program may need additional resources to execute.

• Additional resources may be
→ memory

→ tape drives or

→ files.

• If the resources are available, they can be granted, and control can be returned to the user program;

If the resources are unavailable, the program may have to wait until sufficient resources are

available.

• Files can be thought of as virtual devices. Thus, many of the system calls used for files are also

used for devices.

• In multi-user environment,

1) We must first request the device, to ensure exclusive use of it.

2) After we are finished with the device, we must release it.

• Once the device has been requested (and allocated), we can read and write the device.

• Due to lot of similarity between I/O devices and files, OS (like UNIX) merges the two into a

combined file-device structure.

Operating Systems (15CS64)

Vaneeta M, Assoc Prof., Dept of CSE, KSIT

• UNIX merges I/O devices and files into a combined file-device structure.

2.4.4 Information Maintenance

• System calls used:

• get time or date, set time or date

• get system data, set system data

• get process, file, or device attributes

• set process, file, or device attributes

• Many system calls exist simply for the purpose of transferring information between the user

program and the OS.

For ex,

1) Most systems have a system call to return
→ current time and

→ current date.

2) Other system calls may return information about the system, such as

→ number of current users

→ version number of the OS

→ amount of free memory or disk space.

3) The OS keeps information about all its processes, and there are system calls to

access this information.

2.4.5 Communication

• System calls used:

• create, delete communication connection

• send, receive messages

• transfer status information

• attach or detach remote devices

• Two models of communication.

1) Message-passing model and 2) Shared Memory Model

2.4.5.1 Message Passing Model

• Information is exchanged through an IPC

provided by OS. (IPC=inter process

communication).

• Steps for communication:

1) Firstly, a connection must be opened using open connection system-call.

2) Each computer has a host-name, such as an IP name.

Similarly, each process has a process-name, which is translated into an equivalent

identifier.

The get hostid & get processid system-calls do this translation.

3) Then, identifiers are passed to the open and close system-calls.

Operating Systems (15CS64)

Vaneeta M, Assoc Prof., Dept of CSE, KSIT

4) The recipient-process must give its permission for communication to take place with an

accept connection system-call.

(The processes that will be receiving connections are called daemons processes).

5) Daemon processes
→ execute a wait for connection system-call and

→ are awakened when a connection is made.

6) Then, client & server exchange messages by read message and write message system

calls.

7) Finally, the close connection system-call terminates the communication.

• Advantages:

1) Useful when smaller numbers of data need to be exchanged.

2) It is also easier to implement than is shared memory.

2.4.5.2 Shared Memory Model

• Processes use map memory system-calls to gain access to regions of memory owned by other

processes.

• Several processes exchange information by reading and writing data in the shared memory.

• The shared memory
→ is determined by the processes and

→ are not under the control of S.

• The processes are also responsible for ensuring that they are not writing to the same location

simultaneously.

• Advantage:

1) Shared memory allows maximum speed and convenience of communication,

• Disadvantage:

1) Problems exist in the areas of protection and synchronization.

2.5 System Programs

• They provide a convenient environment for program development and

execution. (System programs also known as system utilities).

• They can be divided into these categories:

• Six categories of system-programs:

1) File Management
 These programs manipulate files i.e. create, delete, copy, and rename files.

2) Status Information

 Some programs ask the system for

→ date (or time)
→ amount of memory(or disk space) or

→ no. of users.

→ These information is then printed to the terminal (or output-device or file).

3) File Modification

→ Text editors can be used to create and modify the content of files stored on disk.

4) Programming Language Support

Operating Systems (15CS64)

Vaneeta M, Assoc Prof., Dept of CSE, KSIT

→ Compilers, assemblers, and interpreters for common programming-languages (such as C,

C++) are provided to the user.

5) Program Loading & Execution

The system may provide

→ absolute loaders
→ relocatable loaders

→ linkage editors and

→ overlay loaders.

→Debugging-systems are also needed.

→These programs are used for creating virtual connections between
→ processes

→ users and

→ computer-systems.

They allow users to
→ browse web-pages

→ send email or

→ log-in remotely.

• Most OSs are supplied with programs that
→ solve common problems or

→ perform common operations. Such programs include
→ web-browsers

→ word-processors
→ spreadsheets and

→ games.

These programs are known as application programs.

2.6 Operating System Design & Implementation

2.6.1 Design Goals

• The first problem in designing a system is to

→ define goals and
→ define specifications.

• The design of the system will be affected by

→ choice of hardware and
→ type of system such as

1) batch or time shared

2) single user or multiuser
• Two basic groups of requirements: 1) User goals and

 2) System goals

1) User Goals

• The system should be

→ convenient to use

Operating Systems (15CS64)

Vaneeta M, Assoc Prof., Dept of CSE, KSIT

→ easy to learn and to use

→ reliable, safe, and fast.

2) System Goals

• The system should be
→ easy to design

→ implement, and maintain
→ flexible, reliable, error free, and efficient.

2.6.2 Mechanisms & Policies

• Mechanisms determine how to do something.

• Policies determine what will be done.

• For example, the timer construct is a mechanism for ensuring CPU protection, but deciding

how long the timer is to be set for a particular user is a policy decision.

• Separating policy and mechanism is important for flexibility.

• Policies change over time; mechanisms should be general.

• Change in policy would then require redefinition of only certain parameters of the

 system. For instance, consider a mechanism for giving priority to certain types of

 programs over others

• If the mechanism is properly separated from policy, it can be used to support a policy decision

that I/O-intensive programs should have priority over CPU-intensive ones or to support the

opposite policy

• 2.6.3 Implementation

• Traditionally, operating systems have been written in assembly language

• OS's are nowadays written in higher-level languages like C/C++

• The Linux and Windows XP operating systems are written mostly in C,

• Some small sections of assembly code for device drivers and for saving and restoring the state of

registers

• Advantages of higher-level languages:

1) Faster development and

2) OS is easier to port.

• Disadvantages of higher-level languages:

1) Reduced speed and

2) Increased storage requirements.

• Major performance improvements are the result of better data structures and algorithms than of

excellent assembly-language code.

• Although operating systems are large, only a small amount of the code is critical to high

performance;

• Memory manager and the CPU scheduler are probably the most critical routines.

• After the system is written and is working correctly, bottleneck routines can be identified and can

be replaced with assembly-language equivalents.

2.7 Operating System Structure

1) Simple Structure

2) Layered Approach

3) Micro-kernels

Operating Systems (15CS64)

Vaneeta M, Assoc Prof., Dept of CSE, KSIT

4) Modules

2.7.1 Simple Structure

• These OSs are small, simple, and limited system.

• For example: MS-DOS and UNIX.

• MS-DOS was written to provide the most functionality in the least space.

• Disadvantages:

i) It was not divided into modules carefully (Figure 2.5).

ii) The interfaces and levels of functionality are not well separated.

Figure 2.5 MS-DOS layer structure

• Application programs are able to access the basic I/O routines

• MS-DOS vulnerable to errant (or malicious) programs, causing entire system crashes when

user programs fail.

• MS-DOS was also limited by the hardware of its era.

• The Intel 8088 for which it was written provides no dual mode and no hardware protection,

the designers of MS-DOS had no choice but to leave the base hardware accessible.

2) UNIX was initially limited by hardware functionality.

Two parts of UNIX (Figure 2.6): Kernel and System programs.

• The kernel is further separated into a series of interfaces and device drivers.

• Everything below the system-call interface and above the physical hardware is the kernel.

• The kernel provides following functions through system calls:

o file system ,

o CPU scheduling and
o memory management.

• Disadvantage:

1) Difficult to enhance, as changes in one section badly affects other areas.

Figure 2.6 Traditional UNIX system structure

Operating Systems (15CS64)

Vaneeta M, Assoc Prof., Dept of CSE, KSIT

2.7.2 Layered Approach

• The OS is divided into a number of layers.

• Each layer is built on the top of another layer.

• The bottom layer is the hardware.

• A layer is an implementation of an

abstract-object. i.e. The object is

made up of

→ data and
→ operations that can manipulate the data.

• The layer consists of a set of routines that can be invoked by higher-layers.

• Higher-layer

→ does not need to know how lower-layer operations are implemented

→ needs to know only what lower-layer operations do.

• Advantage:

1) Simplicity of construction and debugging.

• Disadvantages:

1) Less efficient than other types.

2) Appropriately defining the various layers.(„.‟ a layer can use only lower-layers,

careful planning is necessary).

• For example, the device driver for the backing store (disk space used by virtual-memory

algorithms) must be at a lower level than the memory-management routines, because memory

management requires the ability to use the backing store.

Figure 2.7 A layered OS

2.7.3 Micro-Kernels

• As UNIX expanded, the kernel became large and difficult to manage.

• In the mid-1980s, researchers at Carnegie Mellon University developed an operating system

called Mach that modularized the kernel using the microkernel approach.

• This method structures the operating system by removing all nonessential components from the

kernel and implementing them as system and user-level programs.

• The result is a smaller kernel.

Operating Systems (15CS64)

Vaneeta M, Assoc Prof., Dept of CSE, KSIT

• There is little concern regarding which services should remain in the kernel and which should be

implemented in user space.

• Typically, however, microkernels provide minimal process and memory management, in

addition to a communication facility.

 Main function: To provide a communication facility between

→ client program and
→ various services running in user-space.

• Communication is provided by message passing (Figure 2.8).

• All non-essential components are
→ removed from the kernel and

→ implemented as system- & user-programs.

• Advantages:

1) Ease of extending the OS. (New services are added to user space w/o modification of

kernel).

2) Easier to port from one hardware design to another.

3) Provides more security & reliability.(If a service fails, rest of the OS remains untouched.).

4) Provides minimal process and memory management.

• Disadvantage:

1) Performance decreases due to increased system function overhead.

Figure 2.8 Architecture of a typical microkernel

2.7.4 Modules

• The kernel has

→ set of core components and
→ dynamic links in additional services during boot time(or run time).

• Seven types of modules in the kernel (Figure 2.9):

1) Scheduling classes

2) File systems

3) Loadable system calls

4) Executable formats

5) STREAMS modules

Operating Systems (15CS64)

Vaneeta M, Assoc Prof., Dept of CSE, KSIT

6) Miscellaneous

7) Device and bus drivers

• The top layers include
→ application environments and
→ set of services providing a graphical interface to applications.

• Kernel environment consists primarily of
→ Mach microkernel and

→ BSD kernel.

• Mach provides
→ memory management;

→ support for RPCs & IPC and
→ thread scheduling.

• BSD component provides

→ BSD command line interface
→ support for networking and file systems and

→ implementation of POSIX APIs

• The kernel environment provides an I/O kit for development of
→ device drivers and

→ dynamic loadable modules (which Mac OS X refers to as kernel extensions).

Figure 2.9 Solaris loadable modules

Figure 2.10 Mac OS X Structure

Operating Systems (15CS64)

Vaneeta M, Assoc Prof., Dept of CSE, KSIT

2.8 Virtual Machines

• Main idea: To abstract hardware of a single computer into several different execution

environments. An OS creates the illusion that a process has

→ own processor &

→ own (virtual) memory.

• The virtual-machine provides
→ an interface that is identical to the underlying hardware (Figure 2.11).

→ a (virtual) copy of the underlying computer to each process.

Figure 2.11 System models, (a) Nonvirtual machine, (b) Virtual machine.

• Problem: Virtual-machine software itself will need substantial disk space to provide virtual

memory. Solution: provide virtual disks that are identical in all respects except size.

• Advantages:

1) Complete protection of the various system resources. It is a perfect vehicle for OS‟s R&D.

• Disadvantage: Difficult to implement due to effort required to provide an exact duplicate to

underlying machine.

2.8.3.1 VMware Example Virtual Machine

VMware is a popular commercial application that abstracts Intel 80X86 hardware into isolated virtual

machines. VMware runs as an application on a host operating system such as Windows or Linux and

allows this host system to concurrently run several different guest operating systems as independent

virtual machines.

Fig 2.12 VMWare Virtual Machine

Operating Systems (15CS64)

Vaneeta M, Assoc Prof., Dept of CSE, KSIT

2.8.3.2 The Java Virtual Machine *

Java is a popular object-oriented programming language introduced by Sun Microsystems in 1995. In

addition to a language specification and a large API library, Java also provides a specification for a

Java virtual machine—or JVM. Java objects are specified with the class construct; a Java program

consists of one or more classes. For each Java class, the compiler produces an architecture-neutral

bytecode output (.class) file that will run on any implementation of the JVM.

2.13 Java Virtual Machine

2.9 Operating System Generation

• It is possible to design, code, and implement an operating system specifically for one machine at

one site.

• Operating systems are designed to run on any of a class of machines at a variety of sites with a

variety of peripheral configurations.

• The system must then be configured or generated for each specific computer site, a process

sometimes known as system generation (SYSGEN).

• SYSGEN program must determine:

1) What CPU will be used?

2) How will boot disk be formatted?

3) How much memory is available?

4) What devices are available?

5) What OS options are desired?

• A system-administrator can use the above information to modify a copy of the source code of the

OS The operating system then is completely compiled.

• Data declarations, initializations, and constants, along with conditional compilation, produce an

output object version of the operating system

• At the other extreme, it is possible to construct a system that is completely table driven.
• All the code is always part of the system, and selection occurs at execution time, rather than at
compile or link time.
• System generation involves simply creating the appropriate tables to describe the system.

2.10 System Boot

• After an operating system is generated, it must be made available for use by the hardware.

• But how does the hardware know where the kernel is or how to load that kernel?

• The procedure of starting a computer by loading the kernel is known as booting the system.

• A small piece of code known as the bootstrap program or bootstrap loader locates the kernel,

loads it into main memory, and starts its execution.

• This program is in the form of read-only memory (ROM), because the RAM is in an unknown

state at system startup.

Operating Systems (15CS64)

Vaneeta M, Assoc Prof., Dept of CSE, KSIT

• ROM is convenient because it needs no initialization and cannot be infected by a computer

virus.

• Some systems—such as cellular phones, PDAs, and game consoles—store the entire operating

system in ROM.

• But changing the bootstrap code requires changing the ROM hardware chips.

• Some systems resolve this problem by using erasable programmable read-only memory

(EPROM), which is readonly except when explicitly given a command to become writable.

• All forms of ROM are also known as firmware, since their characteristics fall somewhere between

those of hardware and those of software.

• A problem with firmware in general is that executing code there is slower than executing code in

RAM. Some systems store the operating system in firmware and copy it to RAM for fast execution.

• For large operating systems (including most general-purpose operating systems like

Windows, Mac OS X, and UNIX) or for systems that change frequently, the bootstrap loader is stored

in firmware, and the operating system is on disk.

MODULE 1 (CONT.): CHAPTER 3-PROCESSES

3.1 Process Concept

 A process is the unit-of-work.

 A system consists of a collection of processes:

1) OS process can execute system-code and

2) User process can execute user-code.

3.1.1 The Process

• A process is a program in execution.

• It also includes (Figure 1.23):

1) Program Counter to indicate the current activity.

2) Registers Content of the processor.

3) Process Stack contains temporary data.

4) Data Section contains global variables.

5) Heap is memory that is dynamically allocated during process run time.

• A program by itself is not a process.

1) A process is an active-entity.

2) A program is a passive-entity such as an executable-file stored on disk.

• A program becomes a process when an executable-file is loaded into memory.

• If you run many copies of a program, each is a separate process.
The text-sections are equivalent, but the data-sections vary.

Figure 3.1 Process in memory

Operating Systems (15CS64)

Vaneeta M, Assoc Prof., Dept of CSE, KSIT

3.1.2 Process State

• As a process executes, it changes state.

• Each process may be in one of the following states (Figure 1.24):

1) New: The process is being created.

2) Ready: The process is waiting to be assigned to a processor.

3) Running: Instructions are being executed.

4) Waiting: The process is waiting for some event to occur (such as I/0 completions).

5) Terminated: The process has finished execution.

• Only one process can be running on any processor at any instant.

Figure 3.4 Diagram of process state

3.1.3 Process Control Block

• In OS, each process is represented by a PCB (Process Control Block).

Figure 3.5 Process control block (PCB)

• PCB contains following information about the process (Figure 3.5):

 Process State

The current state of process may be

→ new

→ ready

→ running
→ waiting or

→ halted.

This indicates the address of the next instruction to be executed for the process.

3) CPU Registers

These include

Operating Systems (15CS64)

Vaneeta M, Assoc Prof., Dept of CSE, KSIT

→ accumulators (AX)

→ index registers (SI, DI)

→ stack pointers (SP) and

→ general-purpose registers (BX, CX, DX).

4) CPU Scheduling Information

This includes: priority of process

→ pointers to scheduling-queues and

→ scheduling-parameters.

5) Memory Management Information
This includes: value of base- & limit-registers and

→ value of page-tables(or segment-tables).

6) Accounting Information
→ This includes : amount of CPU time

→ time-limit and
→ process-number.

7) I/O Status Information

→ This includes: list of I/O devices

→ list of open files.

3.2 Process Scheduling

• Objective of multiprogramming: To have some process running at all times to maximize CPU

utilization.

Objective of time-sharing: To switch the CPU between processes so frequently that users can

interact with each program while it is running.

• To meet above 2 objectives: Process scheduler is used to select an available process for program-
execution on the CPU.

3.2.1 Scheduling Queues

• Three types of scheduling-queues:

1) Job Queue : This consists of all processes in the system. As processes enter the system,

they are put into a job-queue.

2) Ready Queue: This consists of the processes that are residing in main-memory and ready

& waiting to execute (Figure 3.6).

→This queue is generally stored as a linked list.

→A ready-queue header contains pointers to the first and final PCBs in the list.

→Each PCB has a pointer to the next PCB in the ready-queue.

→This consists of the processes that are waiting for an I/O device.

→Each device has its own device-queue.

• When the process is executing, one of following events could occur (Figure 1.27):

Operating Systems (15CS64)

Vaneeta M, Assoc Prof., Dept of CSE, KSIT

1) The process could issue an I/0 request and then be placed in an I/0 queue.

2) The process could create a new subprocess and wait for the subprocess's termination.

3) The process could be interrupted and put back in the ready-queue.

Figure 3.7 The ready-queue and various I/O device-queues

Figure 3.8Queueing-diagram representation of process scheduling

3.2.2 Schedulers

• Three types of schedulers:

1) Long-term scheduler

2) Short-term scheduler and

3) Medium-term schedulers

Operating Systems (15CS64)

Vaneeta M, Assoc Prof., Dept of CSE, KSIT

 Long-Term Scheduler Short-Term Scheduler

Also called job scheduler. Also called CPU scheduler.

Selects which processes should be brought Selects which process should be executed

into the ready-queue. next and allocates CPU.

Need to be invoked only when a process Need to be invoked to select a new process

leaves the system and therefore executes for the CPU and therefore executes much

much less frequently. more frequently.

May be slow „,‟ minutes may separate the Must be fast „,‟ a process may execute for

creation of one new process and the next. only a few milliseconds.

Controls the degree of multiprogramming.

 Processes can be described as either:

 I/O-bound Process

 Spends more time doing I/O operation than doing computations.

 Many short CPU bursts.

 CPU bound processes

 Spends more time doing computations than doing I/O operation.

• Few very long CPU bursts.

• Why long-term scheduler should select a good process mix of I/O-bound and CPU-bound processes ?

Ans: 1) If all processes are I/0 bound, then

i) Ready-queue will almost always be empty, and

ii) Short-term scheduler will have little to do.

2) If all processes are CPU bound, then

i) I/0 waiting queue will almost always be empty (devices will go unused) and

ii) System will be unbalanced.

• Some time-sharing systems have medium-term scheduler (Figure 3.9).

• The scheduler removes processes from memory and thus reduces the degree of

multiprogramming.

• Later, the process can be reintroduced into memory, and its execution can be continued

where it left off. This scheme is called swapping.

Operating Systems (15CS64)

Vaneeta M, Assoc Prof., Dept of CSE, KSIT

 The process is swapped out, and is later swapped in, by the scheduler.\

Figure 3.9 Addition of medium-term scheduling to the queueing diagram

3.2.3 Context Switch

• Context-switch means saving the state of the old process and switching the CPU to another process.

• The context of a process is represented in the PCB of the process; it includes

→ value of CPU registers

→ process-state and

→ memory-management information.

• Disadvantages:

1) Context-switch time is pure overhead, because the system does no useful work while

switching.

2) Context-switch times are highly dependent on hardware support.

3.3 Operations on Processes

1) Process Creation and

2) Process Termination

3.3.1 Process Creation

• A process may create a new process via a create-process system-call.

• The creating process is called a parent-process.

• The new process created by the parent is called the child-process (Sub-process).

• OS identifies processes by pid (process identifier), which is typically an integer-number.

• A process needs following resources to accomplish the task:

→ CPU time

→ memory and

→ I/0 devices.

• Child-process may
→ get resources directly from the OS or

Operating Systems (15CS64)

Vaneeta M, Assoc Prof., Dept of CSE, KSIT

→ get resources of parent-process. This prevents any process from overloading the system.

• Two options exist when a process creates a new process:

1) The parent & the children execute concurrently.

2) The parent waits until all the children have terminated.

• Two options exist in terms of the address-space of the new process:

1) The child-process is a duplicate of the parent-process (it has the same program and data
as the parent).

2) The child-process has a new program loaded into it.

• In UNIX, each process is identified by its process identifier (pid), which is a unique integer.

Example : In Solaris, the process at the top of the tree is the sched process, with pid of 0. The sched

process creates several children processes—including pageout and f sf lush. These processes are

responsible for managing memory and file systems. The sched process also creates the i n i t process,

which serves as the root parent process for all user processes. In Figure 3.9, we see two children of i n

i t — inetd and dtlogin. inetd is responsible for networking services such as t e l n e t and ftp; dtlogin

is the process representing a user login screen. When a user logs in, dtlogin creates an X-windows

session (Xsession), which in turns creates the sdt_shel process. Below sdt_shel, a user's command-line

shell—the C-shell or csh—is created. It is this commandline interface where the user then invokes

various child processes, such as the I s and cat commands. We also see a csh process with pid of 7778

representing a user who has logged onto the system using t e l n e t . This user has started the

Netscape browser (pid of 7785) and the emacs editor (pid of 8105). On UNIX, a listing of processes

can be obtained using the ps command.

Figure 3.10 a Tree of processes on Solaris OS

• A new process is created by the fork() system-call (Figure 3.11 & 3.12).

• The new process consists of a copy of the address-space of the original process.

• Both the parent and the child continue execution with one difference:

1) The return value for the fork() is zero for the new (child) process.
2) The return value for the fork() is nonzero pid of the child for the parent-process.

• Typically, the exec() system-call is used after a fork() system-call by one of the two processes to

replace the process's memory-space with a new program.

• The parent can issue wait() system-call to move itself off the ready-queue.

Operating Systems (15CS64)

Vaneeta M, Assoc Prof., Dept of CSE, KSIT

Figure 3.10 Creating a separate process using the UNIX fork() system-call

Figure 3.11 Process creation using the fork() system-call

Operating Systems (15CS64)

Vaneeta M, Assoc Prof., Dept of CSE, KSIT

Fig 3.12 a Creating a separate process using WIN 32 API

3.3.2 Process Termination

• A process terminates when it executes the last statement (in the program).

• Then, the OS deletes the process by using exit() system-call.

• Then, the OS de-allocates all the resources of the process. The resources include
→ memory
→ open files and

→ I/0 buffers.

• Process termination can occur in following cases:
→ A process can cause the termination of another process via TerminateProcess() system-

call.

→ Users could arbitrarily kill the processes.

• A parent terminates the execution of children for following reasons:

1) The child has exceeded its usage of some resources.

2) The task assigned to the child is no longer required.

Operating Systems (15CS64)

Vaneeta M, Assoc Prof., Dept of CSE, KSIT

3) The parent is exiting, and the OS does not allow a child to continue.

• In some systems, if a process terminates, then all its children must also be terminated. This

phenomenon is referred to as cascading termination.

3.4 Inter Process Communication (IPC)

• Processes executing concurrently in the OS may be

1) Independent processes or 2) Co-operating processes.

1) A process is independent if

i) The process cannot affect or be affected by the other processes.

ii) The process does not share data with other processes.

2) A process is co-operating if

i) The process can affect or be affected by the other processes.

ii) The process shares data with other processes.

• Several reasons for providing an environment that allows process

1) cooperationInformation Sharing

• Since many users may be interested in same piece of information (ex: shared file).

2) Computation Speedup

• We must break the task into subtasks.

• Each subtask should be executed in parallel with the other subtasks.

• The speed can be improved only if computer has multiple processing elements such as

→ CPUs or I/O channels.

3) Modularity

• Divide the system-functions into separate processes or threads.

4) Convenience

• An individual user may work on many tasks at the same time.

• For ex, a user may be editing, printing, and compiling in parallel.

• Two basic models of IPC (Figure 3.12): 1) Shared-memory and

 2) Message passing.

Figure 3.12 Communications models. (a) Message passing. (b) Shared-memory

Operating Systems (15CS64)

Vaneeta M, Assoc Prof., Dept of CSE, KSIT

3.4.1 Shared-Memory Systems

• Communicating-processes must establish a region of shared-memory.

• A shared-memory resides in address-space of the process creating the shared-memory. Other

processes must attach their address-space to the shared-memory.

• The processes can then exchange information by reading and writing data in the shared-memory.

• The processes are also responsible for ensuring that they are not writing to the same location

simultaneously.

• For ex, Producer-Consumer Problem:

Producer-process produces information that is consumed by a consumer-process

For example, a compiler may produce assembly code, which is consumed by an assembler. The

assembler, in turn, may produce object modules, which are consumed by the loader.

• To allow producer and consumer processes to run concurrently, we must have available a buffer

of items that can be filled by the producer and emptied by the consumer.

• This buffer will reside in a region of memory that is shared by the producer and consumer

processes. A producer can produce one item while the consumer is consuming another item.

• The producer and consumer must be synchronized, so that the consumer does not try to consume

an item that has not yet been produced.

• Two types of buffers can be used:

1) Unbounded-Buffer places no practical limit on the size of the buffer.

2) Bounded-Buffer assumes that there is a fixed buffer-size.

• The bounded buffer can be used to enable processes to share memory. The following

variables reside in a region of memory shared by the producer and consumer processes:

Figure 3.13 Buffer Intialization

• The shared buffer is implemented as a circular array with two logical pointers: in and out. The

variable in points to the next free position in the buffer; out points to the first full position in the

buffer. The buffer is empty when in == out; the buffer is full when ((in + 1) % BUFFER_SIZE) ==

out.

• The producer process has a local variable nextProduced in which the new item to be produced is

stored. The consumer process has a local variable nextConsumed in which the item to be consumed is

stored.

Figure 3.14. Producer Process

Operating Systems (15CS64)

Vaneeta M, Assoc Prof., Dept of CSE, KSIT

Figure 3.15 Consumer Process when in == out; the buffer is full when ((in + 1) % BUFFER_SIZE) == out.

• Advantages:

1) Allows maximum speed and convenience of communication.

2) Faster.

3.4.2 Message-Passing Systems

• These allow processes to communicate and to synchronize their actions without sharing the same

address-space.

• For example, a chat program used on the WWW.

• Messages can be of 2 types: Fixed size or Variable size.

1) If fixed-sized messages are used, the system-level implementation is
simple. However, the programming task becomes more difficult.

2) If variable-sized messages are used, the system-level implementation is
complex. However, the programming task becomes simpler.

• A communication-link must exist between processes to communicate

• Three methods for implementing a link:

1) Direct or indirect communication.

2) Symmetric or asymmetric communication.

3) Automatic or explicit buffering.

Issues related to Inter Process Communication
3.4.2.1 Naming

• Processes that want to communicate must have a way to refer to each other. They can use either

direct or indirect communication.

• Under direct communication, each process that wants to communicate must explicitly name the

recipient or sender of the communication. In this scheme the send and receive primitives are defined

as: • scheme, the send.0 and receive() primitives are defined as:

 send(P,message): Send a message to process P.

 receive(Q,message): Receive a message from process Q.

Operating Systems (15CS64)

Vaneeta M, Assoc Prof., Dept of CSE, KSIT

 Direct Communication Indirect Communication

 Each process must explicitly name the Messages are sent to/received from

 recipient/sender. mailboxes (or ports).

 Properties of a communication link: Properties of a communication link:

 • A link is established automatically between • A link is established between a pair of

 every pair of processes that want to processes only if both members have a

 communicate. The processes need to know shared mailbox.

 only each other‟s identity to communicate. • A link may be associated with more than

 • A link is associated with exactly two two processes.

 processes. • A number of different links may exist

 • Exactly one link exists between each pair between each pair of communicating

 of processes. processes.

 Symmetric addressing: Mailbox owned by a process:

 • Both sender and receiver processes must • The owner can only receive, and the user

name the other to communicate

Send(P,Message), Receive(Q,message) can only send.

 • The mailbox disappears when its owner

 process terminates.

 Asymmetric addressing: Mailbox owned by the OS:

 • Only the sender names the recipient; the The OS allows a process to:

recipient needn't name the sender.Send(P,message),

Receive(id,message) 1. Create a new mailbox

 2. Send & receive messages via it

 3. Delete a mailbox.

• Advantages:

 Useful for exchanging smaller amounts of data („.‟ No conflicts need be avoided).

 Easier to implement.

 Useful in a distributed environment.

3.4.2.2 Synchronization

Operating Systems (15CS64)

Vaneeta M, Assoc Prof., Dept of CSE, KSIT

• Message passing may be either blocking or non-blocking (also known as synchronous and

asynchronous).

 Synchronous Message Passing Asynchronous Message Passing

 Blocking send: Non-blocking send:

 The sending process is blocked until the The sending process sends the message

 message is received by the receiving process and resumes operation.

 or by the mailbox.

 Blocking receive: Non-blocking receive:

 The receiver blocks until a message is The receiver retrieves either a valid

 available. message or a null.

3.4.2.3 Buffering

• Messages exchanged by processes reside in a temporary queue.

• Three ways to implement a queue:
1) Zero Capacity

• The queue-length is zero.

• The link can't have any messages waiting in it.

• The sender must block until the recipient receives the message.

2) Bounded Capacity

• The queue-length is finite.

• If the queue is not full, the new message is placed in the queue.

• The link capacity is finite.

• If the link is full, the sender must block until space is available in the queue.

3) Unbounded Capacity

• The queue-length is potentially infinite.

• Any number of messages can wait in the queue.

• The sender never blocks.

